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Background: The long-term prognosis of the cardio-metabolic and renal complications,

in addition to mortality in patients with newly diagnosed pulmonary hypertension, are

unclear. This study aims to develop a scalable predictivemodel in the form of an electronic

frailty index (eFI) to predict different adverse outcomes.

Methods: This was a population-based cohort study of patients diagnosed with

pulmonary hypertension between January 1st, 2000 and December 31st, 2017, in

Hong Kong public hospitals. The primary outcomes were mortality, cardiovascular

complications, renal diseases, and diabetes mellitus. The univariable and multivariable

Cox regression analyses were applied to identify the significant risk factors, which were

fed into the non-parametric random survival forest (RSF) model to develop an eFI.

Results: A total of 2,560 patients with a mean age of 63.4 years old (interquartile

range: 38.0–79.0) were included. Over a follow-up, 1,347 died and 1,878, 437,

and 684 patients developed cardiovascular complications, diabetes mellitus, and

renal disease, respectively. The RSF-model-identified age, average readmission, anti-

hypertensive drugs, cumulative length of stay, and total bilirubin were among the

most important risk factors for predicting mortality. Pair-wise interactions of factors

including diagnosis age, average readmission interval, and cumulative hospital stay

were also crucial for the mortality prediction. Patients who developed all-cause

mortality had higher values of the eFI compared to those who survived (P <

0.0001). An eFI ≥ 9.5 was associated with increased risks of mortality [hazard ratio

(HR): 1.90; 95% confidence interval [CI]: 1.70–2.12; P < 0.0001]. The cumulative

hazards were higher among patients who were 65 years old or above with eFI

≥ 9.5. Using the same cut-off point, the eFI predicted a long-term mortality over
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10 years (HR: 1.71; 95% CI: 1.53–1.90; P < 0.0001). Compared to the multivariable

Cox regression, the precision, recall, area under the curve (AUC), and C-index were

significantly higher for RSF in the prediction of outcomes.

Conclusion: The RSF models identified the novel risk factors and interactions for the

development of complications and mortality. The eFI constructed by RSF accurately

predicts the complications and mortality of patients with pulmonary hypertension,

especially among the elderly.

Keywords: pulmonary hypertension, electronic frailty index, random survival forest (RSF), diabetes mellitus,

cardiovascular disease, renal complications

INTRODUCTION

Pulmonary hypertension (PHTN) was defined in the First World
Symposium on Pulmonary Hypertension as having a mean
pulmonary arterial pressure >25 mmHg at resting by right
heart catheterization (1, 2). PHTN was traditionally classified
as either primary or secondary PHTN (3). The epidemiology
and prognosis of the PHTN vary with different causes, but
generally, PHTN can progress to a severe stage and ultimately
cause death if left untreated (4). Therefore, it is essential to
evaluate the prognosis of patients with PHTN as early as possible.
Nevertheless, the prognostic risk factors to predict the risks of
complication development and mortality are unclear.

Currently, the PHTN mortality is predicted using the
dynamic risk stratification strategy suggested in the European
Society of Cardiology/European Respiratory Society pulmonary
hypertension guidelines. The strategy utilizes the clinical
features and laboratory results to predict the mortalities
and stratify the risk of death according to the one-year
mortality expectations (5, 6). However, the model requires
extensive clinical investigations, such as echocardiography and
cardiopulmonary exercise testing (7). Calculating the risks of
death by simply using the demographics and the laboratory
testing results allows the determination of the treatment
objectives to be more readily accessible.

PHTN can result in serious complications involving the
cardiovascular, renal, and metabolic systems (8). Conversely,
patients with pre-existing comorbidities have a poorer
prognosis (9, 10). For example, acute right heart failure
is one of the most important causes of mortality among
patients with PHTN (11). PHTN can also co-exist with
chronic renal disease owing to altered fibroblast growth
factor-23 signaling (12, 13). The presence of diabetes
mellitus can induce pulmonary endothelial dysfunction,
and patients with PHTN may also develop diabetes mellitus
and metabolic syndrome as complications due to the chronic
pro-inflammatory states (14, 15). The concurrence of the
above conditions increases the complexity of the PHTN
clinical profile.

