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The cardiovascular disease pathogenesis is extremely complex and seriously

threatens human health. Cardiomyocyte death plays a significant role

in cardiovascular disease occurrence and development. In addition to

the previously revealed modes of cell death (apoptosis, autophagy,

and pyroptosis), ferroptosis is highly related to the development of

cardiovascular diseases, including arrhythmia, atherosclerosis, and myocardial

ischemia/reperfusion. Ferroptosis is a novel cell death pathway driven by

lipid peroxidation and iron overload. Lipid, amino acid, and iron metabolism

regulate the ferroptosis pathway. Small molecule compounds (iron chelators,

antioxidants, and ferroptosis inhibitors) and genetic programming can

alleviate or prevent cardiovascular disease by inhibiting the ferroptosis

pathway. Ferroptosis plays a key role in various cardiovascular disease

occurrence and development, and inhibiting ferroptosis in cardiomyocytes

is expected to become a feasible treatment method. In this mini-review,

we systematically summarize the molecular mechanisms of ferroptosis

in different cardiovascular diseases, delineate the regulatory network

between ferroptosis and cardiovascular diseases, and highlight its potential

therapeutic targets.
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1 Introduction

Obesity, hypertension, a high-cholesterol diet, and other factors contribute to
cardiovascular disease, endangering human physical and mental health (1). Recently,
cardiovascular disease has been associated with multiple cell death pathways, such
as ferroptosis, pyroptosis, and autophagy (2). Ferroptosis was officially identified as
a novel mode of regulating cell death in 2012, attracting attention to the study of
cardiovascular disease (3). Ferroptosis is mainly caused by iron-dependent cell death,
accumulating lipid peroxidation to lethal levels, resulting in cell membrane damage (4).
The ferroptosis mechanism might result from glutathione depletion, excess iron, and
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reactive oxygen species (ROS) overgeneration (5). This mini-
review mainly describes ferroptosis metabolic pathways and
their strong correlation with cardiovascular disease.

2 Molecular and metabolic
mechanisms of ferroptosis

2.1 Lipid oxidation metabolism

In cell membranes, phospholipid-related polyunsaturated
fatty acids (PUFAs), such as phosphatidylethanolamine (PE)
and phosphatidylcholine (PC), are responsible for inducing
lipid peroxidation to induce ferroptosis (6, 7). Acyl-CoA
synthetase long-chain 4 (ACSL4) and lysophosphatidylcholine
acyltransferase 3 (LPCAT3) are two important enzymes in
lipid metabolism (5). These two enzymes can activate PUFAs,
such as arachidonic acid (AA) and adrenic acid (ADA), to
generate corresponding PE-AA and PE-ADA, respectively
(8). Subsequently, lipoxygenase (LOX) can oxidize them to
PE-AA-OOH and PE-AdA-OOH to promote ferroptosis
product synthesis (8). The glutathione peroxidase 4 (GPX4)
transforms toxic lipid hydroperoxides into non-toxic alcohols.
Nevertheless, inhibiting GPX4 enzymatic activity causes
significant lipid hydroperoxide accumulation, leading to
ferroptosis (8).

2.2 Glutamate metabolism

A heterodimer containing a light chain SLC3A2 (4F2hc) and
a heavy chain SLC7A11 (xCT) is known as cystine/glutamate
antiporter (System Xc−) on the cell membrane that promotes
the glutathione (GSH) synthesis by exchanging extracellular
cystine with intracellular glutamate (9). Erastin, an authoritative
System Xc− inhibitor, inhibits cysteine absorption to the
cellular membrane, leading to glutathione depletion (10). GSH
can reduce ROS and reactive nitrogen under the activity of
GPX4. Furthermore, GPX4 converts GSH into glutathione
disulfide (GSSH) in the oxidation reaction, expunges excessive
peroxides and hydroxyl radicals during cell metabolism, and
alleviates the PUFAs peroxidation (11). The GPX4 inhibition,
like Ras-selective Lethal small molecule 3 (RSL3), causes
ferroptosis by activating lipid peroxidation (10). Herein, the
System Xc−-GSH-GPX4 axis system plays a significant position
during ferroptosis.

