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Background: Progressive atrial fibrotic remodeling has been reported to

be associated with atrial cardiomyopathy (ACM) and the transition from

paroxysmal to persistent atrial fibrillation (AF). We sought to identify the

anatomical/structural and electrophysiological factors involved in atrial

remodeling that promote AF persistency.

Methods: Consecutive patients with paroxysmal (n = 134) or persistent

(n = 136) AF who presented for their first AF ablation procedure were included.

Patients underwent left atrial (LA) high-definition mapping (1,835 ± 421

sites/map) during sinus rhythm (SR) and were randomized to training

and validation sets for model development and evaluation. A total of 62

parameters from both electro-anatomical mapping and non-invasive baseline

data were extracted encompassing four main categories: (1) LA size, (2) extent

of low-voltage-substrate (LVS), (3) LA voltages and (4) bi-atrial conduction

time as identified by the duration of amplified P-wave (APWD) in a digital

12-lead-ECG. Least absolute shrinkage and selection operator (LASSO) and

logistic regression were performed to identify the factors that are most

relevant to AF persistency in each category alone and all categories combined.

The performance of the developed models for diagnosis of AF persistency

was validated regarding discrimination, calibration and clinical usefulness.
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In addition, HATCH score and C2HEST score were also evaluated for their

performance in identification of AF persistency.

Results: In training and validation sets, APWD (threshold 151 ms), LA volume

(LAV, threshold 94 mL), bipolar LVS area < 1.0 mV (threshold 4.55 cm2) and

LA global mean voltage (GMV, threshold 1.66 mV) were identified as best

determinants for AF persistency in the respective category. Moreover, APWD

(AUC 0.851 and 0.801) and LA volume (AUC 0.788 and 0.741) achieved better

discrimination between AF types than LVS extent (AUC 0.783 and 0.682) and

GMV (AUC 0.751 and 0.707). The integrated model (combining APWD and LAV)

yielded the best discrimination performance between AF types (AUC 0.876 in

training set and 0.830 in validation set). In contrast, HATCH score and C2HEST

score only achieved AUC < 0.60 in identifying individuals with persistent AF

in current study.

Conclusion: Among 62 electro-anatomical parameters, we identified APWD,

LA volume, LVS extent, and mean LA voltage as the four determinant

electrophysiological and structural factors that are most relevant for AF

persistency. Notably, the combination of APWD with LA volume enabled

discrimination between paroxysmal and persistent AF with high accuracy,

emphasizing their importance as underlying substrate of persistent AF.
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1. Introduction

Atrial fibrillation (AF) is the most common supraventricular
arrhythmia in humans and is associated with an increased
risk for cardiovascular complications as ischemic stroke, heart
failure and mortality (1–5). Although, previous clinical studies
have revealed that structural (atrial dilation, atrial fibrotic
remodeling) and electrical remodeling of the atrial myocardium
is associated with development of AF, the importance and
contribution of each factor is not thoroughly studied (6–
8). Moreover, the pathophysiological processes responsible
for persistency of AF are incompletely understood (9). In
an effort to better predict progression from paroxysmal to
persistent AF, the HATCH score, which consists of different
clinical parameters, was developed and validated in various
studies (10). Another important risk estimation tool, the
C2HEST score, which was developed to predict incident AF
also shared similar components and was widely validated
in different clinical studies (11). Nevertheless, both HATCH
score and C2HEST score, despite their original purposes of
prediction of future events, were not evaluated regarding their
performance in identification of AF persistency among AF
patients. Atrial remodeling, which has been identified as a
major contributor to arrhythmogenesis in persistent AF, was
associated with pathological manifestations both structurally
and electrophysiologically (12, 13). Given that both HATCH

score and C2HEST score do not include information on atrial
remodeling, we hypothesize that a new model that reflects the
underlying atrial remodeling processes may be more accurate to
differentiate between paroxysmal and persistent AF and identify
persons at risk for progression to persistent AF type. The aim
of the current study is to identify the major structural (left atrial
(LA) volume (LAV), LA surface area) and electrophysiological
factors [global LA voltage, extent of LA low voltage substrate
(LVS), and bi-atrial conduction time as identified by the 12-
lead-ECG-derived duration of the amplified digital P-wave
(APWD)] that are associated with atrial cardiomyopathy (ACM)
and development of persistent AF. Therefore, we assessed
62 parameters from LA high-density voltage maps and non-
invasive parameters including ECG recorded during sinus
rhythm (SR) in 270 patients with AF.

2. Materials and methods

2.1. Study population

Consecutive patients with confirmed diagnosis of
paroxysmal (<7 days AF duration) or persistent AF (>7 days
and < 12 months AF duration or sustained AF necessitating
electrical cardioversion to SR) referred to our heart center
between 2017 and 2022 for first pulmonary vein isolation (PVI)
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were prospectively recruited for the current study. All patients
underwent 12-lead ECG after admission. Exclusion criteria
were contra-indications for PVI: presence of LA thrombus,
advanced malignancy, overt clinical hyperthyroidism [elevated
triiodothyronine (T3), thyroxine (T4), and suppressed thyroid
stimulating hormone (TSH)], prior catheter ablation therapy
or prior cardiac surgery. As a result, 270 individuals were
allocated into the paroxysmal AF cohort (n = 134) or the
persistent AF cohort (n = 136). Additionally, the entire study
cohort was further randomized into training set and validation
set with a predefined ratio of 7:3 for model development and
evaluation. The study was approved by the institutional ethics
committee and all patients provided written informed consent
prior to enrolment.

2.2. Digital 12-lead ECG recording and
processing

The SR ECG of all participants prior to PVI was recorded
using the LabsystemPro EP-system (Boston Scientific) with the
following filter settings: 0.05–100 Hz at a sampling rate of 1,000
Hz. A 10 s interval of each ECG was exported for further
measurement using amplified scaling.

We previously reported a novel ECG analysis method using
amplified scaling to measure P-wave duration (PWD) (14,
15). In contrast to conventional standard scaling (scale at 10
mm/mV and weeping speed at 25 mm/s), we amplified the
voltage amplitude and sweeping speed to 60–120 mm/mV and
100–200 mm/s to obtain optimal signal-to-noise ratio for good
visualization of P-wave beginning and ending (Figure 1). The
duration of the amplified P-wave (APWD) (from the earliest
P-wave onset until latest P-wave ending in any of the 12
leads at high amplification scaling) was subsequently measured
using digital calipers by two independent cardiologists who
were blinded to patient characteristics. Advanced inter-atrial
block (aIAB) was defined as an initially positive P-wave with
negative terminal deflection in at least two of the three inferior
leads.

2.3. Electro-anatomical mapping

As illustrated in Figure 1, high-density intra-cardiac voltage
and activation mapping of the left atrium (LA) was performed
in all individuals during SR as described previously using the
CARTO-3 mapping system (Biosense Webster, Diamond Bar,
35 CA, USA) and a 20-pole Lasso-Nav catheter (electrode
size: 1 mm, spacing: 2–6–2 mm) (16). Additionally, the
mitral annulus was manually removed from each bipolar
map. Anatomical regions were defined on the patient-specific
geometry (Supplementary Figure 1). Peak-to-peak voltage
values from each mapped site within each LA region were
extracted from maps for further regional and global analysis.