Frailty is a geriatric syndrome that results in age-associated
functional limitations across multiple systems. Older people
with frailty are prone to poorer health outcomes such as falls
and disability. This contributes to frequent hospitalization and
premature death (16–19). The development of an electronic

frailty index (eFI) through the random survival forest (RSF)
model allows the analysis of the survival data using electronic
health data (20). RSF can approximate complex survival
functions while maintaining low prediction error (21). This study
aims to construct a scalable eFI with improved predictability
for complications and short-term mortality among patients with
PHTN through the application of the RSF model.

METHODS

Study Design and Population
The retrospective population-based cohort was designed to
investigate long-term clinical prognostic risk factors that predict
the survival of patients with newly diagnosed PHTN. This cohort
included patients diagnosed with PHTN between January 1st,
2000 and December 31st, 2017 at centers managed by the
Hong Kong Hospital Authority. The patients were identified
from the Clinical Data Analysis and Reporting System (CDARS),
a territory-wide database that centralizes patient information
from individual local hospitals to establish comprehensive
medical data. This system has previously been used by local teams
to conduct population-based epidemiological studies (22, 23),
including the development of eFIs (24, 25).

Demographics, comorbidities, hospitalization characteristics,
drug prescriptions, and laboratory examinations at the baseline
were extracted. Drug prescriptions following the diagnosis of
PHTN were determined. The calculated mean daily prescribed
drug dosage of medications was noted. The mean daily
dose of each drug class is derived from multiplying the
daily dose frequency by the drug dose then averaged by
the cumulative duration. Details regarding the International
Classification of Diseases, Nineth Edition (ICD-9) codes for
identifying the comorbidities and PHTN drugs are provided
(Supplementary Tables 1, 2).

Statistical Analysis
The study outcomes were the development of cardiovascular
and renal complications, diabetes mellitus, and mortality after
diagnosing PHTN. The mortality data were obtained from
the Hong Kong Death Registry, a population-based official
government registry with the registered death records of all
Hong Kong citizens. Continuous variables were represented as
median (95% confidence interval [CI] or interquartile range
[IQR]), and categorical variables were presented count (%).
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Continuous variables were compared using the Mann-Whitney
U test. The χ2 test with Yates’ correction was utilized for 2 × 2
contingency data. The Pearson’s χ2 test was applied for variables
with over two categories of contingency data.

The univariable Cox model was used to uncover the
significant prognostic risk factors associated with the outcomes
via adjustments based on baseline characteristics. Significantly
predictive factors are used as input of the multivariable Cox
regression and the RSF analysis model for the complication
prediction. Hazard ratios (HRs) with corresponding 95% CIs
and P-values were reported. All significance tests were two
tailed and considered significant if P < 0.05. Data analyses were
performed using the RStudio software (Version: 1.1.456) and
Python (Version: 3.6).

Development of a Tree-Based Mortality
Prediction Model
The eFI was developed to use the primary electronic health
record to predict the frailty status of the patients, based on the
principle that it reflects the health deficit accumulation (26, 27).
Our team has previously developed an eFI for heart failure
(24). A survival analysis was utilized to estimate the probability
of mortality after diagnosing PHTN. It identifies the most
influential prognostic risk factors that efficiently predict mortality
outcomes. The RSF model was used to conduct a supervised
survival learning analysis with the electronic health data. We
used 20% of the data as a test set for a model performance
evaluation and comparisons while using the remaining 80% for a
model training. The parameters that gave the highest value of the
Concordance Index (C-index) on the test set were chosen as the
final model. The RSF was employed to learn the distribution of
survival times based on the observed preoperative symptom data.

