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Background: Strain analysis provides more thorough spatiotemporal
signatures for myocardial contraction, which is helpful for early detection of
cardiac insufficiency. The use of deep learning (DL) to automatically measure
myocardial strain from echocardiogram videos has garnered recent attention.
However, the development of key techniques including segmentation and
motion estimation remains a challenge. In this work, we developed a novel
DL-based framework for myocardial segmentation and motion estimation to
generate strain measures from echocardiogram videos.

Methods: Three-dimensional (3D) Convolutional Neural Network (CNN) was
developed for myocardial segmentation and optical flow network for motion
estimation. The segmentation network was used to define the region of
interest (ROI), and the optical flow network was used to estimate the pixel
motion in the ROI. We performed a model architecture search to identify the
optimal base architecture for motion estimation. The final workflow design
and associated hyperparameters are the result of a careful implementation.
In addition, we compared the DL model with a traditional speck tracking
algorithm on an independent, external clinical data. Each video was double-
blind measured by an ultrasound expert and a DL expert using speck tracking
echocardiography (STE) and DL method, respectively.

Results: The DL method successfully performed automatic segmentation,
motion estimation, and global longitudinal strain (GLS) measurements in all
examinations. The 3D segmentation has better spatio-temporal smoothness,
average dice correlation reaches 0.82, and the effect of target frame is better
than that of previous 2D networks. The best motion estimation network
achieved an average end-point error of 0.05 4+ 0.03 mm per frame, better than
previously reported state-of-the-art. The DL method showed no significant
difference relative to the traditional method in GLS measurement, Spearman
correlation of 0.90 (p < 0.001) and mean bias —1.2 + 1.5%.
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Conclusion: In conclusion, our method exhibits better segmentation and
motion estimation performance and demonstrates the feasibility of DL
method for automatic strain analysis. The DL approach helps reduce time
consumption and human effort, which holds great promise for translational
research and precision medicine efforts.

echocardiography, strain, deep learning, segmentation, motion estimation

1 Introduction

Assessment of cardiac mechanics has an essential role
in diagnosis, risk stratification, and treatment strategies
in patients with cardiac disease (1). The left ventricular
ejection fraction (LVEF) is often used as a cardiac functional
index, but it has a significant limitation when mechanical
impairment occurs without an ejection fraction reduction (2).
Alternatively, clinicians recommend finer markers of cardiac
mechanical dysfunction (3). Strain imaging is richer description
tool of cardiac function, which provides a more thorough
characterization of myocardial contraction mechanics (4). It
has applications in various cardiac pathologies (5, 6). By
assessing myocardial deformation, it can detect left ventricular
dysfunction before a change in LVEF.

Currently, with rapid image acquisition and relatively
low cost, the most extensively utilized modality in strain
imaging is two-dimensional (2D) transthoracic speck tracking
echocardiography (STE) (7), which is used to estimate pixel
block motion within regions along the myocardial wall (8).
However, it still has several unsolved challenges due to
fundamental limitations of ultrasound image modality and
algorithm ad-hoc setups, including inaccurate reflection of
underlying biomechanical motion and some degree of non-
conclusive results caused by errors related to image quality
and algorithm assumptions (9, 10). In addition, in clinical
applications, there are several steps that require observer
manual intervention such as view selection, adjustment
of myocardial wall boundaries, and selection of tuneable
parameters for tracking algorithms. This is a time-consuming
and artificially introduced difference process that requires
considerable expertise (10); the time spent completing a single

Abbreviations: DL, deep learning; CNN, convolutional neural network;
STE, speck-tracking echocardiography; ED, end-diastole; ES, end-
systole; LVEF, left ventricular ejection fraction; EPE, end-point error;
LVM, left-ventricular myocardium; 2D, two-dimensional; 3D, three-
dimensional; GLS, global longitudinal strain; 3D-CSN, three-dimensional
cardiac segmentation network; A2C, apical 2-chamber; A3C, apical 3-
chamber; A4C, apical 4-chamber; DSC, dice similarity coefficient; Al,
artificial intelligence; ROI, region of interest; RLS, regional longitudinal
strain.
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global longitudinal strain (GLS) analysis has been found to
range between 5 and 10 min (11, 12), making it inefficient in
clinical practice. As a result, it is difficult to integrate into the
existing cardiac ultrasound workflow, limiting the wider clinical
applicability of these techniques.

Artificial intelligence (AI) advances have opened up new
possibilities in this regard. Many Al-based echocardiography
interpretations have been proposed in recent years, some of
which are equivalent to replicating what clinicians do with
a visual diagnostic rather than a more thorough analysis
of what is happening with the image (13). These methods
are still limited in exploring the value of ultrasound images.
Meticulous quantitative evaluation is another advantage of
Al, such as pixel-level segmentation and motion prediction.
Automatic delineation approaches have been implemented
within computational pipelines (9, 14, 15). Recent studies have
shown that motion tracking also can be treated as a learnable
problem and is more robust than traditional approaches (e.g.,
variational) in some applications (16-18). This has sparked a
lot of interest in applying deep learning (DL) techniques to
assess cardiac strain in echocardiography. @Ostvik et al. (19)
have integrated cardiac view classification, event detection,
myocardial segmentation, and motion estimation to construct
an Al pipeline for fully automated GLS calculations. The Pwc-
net (20) was used to learn to estimate ultrasonic motion, which
performance was on par or better than state-of-the-art methods
for traditional estimation. Al-pipeline has been shown as a
promising alternative to traditional methods with significantly
higher analytical efficiency. It is reported that the traditional
method takes 5-10 min to measure each time, while the Al
method was performed in <15 s (21). However, this method
involves several sources of limited accuracy, especially the 2D
segmentation and motion networks being the fundamental
building blocks of the measurements.