2.3 Iron metabolism

Iron absorption, transport, storage, and excretion affect iron
homeostasis, which is crucial for human health (5). Transferrin
receptor 1 (TFR1) recognizes ferric (Fe3+) by binding to

transferrin through the cellular membrane, and iron reductase
reduces it to ferrous (Fe2+) (12). Then, Fe2+ is transferred
into the cytosolic labile iron pool (LIP) through divalent metal
transporter 1 (DMT1) (5). Moreover, a part of iron is stored
in the ferritin as Fe3+, while another part is released into the
extracellular by membrane transporters ferroportin (FPN) (5).

Iron homeostasis is important for cellular metabolism,
especially for cardiomyocytes with high energy requirements
(13). Iron overload is a consequence of iron intake exceeds the
capacity of transferrin iron-binding, leading to the accumulation
of iron in the parenchymal cells of various tissues and organs
(14, 15). Ferroptosis is dependent on iron-dependent lipid
peroxidation, which can be inhibted by iron chelators (14,
16). Cellular labile iron contents may affect the ferroptosis
sensitivity (17). Overflowing Fe2+ catalyzes the hydroxyl and
high ROS generation through the Fenton reaction, inducing
lipid peroxidation and cell damage (5, 11). Heme oxygenase-1
(HO-1) also affects ferroptosis sensitivity by degrading heme to
release iron (17).

2.4 Other related signaling metabolism

The redox-sensitive transcription factor, nuclear factor
erythroid-2 related factor 2 (NRF2) regulates its downstream
target genes to modulate lipid peroxidation and ferroptosis (18,
19). NRF2 targets, such as FPN and ferritin, are involved in
iron/heme metabolism, which is crucial for cellular antioxidant
defense (20). Besides, NRF2 plays a critical role in mediating
glutamate metabolism targets, SLC7A11 and GPX4 (19). Of
note, NRF2 target protein NAD(P)H:quinone oxidoreductase 1
(NQO1) also plays a key role in regulating ferroptosis (21).

3 Ferroptosis in cardiovascular
disease

3.1 Arrhythmia

Atrial fibrillation (AF) is the most clinically diagnosed
arrhythmia (22). Most patients with AF are prone to recurrent
attacks, presenting clinicians with a dilemma (23). The
mechanical function and electrical activity are progressive
deterioration in iron-overloaded hearts. Iron overload can
affect calcium, sodium, and potassium channels, interfering
with cardiac electrophysiology and confirming the connection
between iron ions and arrhythmia (24).

Recently, ferroptosis has gained increased attention in the
field of arrhythmia. Antioxidant factor NRF2 overexpression
can reduce the arrhythmia, inflammation, and cardiac fibrosis
induced by AF (23). Down-regulation the expression of
FPN, a downstream factor of NRF2, causes intracellular iron
accumulation in the new-onset AF model, leading to ferroptosis
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(25). Moreover, excessive alcohol consumption can lead to iron
dysregulation, increased serum non-heme iron concentration,
and atrial tissue iron accumulation. This progress promotes
ferroptosis and increases the susceptibility to AF. Ferrostatin
1 (Fer-1) can partially or completely reverse the atrial damage
caused by excessive alcohol intake (26).

Arrhythmia is a common clinical feature of coronavirus
disease 2019 (COVID-19) (27). According to a recent
study, severe acute respiratory syndrome coronavirus 2
infections derange human sinoatrial node-like pacemaker
cells, facilitating ferroptosis. Early deferoxamine and imatinib
administration reduces viral infection in human embryonic
stem cell cardiomyocytes. This result suggests that ferroptosis
is involved in the arrhythmia progression in COVID-19
patients (28).

