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A Commentary on

Monocyte and macrophage lipid accumulation results in

down-regulated type-I interferon responses

Willemsen, L., Chen, H. -J., van Roomen, C. P. A. A., Gri�th, G. R., Siebeler, R., Neele, A. E.,

Kroon, J., Hoeksema, M. A., de Winther, M. P. J. (2022). Front. Cardiovasc. Med. 9:829877.

doi: 10.3389/fcvm.2022.829877

Macrophages possess remarkable phenotypic and functional plasticity in response to

micro-environmental stimuli (1). In atherosclerosis, macrophages sequester extracellular

modified lipids, which accumulate as cytoplasmic lipid droplets, to form foamy

macrophages that are crucial during all stages of the disease (2). In particular, the

death of foamy macrophages contributes to the development of the lipid core and

unstable plaques associated with an increased propensity to plaque rupture and acute

cardiovascular events (3).

It has been thought that foamy macrophages drives chronic inflammatory

responses, yet recent literature demonstrates that foamy macrophages are in fact less

inflammatory than their non-foamy counterparts in the plaque (4). Mechanistically,

cholesterol loading of macrophages in vitro results in the activation of liver X

receptor (LXR), which upregulates genes involved in reverse cholesterol transport and

exerts anti-inflammatory effects (5). Myeloid LXR deficiency induces inflammatory

gene expression in foamy macrophages and accelerates atherosclerosis (6). LXRs are

activated by oxysterols formed in response to increased intracellular cholesterol levels.

The foamy peritoneal macrophages of atherosclerosis-prone Ldlr−/− mice fed with

a high-cholesterol/high-fat diet also accumulate desmosterol, an LXR ligand with

both LXR-dependent and independent effects (7). Desmosterol activates LXR target

genes, inhibits sterol regulatory-element binding proteins (SREBPs) target genes, alters

fatty acid metabolism, and suppresses genes involved in inflammatory responses, e.g.,

Il1b, Cxcl9, and Cxcl10 (7). Furthermore, peritoneal macrophages from Ldlr−/− mice

fed with a high-fat diet had lower pentose phosphate pathway (PPP) metabolites

than mice fed with a normal diet upon lipopolysaccharide stimulation, contributing

to diminished lipopolysaccharide-induced production of pro-inflammatory genes (8).

Activation of LXR does not affect PPP metabolites, supporting LXR-independent

mechanisms of diminished inflammatory phenotypes of foamy macrophage (8). Despite
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these important progresses, there remains a major knowledge

gap in the mechanistic links between lipid accumulation and

immune response modulation.

In this issue of Frontiers in Cardiovascular Medicine,

leveraging transcriptomic data analyses, Willemsen et al. moved

one important step forward toward addressing how foamy

cells are less inflammatory (9). The study analyzed four public

and newly generated transcriptomic datasets, including: (1)

bone marrow-derived macrophages (BMDMs) with or without

loading of acetylated low-density lipoprotein (ac-LDL); (2)

peritoneal macrophages derived from wildtype and Apoe−/−

mice; (3) human monocytes from familial hypercholesterolemia

patients and healthy controls; 4) BMDMs with or without the

treatment of LXR-agonist GW3965. The results support that ac-

LDL loading in murine and human macrophages specifically

suppressed interferon-β (IFN-β) secretion and the expression

of IFN-stimulated genes (ISGs), but not many other pro-

inflammatory genes (9). The downregulation of ISGs could be

rescued by exogenous IFN-β supplementation. LXR activation

suppressed the expression of ISGs, resembling the effects of lipid

loading (9). Monocytes of familial hypercholesterolemia patients

also show a deactivated IFN signature which was restored by

lipid-lowering therapy (9). The results further strengthened

the notion that lipid-loaded foamy macrophages of mice and

humans are less inflammatory and the specific involvement of

perturbed type-I IFN responses (9).

Many questions remain unanswered. Beyond the role of

LXR activation (9), if and how additional molecular mechanisms

may be involved in suppressing the expression of ISGs

in foamy macrophages remain undetermined. The current

analyses highlighted a transcriptomic signature of suppressed

IFN-β responses that is consistent in foamy macrophages

in vitro and ex vivo, yet the differences among datasets

may provide additional insights. Meta-analysis of RNA-seq

data from multiple studies will further reveal the effects of

lipoproteins with different modifications in macrophages from

distinct origins and organ locations. Integrating transcriptomic

data with phenotypic and biochemical characterization will

inform the precise identity of foamy macrophage and the

extent of lipid accumulation required for the suppression of

inflammation. Further, it is unknown why the non-foamy

macrophages remain not lipid-loaded in the atherosclerotic

plaque; for example, if the foamy macrophages arise as a

consequence of a relative increase in phagocytic activity, or

if non-foamy and foamy macrophages have a distinct spatial

distribution with different degrees of lipoprotein retention

(10). The study (9) also provides additional mechanistic and

therapeutic implications. First, it will be intriguing to determine

Abbreviations: BMDMs, bone marrow-derived macrophages; IFN,

interferon; ISGs, IFN-stimulated genes; LDL, low density lipoprotein;

LXR, liver X receptor; PPP, pentose phosphate pathway; TAMs,

tumor-associated macrophages.

if the molecular mechanisms of suppressed inflammation by

lipid loading may be leveraged for therapeutic applications.

Second, unloading excessive cholesterol to reverse the formation

of foam cells represents important therapeutic strategies to

decrease atherosclerotic plaque burden. The analysis supports

that lipid-lowering therapy reverses IFN-β suppression (9),

providing a rationale for testing the combination of lipid-

lowering and anti-inflammatory therapies for atherosclerosis

regression. Third, while current methods capture a snapshot

of foamy macrophage profile, gaining insights into the spatial

and temporal signature of foam cell development may further

unleash their prognostic value.

More broadly, in addition to atherosclerosis, foamy

macrophages are frequently observed in different pathological

states, including infectious diseases, multiple sclerosis, and

cancer (11–14). Because of the important roles of type I IFNs in

host defense against viruses (15), targeting lipid metabolism in

monocytes using lipid-lowering treatment to promote anti-viral

defense is potentially promising (9). In tuberculosis granuloma,

foamy macrophages act as key participants in both sustaining

persistent bacteria and contributing to tissue pathology (11).

In multiple sclerosis lesions, myelin ingestion by myeloid cells

induces a foamy appearance and confers anti-inflammatory

function (12). Accumulation of lipids in tumor-associated

macrophages (TAMs) elicits an immunosuppressive phenotype

(13). Consequently, disrupting lipid droplet formation in

TAMs impeded tumor growth in mice (13). Consistently, large

foamy TAMs were more frequently found in colorectal liver

metastasis patients with worse prognoses than patients with

good prognoses (14). Lastly, other cell types, such as dendritic

cells and vascular smooth muscle cells, also take up lipids and

form foam cells (16–18). The disease- and cell type-specific

mechanisms of foam cell biogenesis and function warrant

extensive research and may have broad impact.

In summary, this study by Willemsen et al. (9) further

motivates the research community to fully dissect the biology of

foam cells and their relationship to diseases and to explore the

potential role of foam cells as prognostic and therapeutic targets

at an immunometabolism level.
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