2.4. Analysis of electro-anatomical and
electrocardiographic data

In order to identify the determinant parameters involved
in persistency of AF, a total of 62 parameters were extracted:
47 from the LA electro-anatomical maps and 15 non-invasive
baseline parameters including APWD from the digital 12-
lead-ECG (Figure 1). Extracted data were attributed to four
categories (also called “dimensions”) encompassing (1) LA
structural remodeling (“structural dimension”), (2) global
and regional voltage (“voltage dimension”), (3) LVS extent
(“LVS dimension”), and (4) non-invasive parameters (including
bi-atrial conduction time as identified by APWD in the
12-lead-ECG, baseline characteristics and echocardiographic
measurements).

2.4.1. Assessment of left atrial structural
remodeling (LA structural dimension)

As shown in Figure 1, the extent of LA structural
remodeling “structural dimension” was evaluated using left
atrial volume (LAV) and LA surface area that were obtained
from electro-anatomical mapping data. LAV index (LAVI) and
LA area index were calculated as the ratio of LAV and LA
area divided by the patient-specific body surface area (BSA).
In order to account for the role of the pulmonary veins
(PV) in structural remodeling, the volume and surface area of
the PVs were also derived from the electro-anatomical map.
Additionally, the aforementioned parameters were stratified
into three subgroups (1) LA with PVs, (2) LA without PVs and
(3) PVs, in order to provide comprehensive information of LA
structural dimension.

2.4.2. Assessment of left atrial low voltage
substrate (LVS dimension)

The extent of LVS was quantified by (1) measurement of
the absolute surface area (cm2) of low voltage areas in SR map
using bipolar thresholds of < 0.5 and < 1.0 mV, respectively.
(2) The percentage of LVS calculated as the ratio of LVS
area (cm2) divided by total LA surface area (after exclusion
of mitral valve surface areas). Consistent with the structural
dimension, subgroups were also provided for the LVS dimension
by inclusion or exclusion of PVs, as illustrated in Figure 1.

2.4.3. Assessment of left atrial voltage (LA
voltage dimension)

Based on the bipolar map during SR (Supplementary
Figure 1), the LA was divided into (1) anterior wall, (2) posterior
wall, (3) inferior wall, (4) lateral wall, (5) left atrial appendage
(LAA), and (6) PVs. Subsequently, voltages were recorded and
analyzed both globally for the entire LA and regionally for each
segment. Similar to the “structural dimension,” global voltage
was stratified by subgroups of “LA with PVs” and “LA without
PVs” Furthermore, both global and regional voltage values were
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FIGURE 1

Study Flowchart. The study comprised three major steps. Step 1 for parameter acquisition (A) was performed in all enrolled participants with
extraction of data from LA electro-anatomical mapping (LA structure, LVS extent, and LA voltage) and non-invasive parameters (ECG and clinical
baseline characteristics, echocardiography). Extracted data were categorized into four categories/dimensions [(A): structural dimension (green),
LVS dimension (brown), voltage dimension (blue) and non-invasive parameters (red)]. The measurement of APWD in comparison to standard
PWD from the same ECG at the same beat is illustrated in the red box in (A). In contrast to standard setting (scale at 10 mm/mV and sweeping
speed at 25 mm/s), the duration of P-wave in the current study (APWD) is measured at an amplified scale (60–120 mm/mV and 100 mm/s),
which enables an improved accuracy in quantifying bi-atrial conduction time. Step 2: model development (B) was performed in the training set
using LASSO and logistic regression for selecting the most relevant parameters for AF-persistency from each of the four different
categories/dimensions. The selected parameters were used to construct diagnostic models and to undergo model validation [Step 3 in (C)] in
both training and validation sets. LA, left atrial; LVS, low voltage substrate; ECG, electrocardiogram; APWD, duration of the amplified digital
P-wave; LASSO, least absolute shrinkage and selection operator.

calculated, respectively, as mean, median and maximum values
(Figure 1). We used the following definitions to define PV ostia
and antra, respectively: PV ostium was defined as the point of
maximal inflection between the PV wall and the LA wall (17,
18). Following a previous classification by Rodriguez-Manero
et al., PV antrum was defined as the 5 mm LA wall that is located
beyond the PV ostium (Supplementary Figure 1) (19).

2.4.4. Non-invasive dimension
Apart from the aforementioned three dimensions that

consisted of parameters derived from endocardial LA
electro-anatomical mapping, we pooled data from other
15 non-invasive parameters to establish a non-invasive
dimension, which included the bi-atrial conduction time was
determined from the digital 12-lead-ECG by measurement of
APWD as described in previous section “2.2. Digital 12-lead
ECG recording and processing.” The other 14 non-invasive
parameters from baseline demographic characteristics included
age, gender, body mass index (BMI), BSA, LA diameter
(LAD), left ventricular ejection fraction (LVEF), CHA2DS2-
VASc score, presence of aIAB, heart failure, hypertension,

diabetes, coronary artery disease (CAD), stroke and transient
ischemic attack (TIA).

2.5. HATCH score and C2HEST score

The detailed components and corresponding score of
the two scoring system were reported previously. Based on
the baseline characteristics of enrolled patients, the HATCH
score and C2HEST score of each individual were computed.
Moreover, as the original cut-off points were developed to
predict future events whereas the current study focused on
detection of AF persistency at current circumstances, the scores
were reported directly without further stratification into high or
low risk subgroups.

3. Statistical analysis

Continuous variables were expressed as mean ± SD or
median ± interquartile range based upon distribution status,
and comparisons between two cohorts was performed using
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t-test or Mann-Whitney U-test. Categorical variables were
expressed as frequency and percentage (%) and were compared
by Chi-square test or Fisher’s exact test.

3.1. Machine learning model
development

Given the aforementioned study design, we intended to
develop models that focused on the remodeling discrepancies
between paroxysmal and persistent AF cohorts from the
different dimensions using data of the training set. Considering
the underlying collinearity that existed in various parameters
from voltage mapping, establishing models with all available
parameters in each dimension carries high risk of over-
fitting. Therefore, we used the least absolute shrinkage and
selection operator (LASSO) regression approach to remove
irrelevant and redundant factors in different dimensions
(Figure 1). LASSO is a regularization method that reduces
collinearity by introducing a penalty coefficient (λ) into the
regression equation. As the coefficients of certain variables are
gradually compressed to zero, only the most relevant variables
for the outcome are retained, thus achieving the goal of
dimensionality reduction and minimizing the risk of overfitting.
Tuning hyperparameter (λ) selection in the LASSO model was
performed using “cv. glmnent” functions with 10-fold cross-
validation to compute the misclassification error. The function
runs glmnet nfolds + 1 times, the first to get the lambda
sequence, and then the remainder to compute the fit with
each of the folds omitted. The error is accumulated, and the
average error and standard deviation over the folds is computed
(20). Subsequently, predictors selected by LASSO regression
underwent multivariate logistic regression to further determine
the significant parameters (p< 0.05) that best identify persistent
AF patients in the respective dimension. After the development
of four single-dimension diagnostic models (structural model,
LVS extent model, voltage model and APWD model) for
identifying individuals with persistent AF, an integrated model
was also established using LASSO and logistic regression to
identify significant variables from all candidate parameters
combined (62 both invasive and non-invasive parameters).