3.2 Myocardial ischemia-reperfusion
injury

Myocardial ischemia-reperfusion injury (IRI) is tissue injury
due to the recovery of blood supply in myocardial tissue,
leading to life-threatening clinical complications after a period
of ischemia (12). Iron and lipid metabolism are strongly linked
to the pathological process of IRI. In the early stage of ischemia
and reperfusion, ferritin degradation releases iron, promotes
free iron-mediated Fenton reaction and induces oxidative
damage (29). Cardiomyocytes are more vulnerable to injury
than endothelial cells during the ischemic phase (30). The
early ischemic stage, a disorder of PUFAs-phospholipids, may
initiate peroxidative conditions, providing a priming signal for
oxidative injury in the reperfusion stage. Studies have found
that oxidative phosphorylation of the core enzyme ALOX15
can initiate PUFA-phospholipid peroxidation and enhance the
susceptibility to ferroptosis in ischemia-induced myocardial
injury (31). Consequently, inhibiting ferroptosis during the
early stage of ischemia can reduce myocardial injury caused by
reperfusion as soon as possible.

Ferroptosis can also regulate IRI through other metabolic
pathways. A novel long non-coding RNA LNCAABR07025387.1
is up-regulated in myocardial tissue of IRI rat models,
efficiently activates ACSL4 expression by down-regulating miR-
205, accelerates the lipid peroxidation and exacerbates IRI (32).
Moreover, ROS is strongly related to endoplasmic reticulum
(ER) stress during ferroptosis. In diabetic rats during IRI, ER
stress factor expressions, such as activating transcription factor
4 (ATF4), C/EBP homologous protein (CHOP), and ACSL4, are
elevated. Meanwhile, the GPX4 level is decreased, exacerbating
myocardial injury (33).

Furthermore, IRI can be mitigated by interfering with
ferroptosis-related targets. The deubiquitinating enzyme
USP22 can stabilize the sirtuin-1 (SIRT1) level to inhibit
ferroptosis. USP22 overexpression can increase the SIRT1

protein level and decrease the p53 acetylation level, promoting
SLC7A11 expression. Overall, this mechanism suppresses lipid
peroxidation and attenuates ferroptosis-induced myocardial
damage in IRI through SIRT1/P53/SLC7A11 axis (34). In
the future, we can explore the clinical practice of USP22 on
myocardial IRI to offer a novel diagnosis and therapeutic target
for IRI patients.

3.3 Atherosclerosis

Atherosclerosis is a metabolic disease characterized by
lipid metabolism and endothelial dysfunction. Atheromatous
plaque formation is associated with iron deposition and
peroxidation of lipids in vascular endothelial cells (35, 36).
ACSL4 is up-regulated, while GPX4 is down-regulated in
the coronary arteries of atherosclerosis patients (37). GPX4
controls the balance of reductive and oxidative states. GPX4
knockout can promote lipid peroxidation, leading to highly
cytotoxic oxidation products for the cell and aggravating the
atherosclerosis effect. Oppositely, GPX4 overexpression can
alleviate atherosclerotic lesions of the aortic by inhibiting
ferroptosis in ApoE−/− mice (38). In addition, high level
of uric acid has been shown to promote atherosclerotic
plaque formation and inhibit the protein level of the
NRF2/SLC7A11/GPX4 signaling pathway in ApoE−/− mice
(39). Fer-1 can inhibit iron deposition and lipid peroxidation
in high-fat diet-fed ApoE−/− mice by limiting SLC7A11
and GPX4 levels (36). Consequently, we can further explore
the novel molecular targets that continue to involve in the
atherosclerosis pathogenesis mechanism.