Therefore, to improve clinical availability, we developed
a more reliable DL framework for segmentation and motion
estimation of echocardiogram videos to complete strain analysis.
Segmentation, as a pre-step in motion estimation, is used to
define the region of interest (ROI) and initialize the myocardial
coordinate system for strain analysis. Previous attempts to
segment left ventricular myocardium (LVM) with 2D U-net
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relied on manually labeled still images at end-systole (ES) and
end-diastole (ED) instead of using the actual echocardiogram
videos (22). These models are still limited in their ability to
generalize, especially in the case of poor image quality (23).
We used video instead of still frame trained three-dimensional
(2D+t) CNN to segment myocardium. The three-dimensional
(3D) convolution can simultaneously scan multiple frames and
learn the relationships between them to constrain myocardial
boundaries. Further, the optical flow CNN was employed to
estimate pixel motion, which is the task of estimating the
instantaneous velocity of pixels in the ROI (24). In previous
studies, optical flow CNN for cardiac motion estimation from
echocardiography has been demonstrated to be feasible, like
EchoPwc-net and Flownet (19, 25). But the best systems are
still limited by difficulties including fast movement, occlusions,
and motion blur. To address these deficiencies, we attempted
a new motion estimation method and compared it with Pwc-
net and Flownet. RAFT is a new motion estimation model
proposed in recent years (24). The algorithm uses additional
recurrent neural network to optimize motion details, and has
better performance in fast motion and occlusion. In our work,
we proposed a 3D network for echocardiographic myocardial
segmentation and compared several classical motion estimation
algorithms to achieve global and local strain analysis.
Therefore, in this study, we constructed a new fast, fully
automatic myocardial strain analysis workflow consisting of
segmentation and motion estimation convolutional neural
networks. This approach provides visually assessable tracings of
the myocardial motion, which facilitate human assessment
and downstream analysis. And that, the accuracy and
repeatability of the proposed framework are verified in vivo
data, which is critical for clinical adoption (10). Compared with
previous studies, our model has more potential in automatic
quantitative analysis of echocardiography. This could make the
measurements more robust and hopefully replace traditional
methods to achieve automatic strain measurement without
observer intervention, helping to improve clinical workflow.

2 Materials and methods

2.1 The architecture of deep learning
model

We construct a DL workflow for cardiac segmentation,

motion estimation, and calculating GLS, which has three key
components (Figure 1). Let I; be a frame at time ¢.

2.2 Segmentation and LVM localization

First, we developed a 3D cardiac segmentation network (3D-
CSN) with U-net type for frame-level semantic segmentation of
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the cardiac to generate ROI and establish Iy LVM coordinate
system for strain analysis. The segmentation network is a 3D
architecture that uses a 3D array with size 256 x 256 x n
(256 x 256 represents the image size, and n represent the
number of frames) to generate a segmentation mask of equal
size, each color corresponding to a tissue label (i.e., background
and LVM). It has an encoder and a decoder path each with
four layers. In the encoder path, each layer contains two 3D
convolutions (3 x 3 x 3) each followed by a rectified linear
unit (ReLu) and max pooling (2 x 2 x 2). In the decoder
path, each layer consists of an upconvolution (2 x 2 x 2)
followed by two 3D convolutions each followed by a ReLu. The
kernel of 3D convolution allows the model to simultaneously
scan three successive frames and learn spatial features in two
dimensions (x, y) as well as temporal information in the third
dimension (¢), which has previously performed well in video
classification tasks (26). The encoder path is used to learn
video spatiotemporal features, and then generate the same
resolution mask through decoder path. Skip connection is used
to propagate details. Thus, 3D-CSN uses a 3-channel input
volume composed of 3 consecutive frames of images to generate
a 3-channel array o of equal size, each channel representing the
mask of each frame. The target image and mask are overlapped
to obtain the segmentation result, namely the ROI (Q). Skeleton
extraction algorithm is then employed to take the centerline
(cEQ) between the endocardium and the epicardium on end-
diastole (Ip), which will be used to locate the myocardium and
generate coordinates. The centerline, defined as the mid-point
between two nearest endo- and epicardial points, was used to
track and calculate myocardial strain.

