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In cardiac muscle the action of adrenaline on β1 receptors of heart

muscle cells is essential to adjust cardiac output to the body’s needs.

Adrenergic activation leads to enhanced contractility (inotropy), faster heart

rate (chronotropy) and faster relaxation (lusitropy), mainly through activation

of protein kinase A (PKA). Efficient enhancement of heart output under stress

requires all of these responses to work together. Lusitropy is essential for

shortening the heartbeat when heart rate increases. It therefore follows

that, if the lusitropic response is not present, heart function under stress

will be compromised. Current literature suggests that lusitropy is primarily

achieved due to PKA phosphorylation of troponin I (TnI) and phospholamban

(PLB). It has been well documented that PKA-induced phosphorylation

of TnI releases Ca2+ from troponin C faster and increases the rate of

cardiac muscle relaxation, while phosphorylation of PLB increases SERCA

activity, speeding up Ca2+ removal from the cytoplasm. In this review

we consider the current scientific evidences for the connection between

suppression of lusitropy and cardiac dysfunction in the context of mutations

in phospholamban and thin filament proteins that are associated with

cardiomyopathies. We will discuss what advances have been made into

understanding the physiological mechanism of lusitropy due to TnI and PLB

phosphorylation and its suppression by mutations and we will evaluate the

evidence whether lack of lusitropy is sufficient to cause cardiomyopathy, and

under what circumstances, and consider the range of pathologies associated

with loss of lusitropy. Finally, we will discuss whether suppressed lusitropy due

to mutations in thin filament proteins can be therapeutically restored.
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Introduction

It is 10 years since we wrote a review, based mainly
on in vitro work, proposing that a major defect commonly
connected with inherited cardiomyopathies (and perhaps some
others) was their lack of response to TnI phosphorylation (1).
The modulation of cardiac muscle relaxation rate due to TnI
and phospholamban phosphorylation is a key determinant of
the lusitropic response. This lead us to propose that suppression
of lusitropy could be a disease mechanism in cardiomyopathies.
This review revisits the question in the light of recent research.

Calcium ions (Ca2+), released from the sarcoplasmic
reticulum, bind to troponin C to switch the thin filament on,
however, in cardiac muscle a more graded form of regulation
is essential to tailor cardiac output to the body’s needs. The
level of contractility of heart muscle is determined by three
factors: the initial sarcomere length (preload), the force against
which the muscle must shorten (afterload), and the speed
and force of contraction. Speed and force of contraction
can be modulated independently of preload and afterload by
changing the inotropic state. This is controlled largely, but not
exclusively, by stimuli from the sympathoadrenal system and the
parasympathetic nervous system.

Adrenergic activation acts mainly on β1 receptors to trigger
a coordinated response of the heart during exercise or “flight-
or-flight” that increases cardiac output up to fivefold. This
is achieved by an increase in heart rate of up to threefold
(chronotropy) and an increase in the force of contraction
(inotropy). Ventricular pressure rises quicker and higher arterial
pressure is produced. At the same time the duration of systole
grows briefer and relaxation is faster (lusitropy).

The increased speed of relaxation is essential for the
adrenergic response since the heart beat must become shorter if
the heart rate is increased to avoid successive beats overlapping
which would reduce stroke volume. Nevertheless, lusitropy is
not often given the attention it deserves since heart rate and
magnitude of contraction are obvious and easily measured
parameters whilst relaxation rates are not commonly recorded.
It is the objective of this review to consider the evidence
that defects in lusitropy can be a significant contributor
to heart disease.

The biochemical and physiological process of lusitropy is
well understood. β-1 receptor activation leads to adenylate
cyclase activation and cAMP production. cAMP acts directly
on membrane channels and also activates the cyclic AMP-
dependent protein kinase (PKA). PKA itself phosphorylates a
variety of ion channels, ion pumps in the sarcolemma and
sarcoplasmic reticulum (SR) and contractile proteins.