3.4 Chemotherapeutic drugs induced
cardiotoxicity

Chemotherapeutic drugs induced cardiotoxicity remains
an intractable issue for cancer patients, which is mostly
associated with anthracycline drug (40). Doxorubicin (DOX),
an anthracycline drug isolated from streptomyces, is frequently
used to treat cancer patients (41). In DOX-induced cardiac
injury mice, NRF2 induces HO-1 expression with an antioxidant
effect, catalyzing hemoglobin degradation and promoting the
free iron release, leading to ferroptosis and heart failure (42).
Interestingly, protein arginine methyltransferase 4 (PRMT4)
can modulate oxidative stress and autophagy, interacts with
NRF2 to limit NRF2 nuclear translocation, and subsequently
inhibits GPX4. A subsequent study confirms that PRMT4
overexpression raises ROS levels and intensifies DOX-induced
myocardial dysfunction (43).

Additionally, mitochondria-dependent ferroptosis is
involved in the pathology of DOX-induced cardiotoxicity. In
the DOX-induced heart failure model, the GPX4 expression is
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downregulated, triggering lipid peroxidation of the DOX-Fe2+

complex and inducing mitochondria-dependent ferroptosis
(44). Fer-1 and iron chelators can reduce DOX-induced
cardiac damage by maintaining mitochondrial function (42).
Therefore, these drugs can reduce DOX-induced cardiotoxicity
by inhibiting the ferroptosis pathway, bringing good news to
patients (42).

Tyrosine kinase inhibitors (TKIs) are also a class of
anticancer agents for various cancers (45). Regorafenib, a
molecule structurally related to sorafenib, is an effective xCT
inhibitor, which can induce ferroptosis by decreasing cellular
GSH (46, 47). In addition, lapatinib is usually used with the
combined treatment of DOX to improve the anti-tumor efficacy.
In H9C2 cells, lapatinib aggravates DOX-induced cell injury
by decreasing GPX4 activity but increasing ACSL4 level (48).
Together, these findings suggest that further in-depth research
is required to study ferroptosis regulator genes as promising
therapeutic targets in protecting TKIs-induced cardiotoxicity.

3.5 Heart failure

Heart failure is the terminal stage of various cardiovascular
diseases (49). As mentioned above, iron homeostasis is crucial
for maintaining cardiac function. Iron overload is closely
related to heart failure and cardiomyopathy (50). For example,
left ventricular diastolic function may be more sensitive to
early markers of iron overload than systolic function (51).
Furthermore, heart failure with preserved ejection fraction
(HFpEF) patients has complex pathological processes, such as
chronic inflammatory and oxidative stress stages. Elevated ROS
level often promotes cardiomyocyte injury by increasing lipid
peroxidation products, destroying the antioxidant mechanisms,
and decreasing GSH levels. This progression implies an
underlying connection between inflammation, ferroptosis, and
HFpEF (51).

Of note, ferritin heavy chain (FTH), a significant component
of ferritin, is down-regulated in transverse aortic constriction
mice (49). SlC7A11 expression is decreased in FTH-deficient
cardiomyocytes, while selectively, SlC7A11 overexpression
increases the GSH level in cardiomyocytes (52). Puerarin, an
antioxidant reagent, can alleviate heart failure by increasing
FTH1 and GPX4 expression in H9C2 cells and aortic banding
rats (53). Therefore, it can be shown that genes related to
ferroptosis deserves for further exploration in heart failure.

3.6 Hypertension

Hypertension is a common comorbidity in HFpEF patients
with high angiotensin II (Ang II) levels and myocardial
fibrosis (51). Pathological cardiac remodeling mediated by

hypertension leads to heart failure (54). The peptide hormone
Elabela (ELA) is an endogenous ligand of the apelin receptor
that can inhibit Ang II signal transduction, thus preventing
pressure overloading. Intraperitoneal injection of ELA in Ang
II-induced hypertensive mice model can inhibit interleukin-
6/signal transducer and activator of transcription 3/GPX4
(IL-6/STAT3/GPX4) signaling, reducing the lipid peroxidation
accumulation. Thus, ELA treatment in mice reduces myocardial
fibrosis and cardiac injury with hypertensive heart failure (55).
Similarly, it has been studied that the expression of GPX4 and
GSH is decreased in hypertensive brain damage rat models (56).
Moreover, SLC7A11 overexpression in mice alleviated Ang II-
mediated cardiac fibrosis, hypertrophy, and dysfunction (57). At
present, there is poorly existing basic research on the association
between ferroptosis and hypertension, which is needed to deeper
explore the underlying mechanisms, and provides new targets
for the treatment of hypertension.