2.3 Motion estimation

Second, we constructed an optical-flow based motion
estimation network used to estimate each pixel (veQ)
movement field (f;) of the heart from I; to I;4;, which is
used to update the position of LVM centerline (C). In this
study, we employ three different variants (RAFT, Pwc-net,
and Flownet) to identify the optimum basic architecture and
eventually chose RAFT as the best performing architecture.
RAFT, based on an optimization approach, consists of three
main components: feature encoder, correlation layer, and update
operator. This method involves taking two consecutive images
(It» Ir41) as input, and these are fed separately into feature
encoders with shared weights. The feature encoder contains six
residual blocks and is downsampled three times; the amount
of filters successively is 64,64,128,128, and 192,192. After
feature extraction, the block maps the input images to dense
feature maps (g0) at 1/8 resolution. Then we compute visual
similarity by constructing the dot product between all pairs of
feature vectors. It can be efficiently computed as single matrix

frontiersin.org


https://doi.org/10.3389/fcvm.2022.1067760
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

10.3389/fcvm.2022.1067760

Target Frame ROI

Deng et al.
3D-CSN
segmentation
Motion Estimation
FIGURE 1

Measurement Update Strain Curve

Overview of the deep learning (DL) workflow for automatic measurement of longitudinal strain. 3D-CSN uses multi-frame echocardiogram
images as input to delineate the region of interest and segments, and extract the centerline of target frame. Then, the motion network estimates
the movement field of the pixels in the ROI to generate the velocity vector at each moment. These velocities are used to propagate the position
of the centerline and then calculate the global and local line arc lengths coexisting in {Zk} which are used as a basis for strain measurements.

multiplication

Cit = D80 (1);5,-80 L)y, M
I

Where Cyy is the correlation layer, ij and kl represent pixel
coordinates of g0 (I1) and g6 (1), respectively, and h denotes the
channel of feature maps.

The correlation volume Cjj; contains four correlation
layers of different sizes by pooling kI dimensions with kernel
sizes 1, 2, 4, and 8 strides, which stored both large and
small displacements information. Meanwhile, it maintains
high-resolution information by maintaining the ij dimensions,
allowing this method could recover the motions of small fast-
moving objects. Finally, the network uses the current flow field fi
to retrieve correlation features C from the correlation layer and
then concatenate them to input ConvGRU-based (27) update
operator that produces an update direction Af to update fx, fx
is initially set to zero (fo = 0). Update operator is a lightweight
network based on recurrent neural network, which can set
any number of iterations to optimize the flow field. After 12
iterations, we decided on the final optical flow. Thus, RAFT uses
two consecutive 1-channel input images with size 256 x 256
to generate a 2-channel array f of equal size, each channel
representing the x and y components of motion, which is used
to update the x and y coordinates of LVM pixels, respectively.
Structural comparisons of RAFT, Pwc-net, and Flownet are
discussed in Supplementary section 1.

2.4 Tracking update and calculate
strain

Finally, we update the position of myocardial centerline ¢
by displacement field f, i.e., c(t + 1) = ¢c(¢) + f(f), and calculate
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its arclength t which represents the longitudinal length of LVM
at each moment. Strain represents percent change in myocardial
fibers length per unit under stress (13). Thus t is used to estimate
GLS

s = [t® —1(0)]/t(0) 2

Where t (t) denotes ventricular longitudinal length at frame
t, 1(0) is ED frame ventricular longitudinal length. The peak-
GLS was defined as the minima strain value within a cardiac
cycle. For segments, we adopt 16-segment division method
(Figure 2), with the apex of ED centerline as the demarcation
node, divided three arcs of the same size on both sides as the
initial position of each segment (28), and calculated regional
longitudinal strain (RLS) in subsequent updates.

3 Experiments
3.1 Data preparation

The echocardiography dataset consists of two parts, one for
model training and the other for external clinical validation.

For development, we used a publicly available dataset
(29) of simulated echocardiography images, consisting of 105
sequences or 6,165 frames with apical 2-chamber (A2C), apical
3-chamber (A3C), and apical 4-chamber (A4C) views. The data
is created with a complex biomechanical model for comparison
of speck tracking imaging algorithms. Data templates come
from seven different vendors and five motion patterns, including
one healthy and four pathologies. For each frame, the authors
provide a set of 180 points coordinate Py <x,y>, k {1,2...180}
evenly distributed in the myocardial region, corresponding to
the underlying motion field of the LV myocardium. Therefore,
semi-automatic labeling was employed to generate labels for
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16-segment
1=Basal anteroseptal ~7=Mid anteroseptal ~ 13=Apical anterior
2=Basal anterior 8=Mid anterior 14=Apical lateral
3=Basal anterolateral 9=Mid anterolateral ~15=Apical inferior
4=Basal inferolateral ~ 10=Mid inferolateral 16=Apical septal
5=Basal inferior 11=Mid inferior
6=Basal i ptal  12=Mid inferoseptal
FIGURE 2

10.3389/fcvm.2022.1067760

A4C

Echocardiography 16-segment. The 2015 ASE guideline recommend that the left ventricular myocardium be divided into three rings, namely
the basal ring, the mid ring, and the apical ring, each with a height 1/3 of the length of the left ventricle. The basal ring and the mid ring contain
six segments, respectively, and the apical ring contains four segments. The actual echocardiogram corresponds to the diagram above. The

colors indicate different supplying coronary arteries.

monitoring network training. As shown in Figure 3A, we
annotate the region of LVM in each frame by a concave hull
that connects the peripheral points, medial line is defined
as the endocardium and the lateral line as the epicardium.
Inside the myocardium labels “1,” others label “0.” Every three
consecutive frames as a data is converted to a 3D array, with the
corresponding label as input. In order to generalize the model in
reality, we additionally fine-tuned the model on 200 manually
annotated datasets. For motion estimation network, we used
the coordinate changes of corresponding points between
consecutive frames to generate a sparse displacement field, i.e.,
Vi = Pr (t + 1) — Pk (t), and then used cubic interpolation to
convert it to a dense displacement map with velocities inside the
myocardium as shown in Figure 3B. The dense Displacement
map is used as the ground truth flow to monitor gradient descent
of the motion network. In order to expand the range of motion
amplitude distribution between frames, we used sampling every
other frame to clip the raw video. Each video was cut into
4 cine-loop. Finally, 4200 fully labeled echocardiographic data
were generated for 3D-CSN training, and 12,000 ultrasound
image pairs for the development of the motion network. For
the robustness of model, data augmentation including basic
augmentations and ultrasound-specific augmentation routines
was applied (19). Details of data edit and enhancement are
provided in Supplementary section 2.

