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Heart failure with preserved ejection fraction (HFpEF) is a complex,

heterogeneous disease characterized by autonomic imbalance, cardiac

remodeling, and diastolic dysfunction. One feature that has recently been

linked to the pathology is the presence of macrovascular and microvascular

dysfunction. Indeed, vascular dysfunction directly a�ects the functionality of

cardiomyocytes, leading to decreased dilatation capacity and increased cell

rigidity, which are the outcomes of the progressive decline in myocardial

function. The presence of an inflammatory condition in HFpEF produced by

an increase in proinflammatory molecules and activation of immune cells

(i.e., chronic low-grade inflammation) has been proposed to play a pivotal

role in vascular remodeling and endothelial cell death, which may ultimately

lead to increased arterial elastance, decreased myocardium perfusion, and

decreased oxygen supply to the tissue. Despite this, the precise mechanism

linking low-grade inflammation to vascular alterations in the setting of HFpEF is

not completely known. However, the enhanced sympathetic vasomotor tone

in HFpEF, which may result from inflammatory activation of the sympathetic

nervous system, could contribute to orchestrate vascular dysfunction in the

setting of HFpEF due to the exquisite sympathetic innervation of both the

macro and microvasculature. Accordingly, the present brief review aims to

discuss the main mechanisms that may be involved in the macro- and

microvascular function impairment in HFpEF and the potential role of the

sympathetic nervous system in vascular dysfunction.
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Introduction

Heart failure (HF) is a pathological condition affectingmainly the elderly population.

A subcategory of this disease is HF with preserved ejection fraction (HFpEF), whose

incidence has increased notably in recent years, particularly in the last two decades, from

48 to 57% compared with systolic HF (or reduced ejection fraction HF). Furthermore,

HFpEF accounts for the death of 1 in 8 people over 65 years (1). Patients with HFpEF

have a poor quality of life, high medical costs, and early death (2). Then, understanding

the pathophysiology of HFpEF is relevant for future therapeutic strategies to improve

HFpEF outcomes.
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Patients with HFpEF display several comorbidities

associated with cardiac and vascular disturbances, including

but not limited to diabetes mellitus, obesity, pulmonary

hypertension, coronary artery disease, chronic renal failure, and

systemic inflammation (1), all of which contribute to endothelial

dysfunction, cardiomyocyte hypertrophy, and cardiac fibrosis

(2, 3). Furthermore, it has been described that autonomic

imbalance, a hallmark of HF independent of its etiology

(i.e., reduced or preserved EF), plays a key role in disease

progression (4). Indeed, patients with HF showing sustained

elevations in systemic circulating levels of catecholamines (i.e.,

norepinephrine) show higher mortality rates (5). Importantly,

evidence indicates that the sympathetic nervous system (SNS) is

critically influenced, at the central and peripheral levels, by the

most relevant factors regulating vascular function, such as nitric

oxide (NO), reactive oxygen species (ROS), endothelin 1 (ET-1),

and the renin-angiotensin system (RAS). Then, a bidirectional

and maladaptive relationship between endothelial function

and hyperactivity of the SNS could play a role in short- and

long-term vascular dysfunction in HFpEF. Indeed, autonomic

imbalance in HFpEF increases sympathetic vasomotor tone (6).

The latter results in increased excitatory sympathetic activity

to blood vessels changing the balance between vasodilator

and vasoconstrictor molecules that regulate endothelial cell

function and therefore, cardiovascular integrity (7). In this

review, we will focus on the main factors that may contribute to

the development/maintenance of vascular cell dysfunction and

their potential link to enhanced sympatho-vasomotor tone in

the setting of HFpEF.

Relevance of vascular dysfunction in
HFpEF

Endothelium-dependent coronary microvascular

dysfunction is present in approximately 30% of patients

with HFpEF (8). In addition, more than 30% of patients

with HFpEF display endothelium-independent dysfunction,

reflected in significant reductions in coronary flow reserve

(CFR) (8). Indeed, patients with HFpEF present vascular-

ventricular uncoupling and stiffness, which is associated

with decreased exercise capacity (9). Accordingly, acute

increases in cardiac afterload, in the setting of arterial-

ventricular stiffness, lead to increases in arterial blood

pressure that impairs diastolic relaxation and increases filling

pressures during exercise (10). The specific mechanisms

associated with the changes in arterial elastance during

HFpEF are not fully elucidated, but they have been associated

with blood vessels alterations in the bioavailability and

responses to vasoactive molecules such as ET-1 and NO

(11, 12).