The SR in cardiac myocytes stores large quantities of
Ca2+. The SR is a complex cellular compartment that allows
intracellular Ca2+ cycling that is coordinated with other
cellular systems such as myofilament and sarcolemma proteins.
Ca2+ release from the SR is driven by the opening of

Ryanodine Receptor whilst Ca2+ reuptake by the SR is mostly
dictated by the Ca2+ pump called sarco/endoplasmic reticulum
Ca2 + -ATPase (SERCA2a). In the sarcoplasmic reticulum PKA
phosphorylates Phospholamban (PLB), an accessory protein
crucial in the regulation of SERCA2a activity.

There are two phosphorylation sites in PLB, one at serine
16 and another at threonine 17 and the kinases involved
are PKA for serine 16 and Ca2+/CaM kinase for threonine
17. Unphosphorylated PLB is an inhibitor of SERCA2a;
PKA-mediated phosphorylation of phospholamban relieves
the inhibition, thus activating SERCA2a, resulting in faster
sequestration of Ca2+ (lusitropy) and increased filling of the
sarcoplasmic reticulum that contributes to positive inotropy. In
addition, positive lusitropism is achieved by a PKA-mediated
phosphorylation of troponin I, exclusively at serines 22 and 23
(2, 3); phosphorylation of TnI at these two serine sites increases
the rate of Ca2+-release from troponin C (4). To terminate
these events when plasma concentrations of β-agonists fall,
cyclic adenosine monophosphate (cAMP) is hydrolyzed by the
cyclic nucleotide phosphodiesterases, and protein phosphatases
hydrolyze the protein-bound phosphate. As will be discussed
later, it is probable that both PLB and TnI phosphorylation
are necessary for effective positive lusitropy. It is possible
other targets of PKA, such as the L-type Ca2+ channel (5),
may influence lusitropy, but comprehensive data is lacking.
Recent publications have described the molecular mechanisms
of troponin and phospholamban phosphorylation modulation
of function (6, 7).

Evidence that lusitropy is
necessary from PLB loss of
function models

The key studies of the role of phospholamban in cardiac
muscle regulation are based on a PLB knockout (KO) mouse
model (8). In unloaded assays (e.g., myocytes) the relaxation
rate is completely unresponsive to isoprenaline (Iso) compared
with a 30% increase in WT myocytes. However, in isometric
contractions lusitropy is merely blunted: decrease in tau relax
was 17% vs. 30–50% in non-transgenic littermates (NTG). PLB
KO has additional actions, since it activated SERCA2a: tau is
lower than NTG and there is a substantial inotropic effect.
However, it can be concluded that PLB phosphorylation is a
mechanism for lusitropy. Pathogenic, exonic variants have been
identified in the PLB gene associated with DCM; to date, there
are six known PLN mutations linked to dilated cardiomyopathy
(p.R9C, R9L, R9H, R14del, R25C, L39X) (9–11) with several
more candidate mutations suggested from large scale surveys
[e.g., (12)].

The PLB R9C variant associated with DCM has been
extensively studied for its inotropic and lusitropic effects in
transgenic mice, cardiomyocytes and human iPSC-derived
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cardiomyocytes. Cardiomyocytes isolated from transgenic mice
bearing the PLB R9C in the heart display prolonged Ca2+

transients. Upon further investigation it was found that the
PLB R9C mutation “traps” PKA and inactivates it, preventing
phosphorylation. This has an constitutive inotropic and
lusitropic effect but yields negative consequences of impaired
frequency potentiation and blunted β-adrenergic responsiveness
(9). Another report suggested that acute expression of PLB
R9C in cardiomyocytes enhances inotropic and lusitropic
responses of the transfected cells but also blunts the response
to the frequency of stimulation and isoproterenol stimulation
(13). The PLB R9C mutation was also shown to cause a
blunted β-agonist response in human iPSC-CMs in experiments
performed using 3D human EHTs (14).