Additionally, we evaluated the actual effectiveness of the
model on an external test dataset of 150 echocardiogram videos
from 50 patients from an independent hospital system (The First
Affiliated Hospital of Shantou University Medical College) and
in comparison with commerce STE. Three standard apical views
were extracted from each patient. To ensure a representative
range of LV pathologies, we included three pre-defined patient
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groups (Supplementary section 3): 17 patients with myocardial
infarction, 17 patients with ischemic heart failure, and 16
patients admitted for chest pain without any evidence of
cardiac origin. Videos were acquired by skilled sonographers
using PHILIPS Epiq 7C ultrasound machine and processed
images were stored in a Philips Xcelera picture archiving
and communication system. The study was approved by the
Regional Committee for Medical and Health Research Ethics
(No. B-2022-196) and all patients gave written consent. Patients
were included consecutively for each group regardless of image
quality. Exclusion criteria were significant ventricular aneurysm,
atrial fibrillation, age younger than 18 years, or inability to give
written informed consent. Supplementary Table 1 summarizes
the characteristics of the included patients.

3.2 Model development and training

Model design and training were done in Python using
the PyTorch deep learning library. The hardware consisted of
an Intel Core CPU i7-11700k, 32 GB RAM, and an NVIDIA
RTX3090 GPU with 24 GB of memory. The training process
is divided into two sections: The 3D semantic segmentation
network training and motion estimation network training. All
data are randomly divided into training set, validation set and
test set in 7:2:1 order. Model development adopts transfer
learning strategy. Segmentation network was pre-trained on
simulated ultrasonic data, then fine-tuned on hand-labeled data.
Motion estimation network was pre-trained on FlyingThings,
then fine-tuned on the abovementioned ultrasonic data.

The essence of segmentation is pixel classification, means
that every pixel on the image needs to be assigned to the target
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Concave Hull

It

It Sparse Displacement Field

FIGURE 3
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Segmentation Ground-truth

Optical-Flow Ground-truth

Dense Displacement Field

Semi-automatic data annotation. (A) Segmentation marked, the concave hull formed by connecting the outermost point is marked as the LVM
region. All pixels within the hull are marked as “1,” as shown in yellow, and those outside are marked as “0,” as shown in purple. Every three
frames as a data. (B) Optical flow marked, I, It11 represent two adjacent frames. The sparse displacement field is calculated according to the
position changes of the corresponding points of the before and after frames. Then, the density velocity field of each pixel is generated by cubic
interpolation, which is represented as flow field. Color and saturation indicate direction and magnitude, respectively

region (30). In other words, the task of 3D-CSN is to classify
every pixel on the video volume into LVM or background.
Model input is a 256 x 256 x 3 voxel tile together with a binary
value indicating classification of each pixel,256 x 256 represents
the space size of the image, and 3 indicates the number of frames.
The output is a mask of the same size as the input video, where
each pixel is classified as either LVM or background. To enable
training of 3D network we used the memory efficient cuDNN
convolution layer implementation. The model was initialized
with random weights and was trained using the stochastic
gradient descent with momentum (SGDM) optimizer. We set
batch size of 6 and learning rate of 2e-4 for all experiments.
We ran 50k and 10k iterations on pre-trained and fine-tuned,
respectively, which took approximately 25 h. Different from

previous Dice loss in 2D segmentation, this network output and

)

3)
Where, y, €Y and y/, €Y’ are the target label and

ground truth are compared using Dice loss + Cross entropy

2 |yﬂ,f ﬂy,n,c{

L(Y, Y) = —
x-¥) Dl + o]

z|

1 C N
3 3 (st +
c=1ln=1

predictionof class C and Nth in batch processing, respectively, Y
and Y’ are the truth value and prediction result of input image,
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and C and N represent the number of classes and pixels in the
dataset. P represent probability.

The model-predicted and labels were compared using Dice
Similarity Coeflicient (DSC) metrics at ED, ES, and random
other frames. We examine the model’s segmentation effect on
three views and compare it with the 2D segmentation model
involved in the pipeline proposed by Smistad et al. (31). Note
that 3D-CSN is trained on the data set we developed, while the
2D network is trained on CAMUS (32) data set (including the
tagged ED and ES frames).

Optical flow network was initialized with pre-trained
weights from the FlyingThings dataset, then fine-tuned on
ultrasonic data. The model’s input is the segmentation network’s
output, and the output is the dense displacement field of
ultrasonic specks in two consecutive frames. We tested three
different model architectures. All networks were trained with
AdamW optimizer parameters beta 1, 2 = 0.9, 0.999, random
2e-4. For fine-
tuning, the initial learning rate was set to le-4. We pre-trained

initialization, and the initial learning rate =
on FlyingThings for 100k iterations with a batch size of 12 and
then fine-tuned on echocardiography for an additional 20k steps
with a batch size of 6. Training time was approximately 2-3 days.