Variable Importance Measure
The variable importance value of each factor was calculated to
investigate the predictive strength. We leave out about 40% of
instances whenever a bootstrap sample is down with replacement
from the training data set. These left-out instances are referred
to as out-of-bag (OOB) ones and the instances in the bootstrap
sample as in bag ones. To calculate the variable importance
value, we dropped each OOB instance down its in-bag competing
risk tree and assigned a child node randomly whenever a split
for the variable is encountered. The event-specific cumulative
probability function from each such tree is calculated and
averaged. The importance value is the prediction error for the
original ensemble event-specific cumulative probability function
(obtained when each OOB instance is dropped down its in-
bag competing risks tree) subtracted from the prediction error
for the new ensemble obtained using randomizing assignments
of the variable (28, 29). The prediction errors are computed
using squared loss. A higher importance value indicates higher
predictive strength of the variable, whereas zero or negative
values indicate non-predictive variables.

Minimal Depth Approach
Minimal depth (30) ranks the variables through the inspection
of the forest construction process under the assumption that

variables with high impact on the prediction are those that
most frequently split nodes nearest to the root node, where they
partition the largest samples. Within each split tree, minimal
depth approaches numbers of node levels according to their
relative distance to the root of the tree (with the root node at 0). In
such a way, the minimal depth approach can identify important
variables by averaging the depth of the first split for each variable
over all trees within the final forest.

The minimal depth approach was used to capture the variable
interactions. We calculate the importance measures of pairwise
interactions among variables since the minimal depth measure
is defined by averaging the tree depth of the variable of interest
relative to the root node. To compute the interaction strength for
prediction, this calculation is modified to measure the minimal
depth of a variable xi with respect to the maximal subtree for
variable xj.

In general, to select the most influential variables with
a variable importance approach, we examine the calculated
variable importance values. The minimal depth approach is a
non-event-specific criterion, whereas the variable importance
approach can be both event specific and non-event specific.
In the following analysis, we used the mortality-specific and
time-to-event-specific variable importance.

Performance Evaluation
The 5-fold cross validation approach is adopted to evaluate
the prediction performance of the RSF model. The metrics of
precision and recall are as follows:

Precision =
TP

TP + FP
, Recall =

Tp

Tp+ FN
,

and the area under the receiver operating characteristic curve
(AUC) and the C index are used for performance evaluation.
TN, TP, FP, and FN represent true positive, true negative,
false positive, and false negative rates in the confusion matrix,
respectively. Conventional non-parametric survival models
primarily select the best analysis model that maximizes the C
index (31). C index quantifies the degree to which the predicted
outcomes in the pairwise orderings are consistent with the
observed outcomes and can be regarded as a generalization of
the AUC. That is, any survival analysis model that properly
estimates the ordered but proportional event times can score
high in terms of C index. C index can be used as a global
assessment of the model’s discrimination power: the ability to
correctly provide a reliable ranking of the survival times based
on the individual risk scores. In this study, we compare the RSF
model with the traditional Cox analysis to predict the mortality
and complications after diagnosis of PHTN.

RESULTS

Basic Characteristics
The study cohort included 2,560 patients (37% men) with an age
of 63.4 (IQR: 38.0–79.0) (Figure 1). The baseline characteristics
of the PHTN patients are detailed in Tables 1, 2. Over the follow-
up, 38% of patients died; those who died were older (median:
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FIGURE 1 | Illustration of the study procedures. PN, Pulmonary hypertension.

75.2, IQR: 60.0–83.0) than those who survived (median: 44.6,
IQR: 1.0–65.0).

The Risk of Adverse Outcomes With Cox
Analysis
A univariable Cox regression analysis identified the predictors of
mortality after the diagnosis of PHTN (Supplementary Table 3).
Patients with past comorbidities, such as cardiovascular diseases
(HR: 1.947, 95% CI: 0.8132–2.102), respiratory diseases (HR:
1.295, 95% CI: 0.646–2.595), endocrine disease (HR: 1.524,
95% CI: 1.127–2.059), and hypertension (HR: 1.362, 95%
CI: 1.172–2.7618) were associated with higher mortality risks.
The univariable Cox regression analysis also identified the
predictors for the complications (Supplementary Table 4). The
diagnosis age was an important predictor (all P < 0.0001).
The multivariable Cox regression predictors of mortality were
also identified (Supplementary Table 5A). The age of diagnosis
(HR: 1.822; 95% CI: 1.815–1.829), cumulative hospital length
of stay (LOS) (HR: 1.0007; 95% CI: 1.00040–1.0009), prior
cardiovascular diseases (HR: 1.266; 95% CI: 1.064–1.507), kidney
diseases (HR: 1.279; 95% CI: 1.125–1.454), diabetes mellitus (HR:
1.208; 95% CI: 1.032–1.415), and hypertension (HR: 1.549; 95%
CI: 0.665–3.608) were predictive of mortality. The Kaplan-Meier
survival curves demonstrated the mortality of the patients in
Figure 2A.