3.2. Machine learning model validation

Evaluation of models was performed both in the training set
and the validation set regarding their efficacy in discrimination,
calibration, net benefit and diagnostic performance for
identifying individuals with persistent AF (Figure 1).

Discriminative power of each model for identifying
persistent AF patients was quantified by area under the curve
(AUC) of the respective receiver operating characteristics (ROC)
curve, ranging from 0.5 (random forecast) to 1.0 (perfect

discrimination). Net reclassification improvement (NRI) is
an index that quantifies how well a new model reclassifies
subjects—either appropriately or inappropriately—as compared
to an old model. Integrated discrimination improvement
(IDI) is a statistical parameter to estimate the incremental
discriminative power between models.

After the components of each model were determined,
the individual probability for persistent AF by each model
was estimated. A calibration plot of each model visualizes the
agreement between estimated probabilities for persistent AF
by diagnostic models and the actual probabilities observed
in each set. Moreover, Brier score (0 for total accuracy, 1
for wholly inaccurate) was computed to assess the calibration
performance of each model.

The net benefit of selected models across a range of
probability threshold was illustrated by decision curve analysis
(DCA). The “None” and “All” curve indicated the expected
net benefit when intervention was performed to “none” and
“all” of the patients. The model which positioned nearest to
the right upper corner carried highest net benefit across the
range of thresholds.

Diagnostic performance evaluation of each diagnostic
model consisted of sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV) and accuracy.
Based on the ROC curve of each model derived from the
training set, optimal diagnostic thresholds for persistent
AF identification was determined by Youden Index
(sensitivity + specificity −1). The diagnostic performance
of each model was subsequently evaluated in both training
and validation sets using determined thresholds from the
training set. Moreover, given the multivariable feature of
the integrated model, a nomogram was constructed from
the training set to further facilitate decision-making. The
diagnostic performance of HATCH score and C2HEST score
was evaluated from the minimal points (0) to maximum points
(“7” for HATCH score and “8” for C2HEST score) with every
one point of increment.

Statistical analysis was performed with SPSS version 27.0 for
Macintosh (IBM Corporation, Armonk, NY), and R software
version 4.0.31 using glmnet, rms, pROC, ggplot2, rmda, ggDCA,
caret, ggradar, and PredictABEL packages.

4. Results

4.1. Patient characteristics and
randomization

A total of 270 patients were prospectively enrolled in
our study. Consecutive patients presenting for their first PVI

1 http://www.r-project.org/
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procedure were included in a 1:1 ratio with regard to the
underlying AF type: In total, 134 (49.6%) patients presented
paroxysmal AF and 136 (50.4%) persistent AF. Table 1 lists
the characteristics of both cohorts. Heart failure showed a
significantly higher prevalence in the persistent AF cohort.
There were no differences in clinical baseline characteristics
between paroxysmal and persistent AF types with regard to age
(p = 0.143), sex (p = 0.987), BMI (p = 0.655), BSA (p = 0.159), or
arterial hypertension (p = 0.063). However, electrocardiographic
and echocardiographic parameters displayed significant
differences between paroxysmal and persistent AF cohorts
(APWD: 136.8 ± 13.9 ms vs. 160.4 ± 22.3 ms, p < 0.001;
aIAB: 15.7 vs. 42.6%, p < 0.001; LAD: 39.89 ± 4.71 mm
vs. 43.79 ± 5.62 mm, p < 0.001; LVEF: 60.05 ± 9.06% vs.
56.92 ± 11.79%, p = 0.016, respectively). Notably, significant
differences were also observed between the two AF types with
the electro-anatomical invasive parameters of LA remodeling
(Table 2). Moreover, both HATCH score and C2HEST
score were significantly higher in patients with persistent
AF than paroxysmal AF (HATCH score: 1.52 ± 1.33 vs.
1.12 ± 1.10, p = 0.01; C2HEST score: 1.68 ± 1.36 vs. 1.28 ± 1.21,
p = 0.016).

To identify the major structural and electrophysiological
factors involved in AF persistency, we used statistical models
to differentiate between both AF types. Therefore, 70% of the
entire study cohort was randomized into the training set to
develop statistical predictive models and internally validate their
discriminative efficacy between AF subtypes. The remaining
30% formed a validation set, as in Supplementary Table 1.

4.2. Model development in training set

4.2.1. Single-dimension models
Among all parameters acquired from LA high density

electro-anatomical mapping, only those which were measured
without inclusion of PVs were selected by LASSO regression
as most discriminative for respective category/dimension. More
precisely, after 10-fold cross validation of hyperparameter
tuning (λ value of minimum and 1-SE criteria at 0.0438 and
0.0765, respectively. Misclassification error of 0.191 ± 0.023 and
0.206 ± 0.036 for minimum and 1-SE criteria, respectively),
LASSO regression identified two parameters (LAV and LAVI)
from “structural dimension,” one parameter (LVS area at 1.0
mV bipolar threshold) from “LVS dimension,” one parameter
[global mean voltage (GMV)] from “voltage dimension.”
Among a total of 15 non-invasive parameters, only APWD
was selected, as shown in Table 3. After multivariate
logistic regression in each category/dimension, only LAV
(p = 0.031), LVS area at 1.0 mV bipolar threshold (LVS extent)
(p < 0.001), GMV (p < 0.001) and APWD (p < 0.001)
were finally identified as significant determinants of AF
persistency and were used for further development of diagnostic

TABLE 1 Baseline characteristics between paroxysmal AF and
persistent AF cohort.