The L2 distance between the predicted and ground truth flow
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B 3D SEGMENTATION

DSC

NN AT T

0.5

0 5 10 15 20 25 30
Frame

2D SEGMENTATION

DSC

0.5

Segmentation performance. (A) 3D-CSN allows simultaneous segmentation of multiple frames. Inputting echocardiogram video sequence
frames (top row) will generate corresponding segmentation masks (bottom row). (B) The dice similarity coefficient (DSC) was calculated for

each frame of video on different models

TABLE 1 State-of-the-art method for left-ventricular myocardial segmentation shown at end-diastole (ED), end-systole (ES), and one of other
sequence frame compared to 3D-CSN.

e & | owe e | & | Ome &0 | &5 | Ot
3D-CSN 0.836 0.810 0.832 0.826 0.823 0.799 0.803 0.808 0.856 0.829 0.814 0.833
Smistad et al. (31) 0.802 0.857 0.703 0.787 0.786 0.794 0.581 0.720 0.811 0.839 0.694 0.798

Avg., average.

was used to supervise network training. The loss is defined as

N
L= > v fu—£l @)

i=1

Where N represents iteration times, f:gt stand for flow
ground truth, f; represents the ith predicted flow, y =0.8.

The accuracy was assessed using the in-plane end-point
error (EPE) between predicted V' and ground truth V, it is
defined as the Euclidean distance between the ground truth
velocity and the predictions.

2

EPE (v,v)) = \/(Vie = V) + (V= V}) 5)

Finally, our model tracked the position of the centerline

frame by frame based on the optical flow field and used this

as the longitudinal length of the myocardium. Then the strain

value at each moment was calculated according to formula (2),
and finally formed the myocardial strain curve.
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3.3 Prospective clinical validation

A comparison study was performed by analyzing 150
echocardiogram videos to compare the proposed DL method
and actual clinical practice measurement. We used this model
and STE to test the exact same echocardiogram simultaneously,
resulting in 2 paired GLS measurements and RLS value. GLS
was calculated as the average peak strain of the 3 apical views.
A single heart cycle (start at ED) was chosen from each view
and the exact same recording and cardiac cycle was used
for both methods. ED was defined by the automatic ECG
trigger algorithm of the analysis software. The first measurement
system consisted of a single experienced observer using a
commercially available speck-tracking analyses method (Philips
auto-CMQ) for strain measurements. The observer manually
corrected the ROI by visual assessment of the endocardial
and epicardial borders. Block matching was used for motion
tracking. Spatial and temporal smoothing were kept at default
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values. Drift compensation was applied as by default. The
speck tracking analyses were performed in accordance with
the consensus document of the EACVI/ASE/Industry Task
Force to standardize deformation imaging (28). The second
measurement system was the DL method measuring strain
without any observer intervention. The model automatically
performs ROI identification, tissue division, motion estimation,
and strain calculation. Analyses were performed without
knowledge of clinical data or previous measurement results.
Finally, to assess whether the consistency between the two
methods was affected by LV pathologic type and image
view, subgroup analysis of 150 echocardiographic videos
was performed, classified by LV pathologic type (normal,
myocardial infarction, and heart failure) and image view
(A2C, A3C, or A4C).

3.4 Statistical analysis

Continuous variables were presented as mean + standard
deviation, and dichotomous data were presented as numbers
(percentages). Association between methods was estimated by
calculating the Pearson correlation coeflicient. Bland-Altman
(B-A) analysis and intra-group consistency comparison (ICC)
was used to assess the agreement of measurement pairs. The
mean absolute difference between the two measurement systems
was calculated using the mean value of the absolute difference
between all measurement pairs, and bias denotes the mean
difference was calculated using the mean value of the difference
between all measurement pairs. Tests for normality were
performed using Shapiro-Wilk and Kolmogorov-Smirnov tests.
ANOVA was used to assess if there was a statistically significant
difference in bias between subgroups of measurement pairs
when categorized using view and pathological pattern, or
Brown-Forsythe test when the variance is not uniform. All
statistical analyses were performed using SPSS 25.0 software
(SPSS Inc, Chicago, IL, USA).

4 Results

4.1 Model for segmentation

3D-CSN was trained to generate frame-level segmentations
for the entire video (Figure 4A). The DSC of LVM was
measured and collected in Table 1. For comparison, DSC
obtained with the 2D network proposed by Smistad et al
(31) is also included in the table. With this model, the
correlation of 3D-CSN measures and LVM labels was >0.79
across all measures, and the average DSC for A2C/A3C/A4C was
0.826/0.808/0.833, respectively. Further, the average DSC of 2D
segmentation was 0.787/0.720/0.798. The 2D and 3D networks
have achieved comparable results on ED and ES frames, but
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TABLE 2 Average end point error (AEPE) on simulated
ultrasound data.

| foui| oz o Foids | Fous |
RAFT 0.05 £ 0.04 | 0.06 £ 0.03 | 0.05 = 0.03 | 0.07 = 0.05 | 0.07 £ 0.03
Pwc-net 0.10 £+ 0.07 | 0.09 £0.05 | 0.12 £+ 0.09 | 0.08 & 0.06 ' 0.10 + 0.08
Flownet 0.15+0.10 | 0.12£0.08 | 0.13 +0.08 | 0.14 +0.10 ' 0.13 £ 0.12

Units given in mm per timestep/frame AT - 1. Data are presented as mean = standard
deviation. Bold font are the best results for each model.