Evidence that lusitropy is
necessary from TnI
phosphorylation sites serine 22/23
loss of function models

The role of TnI phosphorylation in modulating contractility
has been studied in several transgenic mouse models either
substituting the unphosphorylatable slow skeletal TnI for
native cardiac TnI or by modifying the phosphorylatable
serines, to non-phosphorylated (Ala substitution) or
pseudophosphorylated (Asp or Glu substitution) forms.

One of the most extensively studied models is the slow
skeletal troponin overexpression model where cTnI in the
heart is completely replaced with ssTnI that does not have the
N-terminal phosphorylatable peptide (15–17). The substitution
increases Ca2+ sensitivity of isometric tension in myofibrils
(pCa50 is 5.81 WT, 6.13 TG) but also blunts the effect of PKA
phosphorylation (1 pCa50 = 0.146 in WT but 0.08 in TG). In
myocytes, isoprenaline stimulation accelerated relaxation 1.7-
fold in WT but only 1.3-fold in TG indicating a blunting of
the lusitropic response that is also indicated by measurements
of contraction kinetics on intact heart muscle strips (fmin).
In Langendorf working heart studies the effect of Iso on
LVdp/dtmin is also blunted and the blunting of lusitropy is also
evident in PV loops. The inotropic effect of Iso is not greatly
altered in unloaded studies but, like the PLB KO, is partially
blunted in loaded (auxotonic) muscles (Figure 1).

Substituting a non-native TnI and overexpression may have
unforeseen physiological off target effects. Better models have
been produced by mutating the phosphorylatable serines in
native cTnI. The model described by Pi et al. overexpressed cTnI
with ser22 and 23 mutated to Alanine (unphosphorylatable);
moreover the transgenic mice were bred with cTnI null mice
to avoid any interactions between native and transgenic cTnI
(18, 19). The blunting of lusitropy was clear: as measured by
ATPase in myofibrils or tension in skinned muscle fibers, the

FIGURE 1

The adrenergic response in NTG (A) and ssTnI (B) TG mice.
Examples of LV pressure traces (top set of panels), their
derivatives (second set of panels), and the corresponding LV
volume (third set of panels) recorded by a Millar
microconductance catheter-manometer during ejecting heart
experiments at 20 cm H2O preload. The bottom set of panels
illustrate the steady-state pressure–volume loops derived from
the instantaneous LV pressure and volume traces above (first and
third panels). Thin lines indicate baseline conditions and thick
lines indicate the signal during stimulation with isoprenaline
(10 nm). Faster relaxation in presence of Iso is apparent in NTG
but the effect is suppressed In the unphosphorylatable mutant
TG mouse heart. Reproduced from Layland et al. (17) with
permission.© The Physiological Society 2004.

Ca2+-sensitivity was shifted 1.3-fold in NTG by Iso but no shift
was detected in TG (18). In intact myocytes 2.5 nM Iso decreased
relaxation time by 37% in WT but only 18% in TG. Yasuda et al.
also studied Ser > Ala replacement in transfected myocytes,
finding Iso decreased relaxation time by 36% in NTG but only
9% in TG (20).

The alternative model- substituting aspartic acid for the
two serines to create a pseudophosphorylated troponin I has
also been studied in transgenic mice and transfected myocytes.
The first study used a mouse model overexpressing Asp 22/23
(21) and 95% replacement. It was noted that the mouse
model was healthy but had enhanced cardiac function (as
measured by Millar catheter) with faster contraction and slower
relaxation, however, the response to β- adrenergic stimulation
was not significantly different from NTG. Another group
produced a similar model with either Asp 22/23 or Asp
22/23/43/45/144 overexpressed and studied lines with almost
complete protein replacement (22). In vitro the Asp22/23
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mouse myofibrillar Ca2+ sensitivity was lower than NTG, as
expected for pseudophosphorylation (1pCa50 = 0.20), but upon
PKA phosphorylation the Ca2+ sensitivity was not changed
compared with 1pCa50 of 0.23 in NTG. In the intact beating
heart (Millar catheter), the rate of relaxation (dP/dTmin) was
increased from –6,869 to –8,651 mmHg/s by Iso in NTG and
–10,598 to –12,099 in Asp22/23 mouse. Although the studies of
Takimoto et al. and Sakthivel et al. show little evidence that loss
of the TnI Ca2+-sensitivity shift causes lusitropy, the study by
Yasuda et al. (20) using the same Asp22/23 model did show a
blunting of lusitropy in myocytes. Myocyte twitch tension was
measured by attaching microfibre probes. In Wild-type, ttb75