Machine Learning Survival Analysis
The RSF model identified the influential prognostic risk factors
by capturing the non-linearity and interactions. The predicted
events for all-cause mortality with the RSF model are shown
in Figure 2B. Most deaths occurred at age equal or above 75.
The predictions for the time to event of the complications are
shown in Figure 3. The RSF provided better discrimination
performance in predicting the mortality risk, given its ability

to capture the non-linearity and the interaction patterns
(Supplementary Figures 4–7).

Age was the most important for the mortality risk
prediction, followed by average readmission, antihypertension
drugs, cumulative LOS, and total bilirubin level
(Supplementary Figure 8). The risk factors that predicted
the three complications were also identified. Age was the most
important predictor for cardiovascular complications, followed
by lymphocyte count and mean readmission interval. Age
also showed the highest prediction strength for kidney and
diabetic complications.

Important interactions with the demographics included the
interactions of PHTN age and sex with average readmission
interval, cumulative hospital stay, and total bilirubin level
(Supplementary Figure 4). The interactions of the variables
with past comorbidities (Supplementary Figure 5), drug
prescriptions (Supplementary Figure 6), and laboratory
examinations (Supplementary Figure 7) were also derived.
An interaction importance ranking pattern could be observed:
interactions formed by a variable with the influential individual
risk factors demonstrated high predictive strength.

Predictors of Adverse Events Risk With eFI
Correspondingly, an eFI was developed for predicting the all-
cause mortality (Supplementary Table 5B). The calculated eFI
for patients with/without mortality was significantly different
(median: 9.0, IQR: 8.0–10.0 vs. median: 8.0, IQR: 6.0–9.0, P
< 0.0001) (Table 3A, Supplementary Figure 9). The eFI was
significantly associated with higher mortality risk (HR: 1.25, 95%
CI: 1.22–1.29, P < 0.0001) (Table 3B). The marginal effects of
eFI also demonstrated that higher eFI was associated with higher
risks of mortality (Supplementary Figure 10).

The binarized eFI also predicted mortality risk based on the
Youden cut-off of 9.5 (HR: 1.90, 95% CI: 1.70–2.12, P < 0.0001)
(Table 3B). Patients with eFI > 9.5 had a higher cumulative
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TABLE 1 | The characteristics of patients with pulmonary hypertension stratified by mortality outcomes.

Characteristics All patients (n = 2,560)

Median (IQR) or count (%)

Mortality (n = 1,347)

Median (IQR) or count (%)

No mortality (n = 1,213)

Median (IQR) or count (%)

P-value

Demographics

Male sex 955 (37.30%) 513 (38.08%) 442 (36.43%) <0.0001***

Age at diagnosis 63.4 (38.0–79.0) 75.2 (60.0–83.0) 44.6 (1.0–65.0) <0.0001***

Hospitalization before PHTN

Total number of hospital admissions 13.0 (7.0–23.0) 16.0 (8.0–26.0) 11.0 (5.0–20.0) <0.0001***

Number of emergency readmissions 3.0 (1.0–6.0) 4.0 (2.0–8.0) 2.0 (1.0–4.0) 0.0115*

Mean readmission interval (days) 223.7 (105.0–435.0) 221.3 (115.0–387.0) 225.4 (95.0–509.0) 0.1725

Cumulative length-of-stay 80.0 (34.0–162.0) 110.0 (58.0–191.0) 48.0 (21.0–118.0) <0.0001***