3.7 Other cardiovascular disease

Iron overload in diabetic patients increases the insulin
resistance risk and aggravates cardiovascular complications
through the Fenton reaction (50). Oxidative stress has become
the main mechanism of diabetic cardiomyopathy (58). Heat
shock factor 1 (HSF1) can resist oxidative stress response
caused by ferroptosis-related lipid metabolism disorder. HSF1
overexpression alleviated palmitic acid-induced cell death
and regulated the transcription of iron metabolism-related
genes (FTH, TFRC, and FPN) to improve disturbed iron
homeostasis (59). NRF2 is also a master regulator factor of
antioxidant proteins in ferroptosis. Ferroptosis exacerbates
diabetic cardiomyopathy by down-regulating the SLC7A11
expression through the AMPK/NRF2 pathway in the later stages
of diabetes. Sulforaphane, an NRF2 inhibitor, prevents diabetes-
induced oxidative stress and cardiac dysfunction by activating
NRF2 (60). Likewise, AMPK/P38/NRF2 pathway is activated as
an anti-oxidative stress mechanism during IRI in diabetic rats
and is involved in the cardioprotective effect of resveratrol (61).
Therefore, more investigation is needed to explore antioxidant
drugs for treating diabetic cardiomyopathy.

Patients with severe sepsis often present with cardiac
injury and dysfunction. Ferroptosis metabolic pathways such
as mitochondrial autophagy and iron metabolism are involved
in septic cardiomyopathy progression. Lipopolysaccharide
(LPS) can increase ferritin and nuclear receptor coactivator
4 (NCOA4) expressions in H9C2 cells. NCOA4 increased
the cytoplasmic Fe2+ and activated sideroflexin on the
mitochondrial membrane to transport Fe2+ to mitochondria.
This progress can lead to iron overload and elevate ROS in
mitochondria, triggering lipid peroxidation and cardiomyocyte
ferroptosis (62). However, FPN, as the only iron exporter
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in ferroptosis progression, is crucial for maintaining iron
homeostasis. LPS can down-regulate FPN and up-regulate
ferritin light chain (FTL) and FTH expressions, promoting iron
deposition in myocardium-septic rats. Fer-1 and dexrazoridine
can reduce cardiac inflammation and dysfunction and improve
septic cardiomyopathy (62, 63).

4 Targeted therapy of ferroptosis
in cardiovascular disease

Inhibiting ferroptosis-related targets has excellent
therapeutic potential for treating and preventing heart disease,
based on research into the pathogenesis of these conditions.
In this section, we summarize various drugs that inhibit the
ferroptosis pathway and their application in various models
of heart diseases.

4.1 ROS inhibitors

Fer-1 can reduce ROS-induced cell damage and thus inhibit
ferroptosis. Fer-1 is widely applied in various cardiovascular
diseases (7). As described previously, Fer-1 has a protective
effect on myocardial damage in DOX-induced and septic

cardiomyopathy (42, 63). Fer-1 treatment reduced total
creatine kinase release and neutrophil recruitment during heart
transplantation (64).

Additionally, ferroptosis inhibitor liproxstatin-1 (LIP-1)
has potentially cardioprotective properties. LIP-1 can reduce
the myocardial infarction size by reducing voltage-dependent
anion channel 1 (VDAC1) to maintain mitochondrial structure
and function (65). MitoTEMPO, as a mitochondria-targeted
superoxide scavenger, reduces lipid peroxides and thus
significantly reduces cardiac dysfunction and mitochondrial
damage (42). Hence, ferroptosis inhibitors are essential to treat
cardiovascular disease. These drugs’ actual clinical development
and utilization still need further exploration.