was decreased from 69 to 39 ms on treatment with Iso, a 44%
change, whilst in Asp22/23 myocytes, ttb75 was decreased from
44 to 38 ms, a 14% change. A similar blunting was measured

in myocytes transfected with Asp22/23: Iso produced a 33%
reduction in relaxation time in WT but only 16% in Asp22/23.
In addition, this study recapitulated the previous results with
Ala22/23 and with ssTnI substitutions in both TG mouse and
transfected myocytes (Table 1).

“Is PLB or TnI the prima donna in β

adrenergic induced lusitropy?”

This question was raised in a key Circulation Research
editorial that discussed the findings of Yasuda in relation to
the other published work at the time (23). It is still a very
pertinent question. Essentially we need to know whether the
release of Ca2+ from troponin or the removal of Ca2+ from

TABLE 1 Animal models of impaired lusitropy.

References Model Ca2+ sensitivity shift
on phosphorylation,
1pCa50, WT > mutant

Lusitropy, % reduction of relaxation time, 100 × (1-
relaxation time + dobu or Iso/relaxation time
baseline), WT > mutant

(60) PLB KO 30% > 0, isometric 40% > 17%

(15) Ss TnI mouse 0.15 > 0.07 Unloaded 41% > 23%

(17) ssTnI dP/dT min 39% > 13%

(16) Ss TnI 0.15 > 0.05 ttb50 skinned fibre 41% > 23%

(18) cTnI Ser 23/24 Ala2 0.08 > 0 Unloaded 37% > 18%

(21) cTnI 23,24 Asp2

(22) cTnI 23/24 Asp2 0.23 > 0.20 Loaded 26% > 14%

(20) cTnI 23/24 Asp2 and Ala2 Asp2 isometric 44% > 14%
Ala2 isometric 36% > 9%

(9) PLB R9C Ca2+ uptake rate, 20% > 0

(13) PLB R9C Unloaded, 29% > 24%

(14) PLB R9C Loaded EHT 25% > 4%

(61) TnT I79N 26% > 9%, Langendorf 34% > 29%

(62) TnT R278C Langendorf 34% > 32%

(7) TnT R92Q Guinea pig Myocytes 24% > -9%

(63) TnT R92Q 0.30 > - 0.04 Langendorf 45% > 13%

(53) TnI P83S Myofibrils: kRELslow 56% > 9%

(55) MYBPC3KI IPSC eht 19% > 2%

(64) TnT1160E Millar catheter 28% > 19%

(44) Actin E99K IVMA 0.46 > 0.06 (mouse), –0.03
(human)

Echo, all 1 on dob suppressed

(65) TnI R21C 0.25 > 0.05 32% > 5% (skinned fiber) 16% > 13% (myocytes)

(51) TnI R21C Exchanged myofibrils kRELslow 39% > 8%, kRELfast 14% > 5%

(59) Actin E361G Papillary muscle (10 Hz) 17.5% > 5% Millar catheter 22.4% > 7.5%

(66) Actin E361G Myofibrils 0.26 > -0.05 KRELfast 34% > 0%

(37) Actin E361G IVMA 0.47 > 0.017 Cardiac output, dob effect Echo, 14% > 0%, MRI 19% > 8%