Paroxysmal
AF

(n = 134)

Persistent
AF

(n = 136)

p-value

Female, n (%) 58 (43.3%) 59 (43.4%) 0.987

Age, years 62.7 ± 12.0 64.7 ± 10.2 0.143

BMI, kg/m2 27.93 ± 4.73 28.18 ± 4.64 0.655

BSA, cm2 1.97 ± 0.22 2.00 ± 0.21 0.159

LAD, mm 39.89 ± 4.71 43.79 ± 5.62 <0.001

LVEF,% 60.05 ± 9.06 56.92 ± 11.79 0.016

CHA2DS2-VASc score 2.17 ± 1.64 2.58 ± 1.50 0.033

APWD, ms 136.8 ± 13.9 160.4 ± 22.3 <0.001

aIAB, n (%) 21 (15.7%) 58 (42.6%) <0.001

Heart failure, n (%) 9 (6.7%) 40 (29.4%) <0.001

Hypertension, n (%) 77 (57.5%) 93 (68.4%) 0.063

Diabetes, n (%) 17 (12.7%) 15 (11.0%) 0.674

Stroke, n (%) 2 (2.2%) 5 (3.7%) 0.736

TIA, n (%) 7 (5.2%) 4 (2.9%) 0.343

CAD, n (%) 18 (13.4%) 12 (8.8%) 0.228

COPD, n (%) 0 1 (0.7%) 0.241

Edoxaban, n (%) 17 (12.7%) 15 (11.0%) 0.674

HATCH score 1.12 ± 1.10 1.52 ± 1.33 0.010

C2HEST score 1.28 ± 1.21 1.68 ± 1.36 0.016

Dabigatran, n (%) 13 (9.7%) 9 (6.6%) 0.354

Rivaproxaban, n (%) 49 (36.6%) 61 (44.9%) 0.166

Apixaban, n (%) 38 (28.4%) 35 (25.7%) 0.628

Other OAC, n (%) 11 (8.2%) 14 (10.3%) 0.555

Amiodarone, n (%) 16 (11.9%) 53 (39.0%) <0.001

Flecainid, n (%) 23 (17.2%) 18 (13.2%) 0.368

Beta blocker, n (%) 83 (61.9%) 89 (65.4%) 0.550

BMI, body mass index; BSA, body surface area; LAD, left atrial diameter; LVEF, left
ventricular ejection fraction; APWD, duration of the amplified digital P-wave; aIAB,
advanced inter-atrial block; TIA, transient ischemic attack; CAD, coronary artery disease;
COPD, Chronic Obstructive Pulmonary Disease; OAC, oral anticoagulant.

models. Figure 2 illustrates the four identified variables
(LAV, LVS extent, GMV, and APWD) which presented
significant differences between paroxysmal and persistent AF
cohorts both in training and validation sets. In addition,
as the results of cv.glmnet are random, since the folds
are selected at random. The randomness was reduced by
running cv.glmnet for another five times to confirm the
robustness in parameter selection, with the same parameters
were reported in four runs misclassification error at 1-SE
criteria: 0.201 ± 0.032, 0.191 ± 0.031, 0.212 ± 0.041, and
0.198 ± 0.032. Another run selected an extra parameter of
LVS percentage at 1.0 mV besides the same aforementioned
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TABLE 2 Electro-anatomical characteristics between paroxysmal AF cohort and persistent AF cohort.

1,835 ± 421 sites/map Paroxysmal AF (n = 134) Persistent AF (n = 136) p-value

LVS extent dimension (bipolar threshold of 1.0 and 0.5 mV)

LVS area with PV (0.5 mV), (cm2) 32.25 ± 18.90 43.27 ± 26.71 <0.001

LVS area without PV (0.5 mV), (cm2) 0.04 ± 0.46 1.43 ± 7.52 <0.001

LVS area with PV (1 mV), (cm2) 50.75 ± 23.50 69.42 ± 47.69 <0.001

LVS area without PV (1 mV), (cm2) 2.00 ± 6.58 11.69 ± 24.38 <0.001

LVS percentage without PV (0.5 mV), (%) 0.061 ± 0.88 1.72 ± 12.31 <0.001

LVS percentage with PV (0.5 mV), (%) 21.15 ± 12.48 25.89 ± 20.11 <0.001

LVS percentage without PV (1 mV), (%) 3.64 ± 11.03 16.93 ± 40.11 <0.001

LVS percentage with PV (1 mV), (%) 33.58 ± 15.39 43.57 ± 33.50 <0.001

Structural dimension

LA volume with PV, (mL) 129.32 ± 24.22 157.64 ± 35.47 <0.001

LA volume without PV, (mL) 83.71 ± 18.26 105.33 ± 26.61 <0.001

LA volume index with PV, (mL/m2) 66.17 ± 12.25 79.10 ± 17.39 <0.001

LA volume Index without PV, (mL/m2) 42.85 ± 9.21 52.96 ± 13.61 <0.001

PV volume, (mL) 45.60 ± 9.22 52.31 ± 14.72 <0.001

PV volume index, (mL/m2) 23.32 ± 4.65 26.14 ± 6.73 <0.001

LA area with PV, (cm2) 150.40 ± 20.69 158.94 ± 30.70 0.008

LA area without PV, (cm2) 63.65 ± 10.23 71.44 ± 13.82 <0.001

LA area index with PV, (cm2/m2) 76.87 ± 9.71 79.36 ± 12.56 0.069

LA area index without PV, (cm2/m2) 32.57 ± 5.14 35.85 ± 6.75 <0.001

PV area, (cm2) 86.75 ± 15.57 87.49 ± 22.84 0.755

PV area index, (cm2/m2) 44.31 ± 7.30 43.52 ± 9.57 0.448

Voltage dimension, (mV)

Bipolar LA global median voltage without PV 2.43 ± 0.81 1.82 ± 0.77 <0.001

Bipolar LA global mean voltage without PV 2.18 ± 0.75 1.53 ± 0.68 <0.001

Bipolar LA global mean voltage with PV 1.66 ± 0.55 1.29 ± 0.55 <0.001

Bipolar LA global median voltage with PV 1.39 ± 0.52 1.04 ± 0.52 <0.001

Bipolar LA maximum voltage without LAA 11.36 ± 3.50 9.62 ± 3.59 <0.001

Bipolar LA maximum voltage with LAA 9.08 ± 4.42 7.05 ± 3.55 <0.001

Bipolar LA anterior mean voltage 2.12 ± 0.99 1.44 ± 0.91 <0.001

Bipolar LA posterior mean voltage 2.57 ± 1.17 1.74 ± 0.80 <0.001

Bipolar LA inferior mean voltage 2.03 ± 0.78 1.57 ± 0.70 <0.001

Bipolar LA lateral mean voltage 2.53 ± 0.89 1.98 ± 0.92 <0.001

Bipolar LAA mean voltage 3.51 ± 1.42 2.72 ± 1.40 <0.001

Bipolar left PV mean voltage 0.84 ± 0.46 0.70 ± 0.50 0.019

Bipolar right PV mean voltage 1.09 ± 0.47 0.84 ± 0.45 <0.001

Bipolar LA anterior median voltage 1.96 ± 0.95 1.30 ± 0.87 <0.001

Bipolar LA posterior median voltage 2.37 ± 1.13 1.59 ± 0.97 <0.001

Bipolar LA inferior median voltage 1.83 ± 0.72 1.42 ± 0.67 <0.001

Bipolar LA lateral median voltage 2.38 ± 0.91 1.83 ± 0.93 <0.001

Bipolar LAA median voltage 3.41 ± 1.43 2.63 ± 1.40 <0.001

(Continued)
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TABLE 2 (Continued)

1,835 ± 421 sites/map Paroxysmal AF (n = 134) Persistent AF (n = 136) p-value

Bipolar left PV median voltage 0.54 ± 0.44 0.47 ± 0.45 0.237

Bipolar right PV median voltage 0.79 ± 0.46 0.62 ± 0.42 0.001

Bipolar LA anterior maximum voltage 7.36 ± 3.27 5.65 ± 3.15 <0.001

Bipolar LA posterior maximum voltage 9.11 ± 3.66 6.80 ± 3.30 <0.001

Bipolar LA inferior maximum voltage 8.53 ± 3.40 6.98 ± 2.99 <0.001

Bipolar LA maximum voltage 8.34 ± 2.91 7.01 ± 3.09 <0.001

Bipolar LAA maximum voltage 8.82 ± 3.75 7.05 ± 3.55 <0.001

Bipolar left PV maximum voltage 8.31 ± 5.00 6.86 ± 3.52 0.006

Bipolar right PV maximum voltage 8.74 ± 7.25 6.34 ± 3.21 <0.001

LVS, low voltage substrate; PV, pulmonary vein; LA, left atrial; LAA, left atrial appendage.