Comorbidity before PHTN

Respiratory disease 2,537 (99.10%) 1,330 (98.73%) 1,207 (99.50%) 0.2782

Hypertension 2,511 (98.08%) 1,313 (97.47%) 1,198 (98.76%) 0.0617

Cardiovascular disease 1,916 (74.84%) 1,150 (85.37%) 766(63.14%) <0.0001***

Gastrointestinal disease 1,014 (39.60%) 601 (44.61%) 413 (34.04%) 0.0016**

Kidney disease 768 (30.00%) 534 (39.64%) 234 (19.29%) <0.0001***

Endocrine disease 88 (3.43%) 44 (3.26%) 44 (3.62%) 0.0916

Diabetes mellitus 337 (13.16%) 218 (16.18%) 119 (9.81%) <0.0001***

Obesity 71 (2.77%) 29 (2.15%) 42 (3.46%) <0.0001***

Drug prescriptions after PHTN

Alpha blockers n = 224 n = 159 n = 65

Daily dosage, mg/day 1.7 (1.0–3.0) 1.7 (0.9, 3.0) 1.9 (1.1, 3.5) p = 0.2443***

Cumulative dosage, mg 377.5 (84.0, 1165.0) 258.5 (49.5, 924.5) 543.5 (177.0–2319.5) 0.0016**

Cumulative duration, days 260.5 (62.0–753.5) 237.0 (40.0–696.0) 396.0 (112.0–1141.0) 0.0648

Anti-arrhythmias drugs n = 238 n = 179 n = 59

Daily dosage, mg/day 225.0 (46.5–636.5) 225.0 (48.0–661.5) 117.0 (20.0–584.5) 0.2261

Cumulative dosage, mg 227.86 (36.0–1524.11) 255.0 (37.4–1660.55) 182.81 (24.0–1023.75) 0.1277

Cumulative duration, days 4.0 (2.0–17.5) 4.0 (2.0–12.5) 5.0 (2.0–35.0) 0.582

Beta blockers n = 670 n = 402 n = 268

Daily dosage, mg/day 15.76 (6.25–31.41) 13.26 (6.23–26.36) 18.99 (6.26–41.97) 0.0611

Cumulative dosage, mg 784.0 (125.0–4948.44) 575.0 (76.5–3966.0) 1599.5 (187.0–8473.44) 0.0001***

Cumulative duration, days 178.0 (37.0–499.0) 133.0 (26.0–397.0) 280.0 (54.0–867.0) <0.0001***

Cardiac glycosides n = 491 n = 362 n = 129

Daily dosage, mg/day 62.5 (42.85–144.34) 63.14 (48.28–148.2) 57.34 (25.79–125.0) 0.0111*

Cumulative dosage, mg 4437.5 (371.0–23625.0) 5181.25 (562.5–19250.0) 2662.5 (155.0–45562.5) 0.7103

Cumulative duration, days 172.0 (24.0–551.5) 154.0 (21.0–473.0) 252.0 (30.0–954.5) 0.0228*

Centrally acting antihypertensive drugs n = 63 n = 48 n = 15

Daily dosage, mg/day 75.0 (25.0–524.7) 100.0 (27.81–524.7) 38.5 (25.0–556.46) 0.5393

Cumulative dosage, mg 525.0 (42.0–7945.0) 920.0 (79.5–7945.0) 175.0 (26.5–9175.0) 0.5291

Cumulative duration, days 135.0 (28.0–387.5) 139.5 (37.0–371.5) 28.0 (8.5–459.0) 0.4433

Loop diuretics n = 1,636 n = 1,042 n = 594

Daily dosage, mg/day 27.39 (9.15–72.58) 27.76 (11.26–64.57) 25.66 (7.54–144.78) 0.5814

Cumulative dosage, mg 525.0 (76.0–2673.5) 577.0 (114.0–2721.75) 388.5 (48.0–2538.0) 0.0109*

Cumulative duration, days 158.0 (38.0–467.0) 184.0 (45.5–516.5) 128.0 (31.0–372.5) 0.0014**