2D network significantly worse than 3D-CSN (i.e., A3C: other
0.803 vs. 0.581) on other frames. The 3D model showed similar
performance on each frame of the sequence, while the 2D model
performed well on ED/ES but poorly on intermediate sequences
(Figure 4B). Both 3D and 2D models perform better on the A4C
plane.

4.2 Model for motion estimation

Five-fold cross-validation was performed on the simulated
ultrasonic data, this resulted in five training sessions for each
network. The average EPE (AEPE) with corresponding standard
deviation can be seen in Table 2. The smallest AEPE session as
the best model, RAFT/Pwc-net/Flownet is 0.05/0.08/0.12. RAFT
had lower AEPE relative to Pwc-net and Flownet, and Pwc-
net was better than Flownet (p < 0.001). Figure 5 illustrates
a representative example of dense flow results for the different
methods and the end-point distance between ground-truth and
prediction of displacement field.

4.3 Tracking update and clinical
validation

A comparison of tracking throughout the whole cardiac
cycle from a simulated ultrasonic subject is shown in
Supplementary Video 1, together with the formation of GLS
curves. For Clinic validation, GLS was obtained successfully
in all patients. A correlation plot of the peak-GLS measured
by proposed method and reference method for each individual
view and the average is given in Figure 6, and correlations
were 0.83, 0.87, 0.78, and 0.90, respectively. The average peak-
GLS on all subjects was —13.53 =+ 3.04% and —14.72 & 3.39%
for the DL method and reference method (Table 3). The
mean absolute difference was 1.6 = 1.1%. The Bland-Altman
analysis of between method differences revealed a bias of
—12 &+ 1.5% (p < 0.01) with estimated limits of agreement
(LOA) of —4.1 to 1.7% (Figure 7). There is no significant
difference in bias between DL method and reference method
among subgroups classified by view (p = 0.86). Moreover, no
significant difference in bias was found between subgroups
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Example of predicted optical flow patterns for the different models within the myocardium. The top row is the sequence of input to motion
estimation networks. The middle row is the prediction of networks, represented by color coded with hue values, color and saturation indicate
direction and magnitude, respectively. The bottom row shows the velocity vector comparison between ground truth and the different methods
inside the locality as indicated by the dotted box in the ultrasound image. Light green arrows are ground truth, while red arrows are predictions.

when categorized using pathological patterns (p = 0.07). The
consistency analysis of measurement results differences between
subgroups is presented in Figures 8A,B. The intra-group
consistency comparison (ICC) of RLS of the 16 segments
contained in the 3 views is shown in Supplementary Table 2.
RLS showed good consistency only in the basal anterolateral,
mid anterolateral and apical anterior, with ICC exceeding 0.8,
and large instability in other segments. The bull’s eye plots
display the RLS value of 16 segments measured by STE and
DL method for different subjects (Supplementary Figure 3). In
healthy subject, strain values in the polar map have a similar
distribution. In MI patient, both maps indicate a focal strain
reduction at the lower right, and inspection of the myocardium
on the echocardiography shows an inferolateral infarct that
coincides in location with segments with more prominent
decreases in strain. In HF patient, both maps indicate a diffused
strain reduction.

The computational timing of the proposed method is
approximately 5 s per video for myocardial segmentation and
100 ms per frame for motion estimation on a GPU of a standard
desktop computer. Total processing time when running the
entire workflow was 13 £ 2 s per view and 40 £ 5 s for a
full patient analysis including all three apical views. On the
same echocardiography, STE analysis was completed within

3 min per video.
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5 Discussion

Our study describes a carefully designed automatic strain
quantification DL workflow that consists of 3D segmentation
and optical flow network for handling the challenges associated
with echocardiographic motion tracking. It was able to
determine myocardial borders, estimate motion, and ultimately
compute strain. Based on tracking movement of centerline
initialized from myocardial segmentation at the first frame, the
DL approach measured strain frame by frame. The tracking
was performed by using the displacement fields from the
motion estimation network to update the position of points
on the centerline. We benchmarked its segmentation, motion,
and strain estimation components against the state-of-the-art.
We compared our segmentation and motion estimation to
other DL methods, and strain measures to a reference speck
tracking technique.

3D-CSN was designed to execute semantic segmentation
for determining the ROI of motion estimation network and
initializing LVM position. Noise is a long-standing difficulty in
the field of motion estimation in echocardiography (33). We
mask the ultrasound image to remove redundant input signals
and determine the LVM wall boundary. A 2D segmentation
network was utilized to determine the LVM wall in @stvik
et al’s study (19), which was trained only on ED and ES
frames but segmented each frame of echocardiogram video.
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Correlation plot of global longitudinal strain (GLS) estimated between STE and deep learning-based method for specific views and averaged
over the three apical views. Each dot represents one examination. Blue dotted line represents the best fit line to the data by linear regression.
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TABLE 3 Mean global longitudinal strain (GLS) for each view measured by deep learning method and reference method (standard deviation), and

averaged over the three apical views.