In addition to systemic functional alterations in the

vasculature, a reduction in myocardial microvascular density,

called microvascular rarefaction, is observed in patients

with HFpEF (13). Microvascular rarefaction contributes to

cardiac perfusion failure by decreasing myocardial oxygen

delivery in patients with HFpEF (14). Therefore, rarefaction

of resistance vessels, including small arteries and arterioles,

increases coronary microvascular resistance, resulting in

reduced cardiac perfusion (15), which has been proposed as

a pathogenic mechanism involved in the progressive decline

in cardiac function in HFpEF (15). The precise mechanism(s)

underpinning vascular rarefaction in HFpEF is still not

completely known; however, due to the exquisite sympathetic

regulation of blood vessels, and the fact that sympathoexcitation

occurs in HFpEF, it is plausible that enhanced sympatho-

vasomotor tone may play a role in vascular rarefaction by

changing the vasoconstrictor to vasodilator balance in the

vessel microenvironment (Figure 1).

To the best of our knowledge, there is no comprehensive

literature providing mechanistic insights into macrovasculature

changes in HFpEF. Macrovascular arterial stiffness results in

an increase in pulse pressure and wave velocity, which impairs

normal microvascular function (16). The latter is particularly

relevant for the coronary and renal microvasculature since

pathological alterations in pulse pressure and blood flow result

in damage to the capillary network of these vascular territories

(17). Indeed, coronary artery disease is considered an indicative

sign of vascular dysfunction in patients with HFpEF (18).

Arterial rarefaction and inadequate angiogenesis that take

place during microvascular/macrovascular dysfunction may

contribute to a decrease in oxygen supply to the myocardium

(19). Accordingly, it has been proposed that left ventricular

diastolic dysfunction in patients with HFpEF results from

vascular alterations, with aortic stiffness and altered vascular

endothelial function being fundamental characteristics of

this process (20). Indeed, stiffness at the macrovasculature

level is associated with ventricular decreases in elastance,

leading to abnormal left arterio-ventricular crowning (21).

Notably, ventricular stiffness occurs regardless of several

comorbidities presented by patients with HFpEF (22). Besides

the changes in vascular stiffness, studies in HFpEF also

showed a decrease in brachial flow-mediated dilatation

(FMD) and hyperemia, suggesting the presence of endothelial

dysfunction at macrovascular/microvascular circulation. Lee

et al. (23), proposed that macrovascular dysfunction is indeed

a consequence of primary alterations at the microvascular level

(23). This is in line with a previous report showing the presence

of endothelial dysfunction at the microvasculature with no

overt signs of vascular dysfunction in conductance vessels in

experimental HFpEF models (24). Together, current evidence

supports the role of microvascular/macrovascular alterations in

the progression of heart disease. Whether changes/adaptations

in the microvasculature/macrovasculature are a cause or

consequence to support the failing heart (in the setting of heart

failure) remains to be determined.
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FIGURE 1

Vascular sympathetic neurotransmission and endothelial dysfunction in HFpEF. Enhanced sympathetic outflow led to increased release of

norepinephrine (NE), which impair cardiovascular endothelial function by modifying peptides and signaling molecules that regulate perfusion to

vascular beds. Endothelial uncoupling, in turn, can generate cardiomyocyte dysfunction that a�ects the structure and function of the heart

through mechanisms associated with impaired myocardial dilatation capacity, sti�ness, and inflammation.

Autonomic imbalance and vascular
dysfunction: Main mechanisms
involved

The endothelium is a highly dynamic layer that works as a

barrier that separates the blood from the extravascular tissue and

interacts with other cell types contributing to the physiological

and homeostatic regulation of blood vessel function (25).

In addition, the endothelium prevents the aggregation and

adhesion of platelets and leukocytes, inhibits the proliferation

of smooth muscle cells (SMC), regulates vascular tone, and plays

a protective role against mechanical stimuli such as pressure or

frictional stress, through the release of vasoactive substances.