TABLE 3 Results from LASSO and logistic regression.

LASSO regression Logistic regression

Coefficient p-value OR 95% CI

Structure dimension

LAV 0.026 0.031 1.037 1.003 1.072

LAVI 0.021 0.119 1.056 0.986 1.132

LVS extent dimension

LVS area at bipolar threshold 1.0 mV 0.020 <0.001 1.099 1.061 1.139

Voltage dimension

GMV −0.353 <0.001 0.249 0.151 0.41

Non-invasive dimension

APWD 0.022 <0.001 1.101 1.07 1.133

Integrated dimension

APWD 0.038 <0.001 1.069 1.036 1.103

LAV 0.018 <0.001 1.041 1.02 1.063

LVS area at bipolar threshold 1.0 mV 0.006 0.335 1.029 0.971 1.091

GMV −0.164 0.431 0.689 0.273 1.740

LAV, left atrial volume; LAVI, left atrial volume index; LVS, low voltage substrate; GMV, global mean voltage; APWD, duration of the amplified digital P-wave.

parameters, which failed to pass the subsequent logistic
regression.

4.2.2. Integrated model
The integrated model was developed by initially

entering all 62 parameters from both electro-anatomical
mapping and non-invasive APWD dimensions, which
identified four parameters including APWD, LAV (without
inclusion of PVs), LVS extent (absolute LVS area at
bipolar threshold of 1.0 mV) and GMV (Figure 3).
Subsequently, only APWD and LAV remained significant
(p < 0.001) in multivariate logistic regression and
were used to develop the bi-variate integrated model
(APWD + LAV) for identification of persistent AF patients
(Table 3).

4.3. Model evaluation in training set
and validation set

4.3.1. Discrimination between paroxysmal and
persistent AF
4.3.1.1. Comparison among diagnostic models from
electro-anatomical parameters

As illustrated in Figure 4, among the four single-dimension
diagnostic models, APWD achieved the highest discriminative
power both in training set (AUC: 0.851) and validation set
(AUC: 0.801) for differentiating patients with paroxysmal from
persistent AF type. Although LAV, LVS extent, and GMV
presented rather good discriminative power in the training set
(AUC: 0.788, 0.783, and 0.751, respectively), their discriminative
power in validation set was attenuated (AUC: 0.741, 0.682, and
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FIGURE 2

Difference in selected parameters from each dimension between paroxysmal (blue) and persistent (red) AF cohorts in both training and
validation sets. (A) Illustrates the difference in LAV, (B) illustrates the difference in LVS extent at < 1.0 mV threshold during sinus rhythm,
(C) illustrates the difference in GMV, (D) illustrates the difference in APWD. LAV, left atrial volume; LVS, low voltage substrate; GMV, global mean
voltage; APWD, duration of the amplified digital P-wave.

0.707, respectively). In contrast to GMV and LVS extent, LAV
displayed a rather stable and superior discriminative power
for AF subtype. The integrated model (incorporating APWD
and LAV), achieved the highest discriminative performance
in both sets among all diagnostic models (AUC: 0.876 and
0.830, respectively). Notably, in comparison to APWD alone, the
addition of LAV did not significantly improve the discriminative
power of integrated model (APWD + LAV) regarding AUC
in training set (difference in AUC: 0.025, 95%CI: −0.003–
0.054, p = 0.079) and validation set (difference in AUC: 0.029,
95%CI: −0.015–0.073, p = 0.193). However, incorporation of
LAV to APWD conferred an increased accuracy in reclassifying
individuals to proper AF subtypes than APWD alone in the
training set (NRI: 0.642, 95%CI: 0.372–0.912, p < 0.001; IDI:
0.074, 95%CI: 0.035–0.113, p < 0.001) and validation set (NRI:
0.300, 95%CI: −0.129–0.729, p = 0.17; IDI: 0.047, 95%CI: 0.001–
0.094, p = 0.044) (Supplementary Table 2). In order to provide
further information on the robustness of results, we performed
analysis with another four random splits of the original dataset
by reporting the AUC of each model in each split. The selected
parameters remained the same in four re-splits with minor
variation in AUC (Supplementary Table 3).

4.3.1.2. Discriminative performance of HATCH score
and C2HEST score for AF persistency

As in Figure 4. Both HATCH score and C2HEST score,
despite incorporation of multiple parameters, achieved poor
discriminative performance for AF persistency in both training
set (AUC: 0.585 for HATCH score, 0.578 for C2HEST score)
and validation set (AUC: 0.544 for HATCH score, 0.567 for
C2HEST score). Delong’s test showed significant difference
in AUC between: APWD vs. HATCH score (p < 0.001 in
both training and validation sets); APWD vs. C2HEST score
(p < 0.001 in both training and validation sets).

4.3.2. Calibration performance between
predicted and observed probabilities for
persistent AF
4.3.2.1. Comparison among diagnostic models from
electro-anatomical parameters

The estimated individual probabilities for persistent AF by
each model are demonstrated in Figure 5. When compared
with the actual AF subtype of each individual (inner layer),
the four single-dimension diagnostic models (LAV, LVS extent,
GMV, and APWD) displayed varying extent of accuracy
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FIGURE 3

LASSO regression was used to select the relevant factors for AF persistency. (A) LASSO coefficient curves for the 62 clinical variables; (B) tuning
parameter (λ) selection in the LASSO model used 10-fold cross-validation via minimum criteria. The partial likelihood deviance (binomial
deviance) curve was plotted vs. log (λ). Dotted vertical lines were drawn at the optimal values by using the minimum criteria (λ value of 0.0438)
and the one SE of the minimum criteria (the 1-SE criteria, λ value of 0.0765). The optimal value of λ (the vertical dashed line) for 10-fold
cross-validation was used to select optimal variables. LASSO, least absolute shrinkage and selection operator.