Phosphodiesterase type-3 inhibitors n = 13 n = 7 n = 6

Daily dosage, mg/day 7.7 (1.67–45.0) 16.0 (5.02–60.06) 2.97 (0.9–15.67) 0.1336

Cumulative dosage, mg 74.0 (3.84–171.0) 171.0 (15.05–296.88) 38.92 (2.73–104.5) 0.1336

Cumulative duration, days 3.0 (2.0–6.0) 3.0 (2.0–6.0) 4.5 (2.5–6.0) 0.9416

Potassium-sparing diuretics and

aldosterone

n = 664 n = 359 n = 305

Daily dosage, mg/day 21.37 (8.09–29.17) 25.0 (12.5–35.69) 13.86 (6.36–25.0) <0.0001***

Cumulative dosage, mg 568.0 (88.0–3676.88) 475.0 (75.0–4625.0) 654.0 (125.0–2975.0) 0.6552

Cumulative duration, days 98.5 (31.0–330.0) 87.0 (24.5–334.5) 117.0 (39.0–322.0) 0.1124

(Continued)
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TABLE 1 | Continued

Characteristics All patients (n = 2,560)

Median (IQR) or count (%)

Mortality (n = 1,347)

Median (IQR) or count (%)

No mortality (n = 1,213)

Median (IQR) or count (%)

P-value

Thiazides and related diuretics n = 215 n = 145 n = 70

Daily dosage, mg/day 3.26 (1.77–9.65) 2.99 (1.67–5.62) 5.0 (2.5–17.08) 0.0322*

Cumulative dosage, mg 83.0 (15.0–531.25) 42.0 (7.0–231.0) 461.5 (70.75–922.0) <0.0001***

Cumulative duration, days 43.0 (7.0–219.5) 21.0 (4.0–112.0) 116.0 (35.0–344.0) <0.0001***

Vasodilator antihypertensive drugs n = 346 n = 202 n = 144

Daily dosage, mg/day 35.48 (6.33–62.32) 39.22 (6.87–67.1) 33.85 (6.0–56.46) 0.0144*

Cumulative dosage, mg 474.0 (90.0-3040.5) 285.5 (73.0–1789.0) 966.0 (160.0–4419.0) 0.0033**

Cumulative duration, days 126.0 (22.5–419.0) 58.0 (14.0–269.0) 237.0 (42.5–724.5) <0.0001***

Laboratory examinations on PHTN

Hemoglobin, g/dL 12.1 (10.0–14.0); n = 2,515 11.6 (10.0–13.0); n = 1,340 12.4 (11.0–14.0); n = 1,175 0.0115*

Hematocrit, L/L 0.4 (0.0–0.0); n = 2,511 0.4 (0.0–0.0); n = 1,339 0.4 (0.0–0.0); n = 1,172 0.5656

Lymphocyte, x10∧9/L 1.3 (1.0–2.0); n = 2,506 1.0 (1.0–2.0); n = 1,339 1.7 (1.0–3.0); n = 1,167 0.1625

Neutrophil, x10∧9/L 5.3 (4.0–7.0); n = 2,506 5.4 (4.0–8.0); n = 1,339 5.0 (4.0–7.0); n = 1,167 0.0615

Platelet, x10∧9/L 197.0 (147.0–256.0); n = 2,508 178.0 (130.0–232.0); n = 1,336 221.5 (170.0–278.0); n = 1,172 <0.0001***

APTT, secs 32.9 (29.0–38.0); n = 2,352 33.3 (29.0–38.0); n = 1,299 32.7 (29.0–38.0); n = 1,053 0.0016**

INR 1.2 (1.0–1.0); n = 2,364 1.2 (1.0–2.0); n = 1,303 1.2 (1.0–1.0); n = 1,061 0.0166*

Prothrombin time, sec 13.4 (12.0–17.0); n = 2,333 13.8 (12.0–18.0); n = 1,292 13.1 (12.0–16.0); n = 1,041 0.6319

Red cell count, x10∧12/L 4.1 (4.0–5.0); n = 2,510 4.0 (3.0–5.0); n = 1,339 4.2 (4.0–5.0); n = 1,171 0.2716

Total protein, g/L 68.0 (62.0–74.0); n = 2,465 67.7 (62.0–73.0); n = 1,330 69.0 (62.0–75.0); n = 1,135 0.7112