This is critical for the maintenance of adequate organ/tissue

perfusion (26, 27). While endothelial cells (EC) are located in

the most internal layer of blood vessels, SMCs are located in

the medial layer and constitute the contractile elements of blood

vessels, contributing to the regulation of blood vessel tone, blood

pressure, and circulation (28). Then, the correct function of

SMC and EC is important for vascular health since both manage

vasomotor tone and vasculature integrity.

Both arms of the autonomic nervous system (ANS) (i.e.,

sympathetic and parasympathetic) innervate blood vessel walls

and regulate wall tension (29–31). SMCs at the muscular layer

of blood vessel walls receive adrenergic and cholinergic nerve

projections from sympathetic and parasympathetic innervation,

while ECs do not present a direct neural innervation from the

ANS (29, 31). The vascular SMC layer encompasses several

ANS nerve terminals. Indeed, SMC constitutively expresses

β-adrenergic receptors, which modulate vasodilatation, and

α1/α2-adrenergic receptors, which modulate vasoconstriction

(29, 31). In addition, parasympathetic stimulation of muscarinic

receptors within SMCs also results in blood vessel contraction.

Despite not being directly innervated by the sympathetic-

adrenergic system, ECs also constitutively express both β-

adrenoreceptors and α2-adrenoreceptors. While the effects

of β-adrenoreceptors stimulation on EC function remain

unknown, the activation of α2-adrenoreceptors leads to

the release of vasoactive molecules such as nitric oxide
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(NO), which acting at SMC induces cell relaxation resulting

in blood vessel vasodilation (29, 31). Besides the fine

regulation of vascular function by the ANS, how autonomic

imbalance could affect vasculature integrity by modulating

mechanisms associated with vasoconstriction/relaxation and the

vasculature environment is not completely understood, and

much less is known about these mechanisms in the pathological

setting of HFpEF. In this review, we discussed the potential

mechanism of vascular dysfunction in HFpEF and its relation

to autonomic imbalance.

Nitric oxide signaling and oxidative stress

The role of vascular NO is essential for vasodilation,

inhibition of platelet aggregation, and protection of the

integrity of the endothelial layer given its anti-inflammatory,

proangiogenic, anti-apoptotic, and anti-fibrotic properties,

reducing vascular inflammation and atherosclerosis (32, 33).

At the major circulation, NO diffuses into platelets and SMC

from EC, which stimulates soluble guanylate cyclase (sGC)

and activates the cyclic GMP (cGMP) pathway to induce

calcium release from the sarcoplasmic reticulum (SCR) in SMC,

preventing platelet aggregation and producing vasodilation,

respectively. At the level of cardiac microcirculation, NO can

diffuse into cardiomyocytes from adjacent coronary vasculature,

modulating cardiac function (7). In addition, NO signaling

is involved in tissue repair by mediating the mobilization

of stem and progenitor cells (34). In HFpEF, endothelial

dysfunction has been linked to decreased production of cGMP

and reduced activity of protein kinase G (PKG) and the

L-arginine-NO synthetic pathway. Therefore, mechanisms

for vasodilation are likely to be impaired in patients with

HFpEF. Interestingly, vascular endothelial dysfunction in

the heart shared similar mechanisms compared to those

found in the systemic circulation, being alterations in

sGC-cGMP signaling a common pathway affected at both

levels during the progression HFpEF. More importantly,

alterations in the sGC-cGMP-PKG pathway in HFpEF

promote functional impairment in cardiomyocytes, as

evidenced by delayed myocardial relaxation, increased

myocardial stiffness, cardiac hypertrophy, and interstitial

fibrosis (35). Therefore, direct interventions targeting the

NO/cGMP/PKG pathway have been proposed as novel

therapeutics to improve both vascular and cardiac function in

HFpEF (36, 37).