4.2 Iron chelators

Iron chelators can protect the myocardium from injury
by regulating intracellular free iron levels. Dexrazoxane, a
common iron chelator, easily passes through the cell membrane
and chelates intracellular free iron. Dexrazoxane can act on
high mobility group box 1 (HMGB1) protein to inhibit
ferroptosis and reduce DOX-induced cardiotoxicity in rats
(7, 66). Moreover, histochrome has better iron-chelating and
antioxidant effects on alleviating myocardial IRI. Intravenous

TABLE 1 Summary of traditional Chinese medicine in cardiovascular disease.

Drug Mechanisms Test in Disease References

Resveratrol Increase the level of GPX4 and FTH, decrease the level of
TFR1

Rat and H9C2 cells Myocardial
ischemia-reperfusion

(75)

Baicalin Increase the level of GPX4, decrease the level of ACSL4,
decrease the generation of ROS and Fe2+ deposition

Rat and H9C2 cells Myocardial
ischemia-reperfusion

(72)

Betulinic Enhance the induction of nuclear NRF2 and HO-1
expression

Rat and H9C2 cells Myocardial
ischemia-reperfusion

(74)

Ginsenoside Rd Increase the expression of nuclear NRF2 and HO-1 Rat Myocardial
ischemia-reperfusion

(73)

Cyanidin-3-glucoside Increase the level of GPX4 and FTH1, decrease the level
of TFR1

Rat and H9C2 cells Myocardial
ischemia-reperfusion

(76)

Hesperidin Reduce non-heme iron deposited and lipid peroxidation Mice Iron-overload (77)

Coumarin Reduce lipid peroxidation Mice Iron-overload (77)

Epigallocatechin-3-gallate Increase the level of GPX4, decrease iron accumulation,
inhibit excess ROS generation and oxidative stress

Mice and H9C2 cells Dox-induced
cardiomyopathy

(78)

Curcumin Promote nucleus translocation of NRF2, increase the level
of HO-1 and GPX4

Rabbit and H9C2 cells Diabetic cardiomyopathy (70)

Puerarin Increase the expression of P-AMPK/T-AMPK; Increase
the level of GPX4 and FTH1

Rat and H9C2 cells Sepsis-induced
myocardial injury; heart
failure

(53, 79)

Shensong Yangxin Increase the expression of TFR1 and FPN, decrease
intracellular iron overload and ROS production

Rat and HL-1 cells Syndrome-induced atrial
fibrillation

(80)

Tanshinone A coenzyme for NQO1, accept electrons from FAD to
generate reduced tanshinone to reduce lipid ROS and
ferroptosis

Mice Myocardial
ischemia-reperfusion

(81)
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FIGURE 1

The regulatory metabolic pathways in ferroptosis. Ferroptosis is a form of cell death characterized by iron overload and lipid peroxidation.
Excessive iron uptake or decreased iron excretion leads to intracellular iron overload, which promotes Fenton reaction. GPX4 is an essential
regulator factor in the System Xc−-GSH-GPX4 axis system to blocking ferroptosis. Besides, PUFAs can be catalyzed by ACSL4 and LPCAT3 to
form PE-AA and PE-AdA, which is further oxidized by LOX to promote the occurrence of lipid peroxidation. These three metabolic pathways
promote ferroptosis and further aggravate cardiovascular disease. NRF2 also acts as an antioxidant factor to inhibit ferroptosis by operating its
downstream factors. Erastin and RSL3 are common ferroptosis inducers to promote ferroptosis. PUFAs, polyunsaturated fatty acids; AA,
arachidonic acid; AdA, adrenic acid; ACSL4, acyl-coa synthetase long chain 4; LPCAT3, lysophosphatidyl acyltransferase 3; LOX, lipoxygenase;
System Xc−, cystine/glutamate antiporter; GSSH, glutathione disulfide; GSH, glutathione; TF, transferrin; TFR1, transferrin receptor 1; DMT1,
divalent metal transporter 1; FPN, ferroportin; HO-1, heme oxygenase-1; NCOA4, nuclear receptor coactivator 4; NRF2, nuclear factor
erythroid-2 related factor 2; RSL3, Ras-selective lethal small molecule 3; VDAC1, voltage-dependent anion channel 1; GPX4, glutathione
peroxidase 4; PE, phosphatidylethanolamine.