Where possible ttb90 is used. If not available, parameter is given in this table. All studies in mouse models unless otherwise stated. In paired t-test, wild-type mean lusitropy is 28.1%± 1.8
(sem), mutant mean lusitropy is 11.0%± 1.8 (sem), n = 25. t probability < 0.0001.
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the sarcoplasm by SERCA is rate limiting for relaxation. The
answer to the question depends on the balance of rates of
these two processes, which themselves depend on conditions,
especially temperature since many experiments are conducted at
below normal body temperature but also force, since these rates
are different in unloaded and isometric muscle. Measurement
technique, experimental medium and most likely also the animal
model that is used are also critical.

Two studies have indicated that (in unloaded rat myofibrils
at least) Ca2+ dissociating from TnC becomes rate limiting
at 37◦C whereas SERCA activity is limiting at lower, non-
physiological temperatures (24, 25). Experiments do not support
a dominating role for either PLB or TnI phosphorylation. Li et al.

(8) proposed TnI phosphorylation contributes just 14–18% of
lusitropy in unloaded muscle but nothing in isometric muscle
based on comparison of WT with PLB-KO mouse. Yasuda et al.
(20) predicted an opposite pattern with 75% contributed by
TnI phosphorylation in unloaded myocytes. Layland et al. (17)
argue that cTnI has the pivotal role in the positive inotropic
response of the murine heart to β-adrenergic stimulation, under
all loading conditions but agree that it is most evident in the
auxotonically loaded ejecting heart.

It seems unlikely that either TnI or phospholamban
phosphorylation is actually the “prima donna” but rather that
the control of lusitropy is a duet. Wolska et al. (26) studied a
transgenic mouse with both a PLB KO and ssTnI substitution.

TABLE 2 Mutations that have been reported to cause uncoupling.

Mutation Effect of phosphorylation on Ca2+-sensitivity,
pCa50 uP- pCa50 P

Measurement method Publication

DCM

ACTC E361G 0.017 In vitro motility assay (IVMA) (37, 38)

TPM1 E54K 0.021 IVMA (38)

TPM1 E40K 0.00 IVMA (38)

TPM1 D230N −0.013 IVMA (38)

TNNC1 G159D −0.013 IVMA/Ca2+ binding (29, 30, 38, 39)

TNNC1 Y5H 0.068 Skinned fiber (40)

TNNC1 M103I 0.017 Skinned fiber (40)

TNNC1 I148V 0.053 Skinned fiber (40)

TNNT2 1K210 −0.009 IVMA/skinned fiber (38, 41, 42)

TNNT2 R141W −0.022 IVMA (38)

TNNI3 K36Q −0.009 IVMA/ATPase (38, 43)

HCM

ACTC E99K −0.004 IVMA (44, 45)

TPM1 E180G −0.009 Skinned fiber (45, 46)

TNNC1 L29Q −0.036 Ca2+ binding/ATPase (30, 47, 48)

TNNT2 R92Q 0.041 IVMA (49)

TNNT2 114 0.000 IVMA (49)

TNNT2 128 + 7 0.000 IVMA (49)

TNNT2 1E160Q 0.000 IVMA (49)

TNNT2 S179F 0.041 IVMA (49)

TNNT2 K273E 0.041 IVMA (49)

TNNT2K280N 0.041 IVMA (49, 50)

TNNI3 R145G 0.000 IVMA/ATPase (27, 51)

TNNI3 R145W 0.045 IVMA/ATPase (52)

TNNI3 P83S 0.000 Exchanged myofibrils (53)

TNNI3 R21C 0.049 Skinned fiber (35, 51)

TNNI3 G203S 0.057 ATPase/IVMA (28)

TNNI3 K206Q 0.000 ATPase/IVMA (28)
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FIGURE 2