FIGURE 4

ROC curves of models for identification of AF persistency in training (left) and validation set (right). Results of LAV (green), LVS extent (brown),
GMV (blue) and APWD (red) represent the discriminative performance in single-dimension. The integrated (bi-dimensional) model
(APWD + LAV) is illustrated in yellow curve. The HATCH score and C2HEST score were presented in purple and pink curves, respectively. ROC,
receiver operating characteristics; AUC, area under the curve; LAV, left atrial volume; LVS, low voltage substrate; GMV, global mean voltage;
APWD, duration of the amplified digital P-wave.

among which APWD and LAV independently demonstrated
the most consistent agreement to actual AF subtypes, both
in training and validation sets. In addition, when combined

(APWD + LAV), the integrated model (the sixth layer) further
improved the diagnostic accuracy. Calibration plots of each
model, in combination with Brier score, were used to illustrate
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FIGURE 5

Comparison between the estimated probability for persistent AF by each model (seven outer layers) and the actual AF types (inner layer, ground
truth) in training (left) and validation (right) sets. The figure consists of eight layers, the inner layer represents the ground truth AF types
[paroxysmal (blue) or persistent AF (red)] of each individual (small rectangle), and the total number of rectangles in blue and red in the inner layer
represents the number of patients in paroxysmal and persistent AF cohort, respectively. As illustrated by the orange arrows and labels at each
layer (LAV, LVS extent, GMV, APWD, APWD + LAV, HATCH score, and C2HEST score) in an outward direction, the estimated probability for
persistent AF of each individual (small rectangle) by each model was demonstrated in different grades of blue and red, indicating the probability
for persistent AF ranging from “0” to “1.0.” The fifth (APWD) and sixth (APWD + LAV) layers which share a higher level of resemblance in color
distribution to the inner layer, indicating a better calibration performance. LAV, left atrial volume; LVS, low voltage substrate; GMV, global mean
voltage; APWD, duration of the amplified digital P-wave.

the agreement between estimated and actual AF subtypes. As
illustrated in Supplementary Figure 2, among single-dimension
models in the training set, LAV and APWD displayed a good
agreement between estimated and actual AF subtypes with Brier
score of 0.188 and 0.157, respectively. LVS extent and GMV,
however, displayed less satisfying agreement from calibration
plots with Brier score of 0.193 and 0.202, respectively. In the
validation set, on the other hand, only APWD maintained a
good consistency between estimated and actual AF subtype
(Brier score 0.180), whereas other single-dimension models
from electro-anatomical mapping data displayed different
extents of discrepancy (Brier score 0.203, 0.224, and 0.216 for
LAV, LVS extent, and GMV, respectively).

4.3.2.2. Calibration performance of HATCH score and
C2HEST score for AF persistency

In contrast to aforementioned diagnostic models, HATCH
score and C2HEST score demonstrated significant inconsistency
with the actual AF types of patients in both training and
validation sets, as in Figure 5. In addition, comparison among
APWD, APWD + LAV, HATCH score and C2HEST score
was displayed in Figure 6. In contrast to the good agreement
observed in APWD and APWD + LAV (Brier score of 0.138 and
0.168 in training and validation sets), significant discrepancy

was observed for HATCH score (Brier score of 0.243 and 0.245)
and C2HEST score (Brier score of 0.245 and 0.242).

4.3.3. Decision curve analysis (DCA) for net
benefit assessment

The DCA curves of each model in both training and
validation sets (Figure 7) demonstrated that APWD alone was
associated with significantly higher levels of net benefit in
contrast to other single-dimension models across a range of
underlying thresholds. Moreover, when combined with LAV,
the associated increment in net benefit was more profound
in training set than in validation set, indicating that APWD
alone could facilitate identification of individuals with persistent
AF. HATCH score and C2HEST score, on the other hand,
demonstrated only marginal net benefit with the reference lines
of “All” and “None.”

4.3.4. Diagnostic thresholds of identified
predictors for AF persistency
4.3.4.1. Diagnostic performance of diagnostic models
from electro-anatomical parameters

As displayed in Figures 8A–D, the optimal threshold of
each model was determined using Youden index based on the
ROC curve of the training set (APWD threshold: 151.5 ms; LAV
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FIGURE 6

Calibration plots of integrated model (APWD + LAV), APWD, HATCH score and C2HEST score in training (upper) and validation (lower) sets. The
diagonal gray line indicates perfect prediction of the ideal model. The dashed line represents the performance of the model, the dark solid line
represents the calibrated model performance and being closer to the diagonal gray line indicated that the model has better prediction ability. In
the left upper corner, different parameters are listed to provide more information of models including Dxy, ROC (equals to 1/2Dxy + 0.5), R2 and
Brier Score. LAV, left atrial volume; APWD, duration of the amplified digital P-wave.

FIGURE 7

Decision curve analysis (DCA) of each model in training (left) and validation (right) sets. The vertical (Y) axis measured the net benefit, the
horizontal (X) axis represents the range of potential risk threshold for persistent AF from diagnostic models. The “All” dashed dark line
represented the assumption that all patient has persistent AF. The “None” dark dashed line represented the assumption that no patient has
persistent AF. The clinical usefulness of each model across the range of risk thresholds is illustrated in different colors: green for LAV, brown for
LVS extent, blue for GMV, red for APWD, yellow for APWD + LAV. The HATCH score and C2HEST score were presented in purple and pink
curves, respectively. The model which positions closer to the right upper corner indicates better clinical usefulness. LAV, left atrial volume; LVS,
low voltage substrate; GMV, global mean voltage; APWD, duration of the amplified digital P-wave.
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FIGURE 8

Diagnostic performance of models using respective optimal thresholds in training (A,C,E) and validation (B,D,F) sets. In the left panel (A,B), a
pentagon is generated for training and validation sets, respectively, to illustrate the diagnostic performance of each model using respective
thresholds as listed on the legend at bottom. Every pentagon contains three reference levels (dashed circles), representing 50, 75, and 100%,
respectively. The middle panel (C,D) illustrates the percentage of individuals above (orange) or below (emerald) respective AF-persistency
thresholds of each model in paroxysmal and persistent cohorts. For LAV, LVS extent, and APWD, individuals above respective thresholds are
diagnosed as positive for persistent AF, whereas for GMV, those below the threshold are diagnosed as positive for persistent AF. In the right
panel (E,F), the diagnostic performance of HATCH score and C2HEST score is illustrated as stacked barplots, the percentage of different scores
is displayed as bars from blue (lowest risk) to purple (highest risk) with 1-score increment, as the legends at the bottom. LAV, left atrial volume;
LVS, low voltage substrate; GMV, global mean voltage; APWD, duration of the amplified digital P-wave; NPV, negative predictive value; PPV,
positive predictive value.

(94.3 mL); LVS extent at 1.0 mV: 4.55 cm2; GMV: 1.66 mV), as
shown in Table 4. In the training set, among single-dimension
models, APWD with a threshold of 151.5 ms displayed an
accuracy of 79.4%, with sensitivity of 70.3%, specificity of 87.8%,
PPV of 84.2% and NPV of 76.1%. Other models, on the other
hand, demonstrated less satisfying diagnostic performance using
respective thresholds. In the validation set, when applying the
thresholds determined from training set, all models displayed
weakened diagnostic power. Nevertheless, APWD maintained
the best performance (accuracy of 72.8% with sensitivity of
71.1%, specificity of 75.0%, PPV of 78% and NPV of 72.8%)
among all single-dimension diagnostic models.