Method |

DL-method

A2C GLS |

—14.06 £ 3.36%

A3C GLS

—13.29 +£3.57%

| A4C GLS |

—13.24 £3.28%

Average ‘

—13.53 &+ 3.04%

Reference-method —15.26 £ 3.35%

—14.43 £ 3.81%

—14.47 £3.73% —14.72 £ 3.39%

Its segmentation is separate, ignoring the temporal and spatial
continuity of myocardial movement. This result in model
performed well on ED and ES frames but not on intermediate
frames. In this investigation, we employed U-net with 3D
convolution (3D-CSN) to complete this challenge. In all views,
3D-CSN exhibited a higher average dice score in segmenting
regions and performed similarly well on all frames of a cardiac
cycle. Both models were based on U-net framework, the
main difference is 3D vs. 2D convolution. Two-dimensional
convolution is a 3x3 block that can only scan one image
at a time to learn spatial information of the image, whereas
3D convolution is a 3x3x3 volume that could scan multiple
images simultaneously to learn the spatial features and inter-
frame relationship of the image. Myocardial motion is regular,
and when multiple frames are segmented at once, the border
of the target frame will be restricted by the preceding and
following frames, thus the 3D-CSN segmentation results are
more spatio-temporal smoothness. In addition, DL is a typical
data-driven model, the range of data is closely related to
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the generalization performance (4). The 3D-CSN is trained
within all sequence frames, so its generalization ability is
stronger. Furthermore, we believe that this design is more
consistent with biological characteristics. In echocardiography,
even experienced ultrasound experts sometimes have difficulty
in accurately identifying the endocardium and epicardium in
a single image frame, especially in the image with significant
noise and artifacts, usually by repeatedly viewing the video.
Therefore, 3D-CSN, similar to multi-frame observation, can
infer the position of the endo- and epicardium of current
frame from adjacent frames, which seems helpful for reducing
the influence of image quality on segmentation model. To
our knowledge, 3D-CSN is the first 3D U-net-based DL
model for echocardiogram segmentation which could learn
the morphological features of all frames and its performance
better than that of previous image-based 2D networks. Motion
estimation is another crucial part of quantifying myocardial
deformation. We compared three different network structures.
Table 2 suggests that the motion estimation method producing
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of agreement (LOA) of 1.96 SD (red dotted line). SD, standard deviation.

Bland—-Altman plot presents the comparison of measurements between the reference method and the DL method. The figure shows the limits
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best results is RAFT, and Pwc-net is superior to Flownet. The
qualitative results in Figure 5 further suggest that RAFT has
a better match in velocity vectors. In recent years, optical
flow network has experienced the development from encoder-
decoder architecture to spatial pyramid structure and then to
optimization-based network. All three kinds of networks have
outstanding performance in motion estimation, but which is
most suitable for echocardiography has not been determined.
Ostvik et al. (19, 25) have described the applications of Pwc-
net and Flownet in myocardial movement, where Pwc-net
outperforms Flownet, which was in line with our study due to
Pwc-net introducing a refinement mechanism that optimizes
flow prediction based on the pyramidal layers. However, recent
reports suggest that spatial pyramid architecture may ignore
small, fast-moving motions. Pwc-net adopts a coarse-to-fine
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strategy to refine the flow, that is, the optical flow is initialized at
the minimum resolution first and then refined in the direction
of high resolution, hence named pyramid architecture. This
structure may result in fast-moving small objects being missed
in low-resolution and challenging to recover in later iterations.
Due to the lower displacement magnitudes between frames
in echocardiography compared to other film actions (19), we
question the validity of this architecture. In our study, we
compared the RAFT and ultimately chose it as a component
for motion estimation due to its excellent performance in minor
motion and occlusion (34, 35). In synthetic echocardiography,
the AEPE of RAFT is significantly less than Pwc-net (Table 2).
Unlike Pwc-net, RAFT eschews the pyramidal refinement
structure, instead performing a update operator consisting of
recurrent neural network to refine optical flow by generating an
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unlimited number of iterations at the same resolution, which
could integrate last flow deviation to optimize the current
flow prediction. We set up 12 iterations and did it at a single
high resolution so that the slight motion of the first iteration
could also be transmitted to the last layer. Similar to the
human eye, people lack an intuitive understanding of some
details of movement due to the limited field of view at the
low resolution. Whereas RAFT is like multiple observations
at the exact resolution, repeatedly reinforcing the details. By
comparison, RAFT’s specific architecture is more compliant
with echocardiographic motion. We believe that further changes
based on RAFT will become the new benchmark.

Therefore, our design is more in line with the biological
characteristics of human experts. The LVM borders is identified
by dynamic observation and eliminates the interference of
noise from other regions to motion estimation. Then, the
movement of each pixel was optimized for multiple iterations
at a single high resolution instead of coarse-to-fine. In both the
segmentation and motion estimation, our models are on par or
better than the state-of-the-art.