Suppression of lusitropy in ACTC E361G transgenic mouse. (A) Effect of dobutamine on intact papillary muscle contractility. Papillary muscles,
isolated from both ACTC E361G (n = 5) and NTG mice (n = 5), were stimulated with the addition of 10 µM dobutamine to the perfusion solution
at 37◦C. Time to 90% relaxation is plotted against stimulation frequency; (inset) percent change of ttb90 with dobutamine treatment at
physiologically relevant frequencies. (B) The effect of acute dobutamine treatment on cardiac performance determined by Millar catheter. Data
are presented as mean ± SE of 6 ACTC E361G (open bars) mice and 7 NTG (solid bars) mice. The change of rate of pressure decline (dP/dtmin)
on treatment with dobutamine is plotted (left) and mean values plotted in a bar chart (right). ***P = 0.001, unpaired student’s t-test. Data from
Wilkinson et al. (59).

In isolated papillary muscle, the study confirmed that single
mutant PLB KO enhances relaxation rate but uncouples it
from Iso stimulation whilst single mutant ssTnI replacement
slows relaxation and also uncouples. In the double mutant
(PLBKO/ssTnI) relaxation is enhanced relative to wild-type (like
the PLBKO) but the relaxation rate is still uncoupled from Iso
stimulation. Thus, in the double KO TnI and PLB appear to act
independently and additively. It is likely that phosphorylation of
both PLB and cTnI contribute to the increased rate of relaxation

during β-adrenergic stimulation and that deficiency of either
will lead to suppression of lusitropy (23).

Somewhat disappointingly, none of these studies looked at
the effects of chronic adrenergic stimulation. The transgenic
mouse models often showed no cardiac phenotype at rest
and this is entirely to be expected since sedentary mouse in
the typical animal cage environment are not subjected to any
stress. However, studies on mutations in troponin and other
thin filament proteins that are demonstrated to be causative
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of dilated cardiomyopathy have provided a link between
suppression of lusitropy and heart failure.

Mutations can also suppress
lusitropy

Many in vitro studies have demonstrated that mutations
in thin filament proteins associated with inherited
cardiomyopathies abolish the relationship between Ca2+

sensitivity and TnI phosphorylation by PKA and would
therefore likely impair lusitropy. This trait, which we have
termed “uncoupling,” was first noted in 2001 (27, 28). In 2007-8
three publications studying the recently discovered TNNC1
G159D mutation showed uncoupling with recombinant mutant
troponin, with troponin extracted from a patient with the
mutation and with rat trabecula with the mutation exchanged
in myocytes (29–31). Subsequently, almost every thin filament
mutation that was tested proved to be uncoupled. This was
summarized by Messer and Marston (1) and Table 2 lists all the
reports of uncoupling to date. In wild-type the mean 1pCa50

is –0.31 (mean of 8 studies) (32) whereas it is close to zero in
the mutations studied. It is relevant to note that in in vitro
experiments, uncoupling is always complete, irrespective of the
mutation and that uncoupling is associated with both HCM
and DCM-causing mutations. In the case of DCM mutations
a case can be made that this is causative of the disease since
it is the only mutation-related property that is common to
every thin-filament related DCM mutation (1, 33, 38), whereas
for HCM, the increase in Ca2+-sensitivity is probably the key
driver of the cardiomyopathy. Mechanistically, uncoupling
usually involves an impaired response of the thin filaments to
TnI phosphorylation (34), however, the cTnI R21C mutation
has a mechanism whereby the mutation interferes with the
phosphorylation process itself (35). Another mechanism
that could generate impaired lusitropy is if the balance of
phosphorylation of TnI and PLB in response to Iso is disturbed
as suggested by Najafi et al. (36).

There are a few reported cases of uncoupling were the
mutation is in thick filament or cytoskeletal proteins or occurs
with no known mutation (50, 54, 55), however, there is also
clear evidence that DCM-associated titin truncation (TTNtv)
mutations are fully coupled and that abnormal stiffness and
disabled length-dependent activation may be more important
for the pathology (56, 57).