How autonomic imbalance, a hallmark pathophysiological

condition found in experimental and human HFpEF, affects

vascular NO production is still not known. Endothelial

β2-adrenergic receptors stimulate NO synthesis by the

activation of endothelial nitric oxide synthase isoform (eNOS)

(32). Interestingly, overexpression or chronic activation

of eNOS could be maladaptive since marked increases in

intracellular oxidative stress have been reported following

eNOS overexpression (38, 39). Furthermore, chronic β-

adrenoreceptor activation exacerbates eNOS activity and

upregulates eNOS gene expression, favoring superoxide anion

generation and vascular dysfunction through reductions in NO

bioavailability (38, 40). Indeed, oxygen free radicals rapidly

react with NO to form reactive nitrogen species, which are

known to promote a prothrombotic and proinflammatory

niche within blood vessels (12, 41). Notably, the relevance

of reduced NO bioavailability and increased oxidative stress

to promote HFpEF pathophysiology has been demonstrated

in experimental HF in which concomitant metabolic and

vascular stress in mice (high-fat diet and constitutive NOS

inhibition using N(omega)-nitro-L-arginine methyl ester)

recapitulated the cardiovascular features of human HFpEF

(12, 26). Therefore, it is plausible that hyperactivation of the

sympathetic nervous system in HFpEF may lead to decreases

in NO bioavailability by promoting the formation of reactive

nitrogen species within blood vessels. Further investigation

is needed to fully determine the contribution of enhanced

sympathetic activity on NO and vascular alterations in HFpEF.

In addition, HFpEF increases ROS levels and/or antioxidant

enzyme suppression, leading to cardiac and endothelial

dysfunction. The different risk factors for HFpEF stimulate

the production of ROS (42–44). Oxidative stress by their side

increases levels of hydrogen peroxide and reactive oxidative

metabolites, uncoupled endothelial nitric oxide synthase,

endothelial NADPH oxidase 2 (NOX2) expression, and reduced

NO levels indicate the presence of myocardial oxidative stress

in patients with HFpEF (45). Beyond oxidation, inhibition of

NO production can reduce NO bioavailability, for example,

through AGE-induced elevation of asymmetric levels of ADMA

(dimethyl L-arginine), an inhibitor of eNOS (endothelial NOS),

which contributes to endothelium-dependent dysfunction

associated with poorer HFpEF prognosis (46). Also, autonomic

dysfunction characterized by chronic activation of the SNS

might contribute to oxidative stress at the EC level. Previous

reports showed high contractile activity in β2-adrenoreceptor

deficient mice, and this loss of function can trigger ROS-

mediated NO impairment (47). Thus, a lack of β2 receptors

increases oxidative stress in the β2-KO mice arteries, and

this change the vasoconstrictor response to phenylephrine. In

addition, the above evidence suggests a crucial link between

adrenergic pathways, oxidative stress, and NO bioavailability

in the vasculature (47, 48). Interestingly, patients with HFpEF

display not only impaired catecholamine sensitivity and β-

adrenoreceptor density at the cardiac level (49, 50) but also

display impaired chronotropic and vasodilatation response to

exercise (51), suggesting possible desensitization of adrenergic

signaling at the cardiac and vascular level. Overall, heightened

SNS activity in the setting of HFpEF might contribute

to creating a vicious cycle that promotes and maintains

vascular dysfunction.
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Inflammatory status

Risk factors in HF, such as diabetes mellitus, aging,

and hypertension, among others, trigger systemic low-grade

inflammation, characterized by chronic elevations in circulating

immune cells, proinflammatory cytokines, and increased

expression of endothelial adhesion molecules, such as vascular

and intercellular cell adhesion molecules-1 (ICAM-1 and

VCAM-1), and the corresponding ligands of circulating

leukocytes, increasing myocardial infiltration of CD45+ and

CD3+ T-lymphocytes (52). The latter further promotes the

infiltration of leukocytes, especially monocytes, into the

myocardial tissue, increasing the release of transforming growth

factor beta (TGF-β), which ultimately leads to extracellular

matrix remodeling and fibrosis (41, 43). Importantly, it has

been reported that flow-mediated dilation (FMD) and reactive

hyperemic index (RH) are reduced in patients with HFpEF

(45), which is closely associated with elevations in inflammatory

markers, such as CRP, IL-6, TNF-α, IL-1β, and NFG15 (53,

54). The increase in the inflammatory status leads to coronary

microvascular endothelial dysfunction and further increases in

inflammatory cytokines (55) partially mediated by the activation

of the nuclear factor-kappa B (NFkB) signaling pathway (43).