The DL method all GLS
measurements and has a high level of agreement with

successfully completed
currently accepted speck tracking techniques. Compared to
semi-automatic cardiac motion quantification (CMQ) in
Phillips ultrasound, the average GLS were —13.53 = 3.04% and
—14.72 & 3.39%, respectively, showing an excellent correlation
that achieved 0.90 (p < 0.001), and consistency analysis
exhibited bias of —1.2% with LOA of £2.9%. A study by Salte
et al. (21) compared the previously mentioned computing
pipeline with traditional methods. They reported bias of —1.4%
and LOA of £3.7%. Our results are within that range. Assessing
subgroups categorized by view and pathology, there was also
no statistically significant difference between DL and reference
methods, suggesting that different views or pathological
motion states had limited influence on consistency. The strain
measured by traditional STE is not the gold standard, so we
cannot determine which method is more accurate, but it is
still sufficient to demonstrate the accuracy and repeatability of
DL automatic strain calculation. Nevertheless, there is a large
variability in regional strain, which is expected because the two
methods do not achieve uniform anatomical constraints, hence
there are differences in the definition of segments. However,
DL method is still sensitive to the changes of local strain
under pathological conditions. As with STE, the bull’s eye map
(Supplementary Figure 3) from DL shows reduced strain that
coincides with infarct segments in patients with infarction and
reduced diffuse strain in patients with heart failure, suggesting
that the DL approach is also diagnostic for myocardial disease.
The currently most widely used semi-automatic speck tracking
method is time-consuming and demands expertise. It involves
several steps of operator intervention, such as view selection,
ROI adjustment, and tunable parameter setting. Therefore, it
is difficult to integrate into the existing workflow of ultrasonic
cardiogram, which is mainly completed by offline analysis. The
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measurement accuracy of DL is comparable to or better than
that of traditional methods, and the efficiency is significantly
improved. With only one GPU, the DL method completes
these tasks in real-time; each prediction task takes <15 s and is
much more rapid than the STE assessment of myocardial strain.
The rapidity and automaticity of Al greatly decrease the labor
of cardiac function assessment and experiential needs. This
provides the opportunity for more-frequent, rapid evaluations
of cardiac strain (e.g., on-screen view strain real-time during
image acquisition and application in portable ultrasound). DL
methods could potentially aid clinicians with a more precise and
rapid assessment of cardiac strain and early detect abnormal
ventricular wall movement. In settings in which the sensitive
detection of change in cardiac function is critical, early detection
of change can substantially affect clinical care (36, 37).

It is worth noting that in our tests, we found that tracking
may fail with poor image quality, as Salte et al. (21) reported.
Poor image quality in echocardiography is a common problem
that leads to invalid measurements. However, most previous DL
studies have no effective monitoring means, and the primary
limitation of AI in clinical application is that the internal
mechanism is unclear. Hence, it is difficult for clinicians to
trust it directly. Our method is different from the past’s black-
box approach proposed by some authors, such as directly
predicting LVEF or GLS from images (38, 39). Al models
should be designed to provide visual feedback that can be
checked manually. As a result, offering a visual feedback
system is a vital assurance of the results’ trustworthiness. The
method presented in this study was able to visually inspect
if segmentation and motion estimates seem reasonable by
visualizing myocardial segmentation and centerline movement
(Supplementary Video 2). So when the tracking fails, it can be
clearly sensed by the observer.

Our work provides a more accurate and robust scheme
for automated GLS analysis and is the first model to realize
local strain analysis on echocardiography. Compared with the
previous strain analysis models, we propose improvements to
segmentation and motion estimation. All strain measurements
are successfully completed, and the results are better than
previous advanced methods. This approach is expected to
replace STE for real-time strain calculation in cardiac ultrasound
practice. Thus, if these DL methods are integrated into a generic
Al pipeline, the individual steps could be computed during the
acquisition of images, allowing for rapid bedside analysis and
even real-time measurements on the ultrasound scanner.

5.1 Study limitations

This study of DL applied to echocardiographic data has
several limitations. First, the learning-based optical flow method
has high precision and eflicient reasoning ability. However,
obtaining training data in reality is difficult, so most supervised
methods heavily rely on large-scale synthetic data sets. The
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training data used in this study came from the processing of
data synthesized according to the biological template and we
are not clear about the difference between this data and real
in vivo data. Whether training data will lead model preference
remains to be further investigation. Second, DL is a method
based on data-driven, which does not have reasoning ability.
It tends to represent the distribution of training data. Data
regional differences lead to potential degradation when models
are transferred to the real world. Further, as the template
of simulated data is equal across categories, we also suspect
that the motion model is slightly over-fitting. We believe
further optimizations can be made including real-world data
acquisition and self-supervised model training. Finally, for
external validation, we only compared measurements against
one commerce method and lacked the gold standard metric.
Thus, we cannot conclude whether the method in this study
is more accurate than the traditional STE method. We could
only conclude that there is a high degree of agreement of GLS
measurements between the two measurement systems, while
the regional strain estimates still have large variability and need
to be further optimized. Due to the limited sample size, the
conclusions of comparative studies may not be generalizable.
Therefore, this part of the work should be considered as a
pilot study for clinical comparison, further studies with cardiac
magnetic resonance as the gold standard and larger sample sizes
should be carried out.

6 Conclusion

Fully automated strain measurements based on DL have
the potential to both reduce manual intervention and improve
reproducibility, and, due to the processing speed of learning-
based algorithms, this could eventually enable on-screen
measurements in real-time while the operator acquires images.
Our carefully designed structure is state-of-the-art, making the
workflow an excellent candidate for use in routine clinical
studies or data-driven research. In future studies, we will further
optimize it to achieve robust multi-dimensional strain analysis,
which will help to obtain diagnostic information more quickly
and accurately, hopefully replacing traditional measurement
methods to optimize clinical flow.
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