Uncoupling implies impaired lusitropy but this has
only been tested in a few instances, listed in Table 1.
Methodology varies widely: myofibril, iPSC contractility and
myocyte contractility, trabecula and papillary muscles and
Langendorf-mounted heart. In intact animal, Millar catheter,
Echocardiography and Cine-MRI have been used. It is
remarkable that mostly these techniques give a uniform
result: a 30–50% reduction in ttb90 on adding PKA or β1
adrenergic stimulation in the WT compared to a 10–20%

reduction in the HCM or DCM mutant animal. Figure 2
shows an example from the work of Wilkinson et al.
A possible exception is the DCM-causing D230N mutations
in tropomyosin (58) which is uncoupled in single filament
assays (Table 2) but shows very little blunting of lusitropy
in unloaded myocytes. In general, the range of the lusitropy
parameter in cardiomyopathic mutant studies is very similar
to the phosphomimetic transgenic animals, confirming that
uncoupling due to mutations suppresses lusitropy (59) and
revealing this important role for cTnI phosphorylation in
cardiac muscle regulation.

The next stage is to determine whether impaired lusitropy
can lead to cardiac dysfunction. The transgenic mice studies
have found that the majority of DCM mutations in thin filament
proteins produce little or no cardiac phenotype, with the
exception of a few TnT and Tm mouse models (41, 67, 68). This
is to be expected if the defect is in the response to stress.

Very few studies have considered whether chronic stress
could induce cardiac dysfunction. The most well documented
study is by Wilkinson et al. (59). This study used the
ACTC E361G DCM-associated mouse model with the mutant
expressed at 50% of total actin, as was commonly found in
patients. Initial studies indicated that the loss of lusitropy was
the only cardiac dysfunction linked to the mutation and that the
mice had a normal phenotype at rest up to 22 months (37). It was
hypothesized that the loss of cardiac reserve due to suppressed
lusitropy would predispose the ACT E361G mouse hearts to
failure under chronic adrenergic stress. Mice were treated with
high doses of Angiotensin II applied by osmotic minipump for
4 weeks. In E361G mice the angiotensin II treatment induced
mild systolic dysfunction, as measured by Millar catheter, whilst
having no effect on the NTG controls. Compared with the
NTG mice ACTC E361G mice had significantly lower rates
of pressure increase and decrease as well as reduced end-
systolic pressure. As a result cardiac output and ejection fraction
were approximately half the value in NTG, indicating that
uncoupling had induced contractile dysfunction under chronic
stress, characteristic of the early stages of DCM.

Restoration of lusitropy as a
potential treatment for
cardiomyopathies

Studies on the effects of mutations that uncouple TnI
phosphorylation from the Ca2+-sensitivity shift indicate that
they probably act by inducing a subtle, phosphorylation-
dependent change in the dynamics of troponin (69–74), most
clearly indicated by a recent study on the TnC G159D mutation
(34). Remarkably, it has been found that several small molecules
are capable of fully restoring the Ca2+-sensitivity shift in vitro
and restoring lusitropy to mutated cardiomyocytes (7, 45,
75, 76). These small molecules (EGCG, SilybinB, Resveratrol)
therefore have potential for treatment of cardiac dysfunction
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TABLE 3 Studies showing that reduced response to adrenergic stimulation is correlated with cardiac adverse outcome in patients with idiopathic
DCM.

Paper Non-responders,
responders

Outcome measured Follow up time Adverse events
(responders)

Adverse events
(non-responders)

(84) 38, 33 Cardiac mortality 60 mo 9% 42%

(85) 11, 10 1 LVEF, 1 LV sphericity 6 mo 0% 45%

(86) 11, 7 1 LVEF improvement 15 mo 0% 36%

(87) 83, 103 Cardiac mortality 15 mo 3% 25%

(88) 89, 43 Mortality and/or hospitalization 40 mo 16% 49%

(89) 13, 24 Cardiac mortality 60 mo 34% 76%

(90) 15, 28 Mortality and/or hospitalization 23–67 mo 11% 67%

Data partially based on Waddington (81).

due to suppression of lusitropy, particularly by thin filament
mutations but also as a tool for probing for cardiac dysfunction
due to suppression of lusitropy. For instance, Tadano et al. in
HCM mouse (77) and Mou et al. (78), using a rat abdominal
aortic constriction model of heart failure, have demonstrated
that EGCG corrects cardiac systolic and diastolic dysfunction
and prevents cardiac remodeling.