Additionally, based on the robust performance of the
integrated model (APWD + LAV), we proposed a nomogram
to facilitate a more accurate estimation of the individual risk for
persistent AF. Using the coordinates of the ROC curve of the
integrated model in the training set, an estimated risk of 0.53
was determined in the nomogram to classify the risk range into
low risk (below 0.53) and high risk (above 0.53), as illustrated in
Figure 9.

4.3.4.2. Diagnostic performance of HATCH score and
C2HEST score

As shown in Figures 8E, F, the diagnostic performance
of HATCH score and C2HEST score was evaluated from
minimum point (lowest risk) to maximum points (highest
risk). As a result, both HATCH score and C2HEST score
failed to demonstrate a clear difference between patients with
paroxysmal and persistent AF.

5. Discussion

The current study identified four major electrophysiological
and structural factors that are involved in LA remodeling
associated with paroxysmal or persistent AF type. Analysis
of 62 LA structure- and electrophysiology-related parameters
revealed a determinant role of only four factors that are
associated with AF persistency: (1) duration of bi-atrial
conduction time (as identified by APWD analysis in the digital
12-lead-ECG), (2) LA volume, (3) extent of LA LVS and (4)
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TABLE 4 Diagnostic thresholds of identified predictors for AF persistency.

Parameter (threshold) sensitivity specificity PPV NPV Accuracy

Training set

APWD (151.5 ms) 70.3% 87.8% 84.2% 76.1% 79.4%

LAV (94.3 mL) 65.9% 77.6% 73.2% 71.0% 72.0%

LVS extent (4.55 cm2) 74.7% 70.4% 70.1% 75.0% 72.5%

GMV (1.66 mV) 62.5% 76.5% 71.3% 68.8% 69.8%

Validation set

APWD (151.5 ms) 71.1% 75.0% 78.0% 67.5% 72.8%

LAV (94.3 mL) 68.9% 63.9% 70.5% 62.2% 66.7%

LVS extent (4.55 cm2) 62.2% 58.3% 65.1% 55.3% 60.5%

GMV (1.66 mV) 64.4% 63.6% 78.4% 77.8% 70.4%

PPV, positive predictive value; NPV, negative predictive value; APWD, duration of the amplified digital P-wave; LAV, left atrial volume; LVS, low voltage substrate; GMV,
global mean voltage.

LA GMV. The study identifies for the first time the “critical
thresholds” for prolonged bi-atrial conduction time, increased
LA volume, LA low voltage extent, LA mean voltage that are
associated with persistent AF type. Among these four factors,
the best predictors of AF persistency are (1) APWD > 151 ms
(AUC: 0.85) followed by (2) LA volume > 94 mL (AUC: 0.79).
The combination of APWD and LAV achieved the highest AUC
(0.88) for identifying patients with persistent AF type.

In summary, the study identifies thresholds for the
main electrical (APWD) and structural (LAV) factors of LA
remodeling, that are associated with progression of paroxysmal
to persistent AF type.

5.1. Atrial fibrillation progression

“Atrial fibrillation begets AF” was a concept brought up
by Wijffels et al. to describe the self-sustaining nature of
AF due to reduction of atrial refractory period and delayed
conduction (21). Progression from paroxysmal to persistent
AF led to a consequence of increased difficulty to restore and
maintain SR and higher risk for heart failure, thromboembolism
and mortality (7, 10, 22). In an effort to facilitate decision-
making for early intervention and further reduce the morbidity
and mortality burdened by AF progression, several studies
were carried out to unravel the relevant predictors and
underlying mechanisms. Results from 10-year follow-up of
CRAF (Canadian Registry of AF) reported that increasing age
and structural predictors including mitral regurgitation and
LA dilation were significant predictors for progression from
paroxysmal to persistent AF (8). Pertinent studies by Blum
et al. identified higher age and hypertension were positively
associated with AF-progression rate (7, 23). The HATCH score
was developed by de Vos et al. to estimate the probability for AF-
progression using similar components as in the CHA2DS2-Vasc

Score (10). However, although the HATCH score outperformed
other single predictors in its components, the AUC was only
0.675 and the score was more oriented at age and underlying
heart disease whereas little information was provided regarding
the actual atrial remodeling status like atrial enlargement and
atrial conduction impairment (10). Another study with 12-year
follow-up using the HATCH score reported C statistics of 0.6 to
predict AF-progression (24). Nevertheless, electrophysiological
parameters of LA remodeling with regard to AF progression
have not yet been systematically studied.

5.2. Feature-based diagnostic models
incorporating intra-cardiac mapping
and 12-lead-ECG data enable
identification of multi-factorial
determinants of AF-progression

5.2.1. Left atrial volume as marker of atrial
structural macro-remodeling

Left atrial enlargement, as a predominant macroscopic
manifestation for structural remodeling, was a significant
predictor for progression from paroxysmal to persistent AF.
Akutsu et al. reported that LA diameter (LAD) > 40 mm was
associated with a 3.82-fold increase of risk for AF-progression
(25). Similar findings (Odds Ratio: 2.29 for LAD > 40 mm)
were also reported by Koide et al. in a larger cohort (26).
However, there are certain restrictions to those findings: First,
in contrast to LA volume or LA strain which represent the
global LA size and function, LAD evaluates LA size in a single
spatial dimension and is therefore not an ideal parameter for
assessment of macroscopic structural LA remodeling. Second, as
PVs have been identified as pivotal arrhythmogenic trigger sites
in AF, their impact might have been underestimated in previous
studies, which excluded PVs from the analysis of LA structural
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FIGURE 9

Nomogram for identification of individuals with persistent AF. The nomogram was developed using integrated model (APWD + LAV) in the
training set. The total score of the nomogram for individual is the sum of the corresponding score assigned to each risk factor, and the total
score corresponds to the individual risk for persistent AF. The optimal cut-off value for the estimated risk for persistent AF in the nomogram is
0.53 (highlighted by the red box), individuals who are estimated with risk higher than 0.53 are diagnosed as high probability for AF persistency
and those below 0.53 as high probability for paroxysmal Af type. LAV, left atrial volume; duration of the amplified digital P-wave.

remodeling and focused on the LA body. Instead, a region-
specific analysis, including the volume or surface area of the PVs
might reveal additional insight (27). In the current study, we
extracted data from high-definition electro-anatomical mapping
during SR: A total of 62 parameters were extracted from
the electro-anatomical maps and the 12-lead-ECG (Table 2).
Sequential statistical testing revealed that absolute LA volume
(LAV) was the best discriminator (among 11 other markers
of LA size that were derived from the endocardial maps,
as in Table 2) between paroxysmal and persistent AF type.
Notably, the indexed LAV “LAVI” was less accurate than for
discrimination between AF types. A potential explanation for
that may be the following: irrespective of the individual patient’s
BMI or BSA, an increase in the absolute LA volume may better
represent the increase in atrial mass and a higher probability
for harboring and maintaining reentry circuits during AF as an
arrhythmogenic factor.