injection of histochrome in rats can inhibit ferroptosis by
maintaining GSH level and GPX4 activity, thereby reducing
infarct size and arrhythmia potential. The iron chelators
deferiprone and deferoxamine can also inhibit IRI (67).
However, further study is necessary to determine the effects of
iron chelators on the body’s iron homeostasis.

4.3 Traditional Chinese medicine

Traditional Chinese medicine is a treasure trove of precious
natural compounds with multiple targets and minor side

effects (30). Some active ingredients of traditional Chinese
medicine contain natural antioxidants and have regulatory
effects on ferroptosis, such as artemisinin (68), curculigoside
(69), curcumin (70), and glycyrrhiza (71). Several studies
on alleviating cardiovascular disease with traditional Chinese
medicine have progressed with in-depth research on ferroptosis
(Table 1). For instance, baicalin can inhibit erastin-mediated
GPX4 degradation and ACSL4 expression to enhance cell
resistance to ferroptosis (72). Studies also showed that betulinic
acid and ginsenoside Rd could inhibit oxidative stress markers
and protect the heart from ischemia-reperfusion via NRF2/HO-
1 signaling (73, 74). Besides, resveratrol can increase the
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GPX4 and FTH to reduce cardiac damage (75). Therefore, there
is an urgent requirement to explore more traditional Chinese
medicine with the ability to decrease lipid peroxidation and ROS
to protect against cardiovascular disease with fewer side effects.

5 Discussion

As a non-apoptotic form of cell death, the underlying
mechanism of ferroptosis is complex and intimately connected
with other regulatory cell death signaling pathways (17). In-
depth research on ferroptosis in cardiovascular disease has
revealed that many signaling factors have been found to
directly or indirectly regulate ferroptosis, thereby affecting iron
metabolism and lipid peroxidation (Figure 1; 82). Recently,
scientists are increasingly focusing on ferroptosis inhibitors
to alleviate myocardial injury and cardiac dysfunction, which
will provide insights into the molecular mechanisms of
cardiomyocyte death after cardiac injury.

However, there are still many issues worth discussing: (1)
The precise mechanisms involved in ferroptosis remain to
be elucidated on cardiovascular disease. As mentioned above,
studies exist on the experimental basis of ferroptosis and
hypertension have been rare; (2) Further research is needed
on the clinical application of ferroptosis and cardiovascular
diseases, such as magnetic resonance imaging and serum-based
biomarkers. By extension, we can explore predictive specific
biomarkers of ferroptosis in cardiovascular disease, thereby
providing a novel idea for early diagnosis and treatment of heart
disease. (3) Traditional Chinese medicine has the advantage
of its unique therapeutic effects, such as reduced toxicity and
few side effects, in preventing and treating cardiovascular
disease. There are more traditional Chinese medicine with anti-
ferroptosis effect needs to be further investigated.

As a therapeutic target, ferroptosis has a good application
prospect on cardiovascular disease (4). With the rapid
development of molecular detection in the field of precision
medicine, it need to be further explore more specific ferroptosis-
related targets. Therefore, exploring the regulatory mechanism

related to ferroptosis and actively promoting clinical verification
is necessary to provide new treatment ideas and directions for
clinical diagnosis and treatment of cardiovascular disease.
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