Is there a connection between
suppression of lusitropy and
human cardiomyopathy?

Based on the animal studies of the consequences of
uncoupling, we have proposed that patients with uncoupling
mutations that are associated with DCM would have impaired
lusitropy and that this could contribute to the heart failure
phenotype. A thorough investigation of the state of knowledge
of idiopathic DCM around this possibility has revealed no
direct evidence for the possibility since the question has not
been investigated.

There is indirect evidence compatible with our hypothesis,
although, of course, other mechanisms may play a part.
Mutations that cause suppressed lusitropy also have a reduced
contractile reserve when challenged with β1 agonists in
transgenic mouse models (59, 79). A significant association
between the absence of left ventricular contractile reserve and
increased rate of cardiovascular events, cardiac death and all-
cause mortality has been demonstrated (80). Several studies have
reported that IDCM patient cohorts tend to segregate in to two
groups: those that respond normally to dobutamine and those
with a reduced response, usually measured as contractile reserve
(Table 3). Moreover, the patients with a reduced response to
dobutamine have a more severe prognosis that the other group
and also do not respond to standard heart failure medication
[see meta-analysis by Waddingham et al. (81)].

The behavior of the non-responders matches that which
would be expected if they had familial DCM mutations

that suppressed lusitropy whereas the responders probably
correspond to patients with idiopathic DCM caused by non-
genetic factors where, both at the single filament and patient
levels, lusitropy has been demonstrated to be normal (82, 83).

Unfortunately this hypothesis has not been tested in
IDCM patients. There is no clinical study that correlates thin
filament mutations with reduced response to β1 stimulation,
nor is lusitropy (relaxation rate increase or twitch duration
decrease) commonly measured in Echo or MRI analysis of
patients although protocols to do so are available. To test
this hypothesis we need to know whether cases of familial
DCM caused by mutations correlate with the non-responders
group and also whether lusitropy is suppressed in the non-
responders.

It is possible that suppression of lusitropy could also play
a role in other cardiomyopathies. It is consistently observed
that thin filament mutations that cause HCM are associated
with uncoupling (Table 2) and loss of lusitropy in cells and
intact animals (see ACTC E99K, TNNT2 R92Q in Table 1).
Enhanced Ca2+-sensitivity is the predominant effect of HCM
mutations (91–95). Impaired relaxation is characteristic of
HCM. Suppression of lusitropy may play a role here, however,
it would be very difficult to unravel what contribution loss of
lusitropy makes to the HCM phenotype since the increased
Ca2+ sensitivity and the suppressed lusitropy would both
compromise relaxation.

HFpEF is a heterogeneous disease associated with diastolic
dysfunction. HFpEF patients have a high prevalence of a
blunted response to exercise which may be linked to suppressed
lusitropy. However, this has not been measured in any of the
studies to date (96, 97).

Conclusion

Basic and animal studies indicate that specific suppression
of lusitropy can induce symptoms of heart failure under
stress. In the human heart, where stress is far more
common than in laboratory animals, there is considerable
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circumstantial evidence that impaired lusitropy whether due to
cardiomyopathic mutation or other causes, can contribute to
heart failure. It is predicted that such symptoms of heart failure
would not be amenable to conventional heart failure therapy
but may benefit from small molecules that have been shown
to restore lusitropy in laboratory studies. We believe these
issues should be taken into account in clinical investigations
of cardiomyopathy.
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