Thus, microvascular dysfunction is proposed to be the central

mediator connecting systemic low-grade inflammation with

myocardial dysfunction and remodeling in the setting of

HFpEF (35).

Calcium signaling

Chronic elevation of catecholamines in HF, such

as epinephrine and norepinephrine, is a hallmark and

strong predictor of mortality in patients with HF (56, 57).

Catecholamines activate the adenyl cyclase (AC)-cAMP-PKA

pathway, leading to IP3R1 activation and in consequence IP3

signal to increased Ca2+ release and vascular tone in VSMCs

during HF (58). Also, it has been found that BK potassium

channels, which contribute to VSMC hyperpolarization,

are downregulated in HF, promoting vasoconstriction, and

synergizing with IP3R1 for elevations in cytosolic [Ca2+] (59).

Since mRNA and protein levels of inositol 1,4,5 phosphate

receptor 1 (IP3R1) are upregulated in HF and increased

receptor phosphorylation in HF, it has been suggested that

IP3R1 may play an important role in Ca2+ regulation in VSMC

(60, 61). However, little is known about the contribution of

intracellular calcium (Ca2+) mishandling in the vasculature and

subsequent acceleration of cardiac remodeling and progression

of HFpEF (58). Nevertheless, alterations in the expression

and function of proteins that handle Ca2+ and a maladaptive

redistribution of intracellular calcium have been described in

HF (62). Some of these proteins are RyR2, Serca2a, Na+-Ca2+

exchanger (NCX), and transient receptor potential cation

channels (TRPC) (63). For RyR2, there is evidence of PKA-

dependent hyperphosphorylation (in S2808), causing channel

dissociation, increasing Ca2+ leakage from the SR, decreasing

Ca2+ transients, changing spontaneous Ca2+ release events,

and altering cytosolic Ca2+ management (64). In addition,

Serca2a is downregulated in HFpEF, then Ca2+ reuptake toward

the SR affecting both active and passive cardiovascular functions

(65). In addition, increased activity of NCX in HFpEF has also

been described (66). Finally, the TRPC channels that participate

in the entry of Ca2+ from the extracellular medium that allows

the increase of Ca2+ reservoirs into the SR are increased in

HFpEF, possibly as an adaptive mechanism due to a decrease

in Ca2+ reserves in the SR (67). In addition, increased myosin

heavy chain phosphorylation has also been found in the arteries

of patients with HF and mice (68). The latter has been linked

to VSMC remodeling and has been associated with alterations

in VSMC Ca2+ handling (69). Therefore, alterations in the

management of intracellular Ca2+ in the vasculature in HF may

play an important role not only in vascular cell function but also

in the adverse remodeling of several vascular compartments.

Conclusion

Little is known about the role of macro- and microvascular

alterations during the onset, development, and progression of

HFpEF. However, it is highly likely that vascular rarefaction

takes place during the onset, maintenance and/or progression

of HFpEF resulting in increases in microvascular resistance,

reductions in tissue perfusion, and activation of vasomotor

sympathetic fibers that ultimately create a feed-forward

mechanism that promotes the further deterioration of vascular

function by shifting the balance between vasoconstriction

and vasodilation. On the contrary, proinflammatory and

pro-oxidative molecules have been associated with the

etiology of the disease. At the microvascular level, the

decrease in the bioavailability of NO, alterations in the sGC-

cGMP-PKG pathway, accumulation of ROS, and chronic

low-grade inflammation are the main actions involved in

the alteration of vascular function both at the systemic

circulation and in the coronary territory, promoting a

functional decrease in cardiomyocytes, evidenced by delayed

myocardial relaxation, increased myocardial stiffness, cardiac

hypertrophy, and interstitial fibrosis. The latter may have

fundamental implications for the progressive decline in cardiac

function during HFpEF.

To date, there are only preventive and palliative actions

to deal with HFpEF, such as exercise and a healthy lifestyle,

which do not imply a remission of the disease. In this article,

several molecular candidates rise as potential therapeutic targets

to improve both vascular and cardiac functions in HFpEF,

including but not limited to NO metabolic pathway, IP3R
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signaling, adrenergic pathways, and reduction of oxidative stress

and vascular inflammation.
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