5.2.2. Left atrial voltage reduction as a marker
of cardiomyocyte death and fibrotic
remodeling in atrial cardiomyopathy

Progression of paroxysmal to persistent AF has also
been reported to involve increasing degrees of atrial fibrotic
remodeling (13), constituting a key element of ACM (28).
A number of clinical mapping studies in patients with AF
have shown presence of LA low voltage areas (29–31) and
prolonged fractionated potentials (PFP) or atrial late potentials
(ALP) within/adjacent to LVS, representing areas of fibrotic
remodeling with slow conduction (32, 33). Notably, persistent
AF patients with LA LVS present a more advanced stage of ACM

and have significantly higher (50%) arrhythmia recurrence
rates at 12 months after PVI than patients without LVS
(30% arrhythmia recurrence) (29, 30). Several studies have
independently reported a specific distribution patterns of LA
LVS during SR with antero-septal LA being most frequently
impacted, followed by extension of LVS in later disease stages
to the LA roof and LA posterior wall (14, 34). Because
of this inhomogeneous development of LVS, we conducted
different methods to assess the extent of global LA LVS:
The extent of LVS was quantified (1) at < 0.5 mV and
(2) < 1.0 mV threshold during SR. Moreover, the GMV as
well as the regional mean bipolar voltages were assessed to
identify the most important voltage-related marker that is
associated with AF persistency: The two best indicators were
found to be (1) extent of LVS at 1.0 mV threshold in SR
and (2) LA GMV. However, their diagnostic performance
for identification of persistent AF type remained significantly
inferior to APWD or LAV.

5.2.3. Duration of the amplified digital P-wave
(APWD) as a non-invasive marker of bi-atrial
conduction time discriminates paroxysmal
from persistent AF with high accuracy

P-wave indices (PWI), due to their non-invasive nature
and cost-effectiveness, have been favored in clinical practice
as a screening tool. Akutsu et al. reported that the maximum
PWD from standard 12-lead ECG was an independent predictor
(HR: 5.49, p < 0.001) for progression to persistent AF
after 12.9-year follow-up, whereas p-wave dispersion (Pd)
was not significant in multivariate analysis (25). In contrast,
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Koide et al observed that Pd was the only significant AF-
progression predictor among P-terminal force and PWD (26).
Nevertheless, previous studies using PWI were predominantly
based on results from the standard 12-lead ECG, and the
accuracy of measurement was susceptible to ECG quality and
algorithm efficacy. We recently introduced a novel method
for measurement of PWD, which provides high correlation
to the invasively measured bi-atrial conduction time during
SR: The “duration of the amplified digital P-wave in the 12-
lead-ECG during SR” was shown to correlate well with both
the invasively measured bi-atrial conduction time and the
extent of LA LVS (15). We therefore used the previously
validated APWD in the current study to assess its diagnostic
value for differentiating between the AF types. Although
APWD represents a non-invasive parameter, it achieved the
highest AUC (0.859 and 0.843 in training and validation
sets, respectively) among all other single-dimension models.
The electrophysiological feature of PWD actually represents
different aspects of atrial remodeling, which are incorporated
in the “time domain” of p-wave: both structural remodeling
processes (atrial dilation and fibrotic remodeling with increased
LVS formation and decrease of mean atrial voltage as
demonstrated in the current study) implicate a prolongation
of bi-atrial conduction time. Therefore, the “single” non-
invasive parameter APWD reflects both the prolongation
of atrial conduction time due to (1) LA dilation and (2)
slow conduction because of increasing fibrotic remodeling.
Therefore, it is explainable why APWD is the best diagnostic
parameter for detection of atrial remodeling, ACM progression
and as a result is well suited to detect differences in atrial
remodeling that are associated with transition from paroxysmal
to persistent AF.

Albeit the current model based on APWD is not able
to provide specific information about which remodeling
mechanism is dominant (LA dilation or LA fibrosis/slow
conduction), it allows detection of advanced ACM and atria
remodeling that play key role as underlying substrate for
transition from paroxysmal to persistent AF.

5.2.4. HATCH score and C2HEST score: What
are the limitations?

HATCH score and C2HEST score consist of clinical
parameters and were originally developed to predict future
events of AF progression and incident AF, respectively (10,
11). Although, several studies have reported their varying
accuracy for different clinical endpoints, little is known about
their performance for identifying the remodeling discrepancies
between paroxysmal and persistent AF (35–37). In current
study, both scoring systems achieved poor performance
regarding discrimination (AUC < 0.60), calibration and net
benefit. However, they excelled in FHS (38), CHARGE-AF
score (39) and ARIC score (40) in practicability by using
less and convenient parameters, the components do not

reflect the pathological manifestation of atrial remodeling
(e.g., atrial dilation and voltage reduction. . .). As the presence
of hypertension, heart failure, COPD and older age were
frequently reported as common risk factors in various cardio-
cerebral-vascular diseases, their accuracy in identifying atrial
remodeling evolution were therefore unsurprisingly inadequate,
despite the statistical adjustments made to assign a weighted
score. Moreover, the development of HATCH score and
C2HEST score share analogous limitations as they were
derived from databases of the large survey (The Euro Heart
Survey on AF) and the insurance system (Chinese Yunnan
Insurance Database), the individual comorbidities therefore
remained as the major data source for model development.
In contrast, as the current study provided 62 parameters (47
from high density electro-anatomical mapping and 15 non-
invasive parameters), a more comprehensive evaluation of
remodeling discrepancies between paroxysmal and persistent
AF was enabled. As a result, APWD alone or in combination
with LAV (the integrated model), a robust performance
was achieved with even better practicability than scoring
systems. Another explanation would be that the enrolled
patients in our study had significant low prevalence of
Chronic Obstructive Pulmonary Disease (COPD) and absence
of hyperthyroidism (which is a contra-indication to invasive
LA mapping for PVI), which also may have contributed to
the limited efficacy of HATCH score and C2HEST score
in current study.

6. Conclusion

The current study identified four major electrophysiological
and structural factors (among 62 analyzed factors) that are
involved in LA remodeling and advanced ACM, determining
the clinical AF type “paroxysmal” or “persistent”: (1) duration
of bi-atrial conduction time (as identified by APWD analysis
in digital 12-lead-ECG), (2) LA volume, (3) extent of LA
LVS and (4) LA GMV. In addition, we identified for the
first time the “critical thresholds” for prolonged bi-atrial
conduction time (as determined by APWD in 12-lead-ECG),
increased LA volume, LA low voltage extent, LA mean voltage
that are associated with persistent AF type. Among these
four factors, the best predictors of AF persistency are (1)
APWD > 151 ms (AUC: 0.85), followed by (2) LA volume > 94
mL (AUC: 0.79). The combination of APWD and LAV
achieved the highest AUC (0.88) for identifying patients with
persistent AF type.
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