Total bilirubin, umol/L 13.0 (8.0–22.0); n = 2,453 14.6 (9.0–24.0); n = 1,326 11.4 (7.0–20.0); n = 1,127 <0.0001***

Alkaline phosphatase, U/L 49.5 (34.0–73.0); n = 2,463 51.5 (35.0–74.0); n = 1,329 47.0 (32.0–72.0); n = 1,134 0.1625

Red cell distance width, % 15.1 (14.0–17.0); n = 2,472 15.7 (14.0–18.0); n = 1,317 14.5 (13.0–16.0); n = 1,155 0.0317*

Mean cell volume, fL 89.9 (85.0–95.0); n = 2,512 91.0 (86.0–96.0); n = 1,339 89.0 (84.0–93.0); n = 1,173 <0.0001***

Mean cell hemoglobin concentration, g/dL 34.2 (33.0–35.0); n = 2,512 34.2 (33.0–35.0); n = 1,339 34.3 (33.0–35.0); n = 1,173 0.0815

APTT, activated partial thromboplastin time; INR, international normalized ratio; IQR, interquartile range; LOS, length of stay; PHTN, pulmonary hypertension.
* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001.

hazard for all-cause mortality. The cumulative hazards were
especially higher among patients who were 65 years old or above
with eFI ≥ 9.5 (Figure 4). Within 2 years of follow-up, the
eFI predicted the mortality (HR: 1.15, 95% CI: 1.02–1.28; P =

0.0169). The HR of the eFI increased with a longer duration of
follow-up. Upon 10 years of follow-up, the eFI was associated
with higher risks of mortality (HR: 1.71, 95% CI: 1.53–1.90; P <

0.0001); meanwhile, upon 20 years of follow-up, the HR was even
higher (HR: 1.90; 95% CI: 1.70–2.12; P < 0.0001) (Table 3C).

The RSF model showed a better performance in terms of
precision (0.9263 vs. 0.8382), recall (0.9058 vs. 0.8992), AUC
(0.9478 vs. 0.9051), and C index (0.9361 vs. 0.9240) compared to
the Coxmodel in the 5-fold cross-validation. Similarly, compared
to multivariate Cox regression, the precision, recall, AUC, and
C index were significantly higher for RSF in predicting the
cardiovascular, kidney, diabetic complications, and mortality
(Table 4).

DISCUSSION

The Principal Findings of the Study
The main findings of this study include (i) risk factors including
admission interval, cumulative LOS, and total admissions times
were predictive of the complications and mortality; (ii) the

RSF-identified non-linear relationship between the predictors
and outcome was predictive of mortality; (iii) the RSF model
performed better in mortality and complication predictions than
the Cox regression; (iv) the eFI predicted the risks of all-cause
mortality accurately, especially among patients whowere 65 years
old or above.

Strength and Limitations of the Study
To the best of our knowledge, this is the first study using the
eFI in predicting the PHTN outcomes. The usage of the cohort
from a real-world clinical database to derive the RSF analysis was
shown to have performed better than the multivariable logistic
regression to predict the PHTN mortality and complications.
This would allow better clinical management based on the eFI.
However, there are certain limitations to this study. Firstly,
given this is a local study conducted in Hong Kong, the PHTN
results should be validated using the data from other databases
in other countries. Secondly, medical history, such as smoking,
asbestos, and family history, and clinical parameters such as
partial pressure of oxygen (PaO2) and N-terminal pro-brain
natriuretic peptide (NT-proBNP), which are associated with
PHTN in other literature, were not included in this predictive
model given the lack of the codes in CDARS (32). Thirdly, given
the retrospective nature of this study, the results may be subjected
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TABLE 2 | The characteristics of patients who developed complications after the diagnosis of pulmonary hypertension.

Characteristics Cardiovascular

complications (n = 1,878)

Median (IQR) or

count (%)

Renal complications (n =

684)

Median (IQR) or count

(%)

Diabetes (n = 437)

Median (IQR) or

count (%)

P-value

Demographics

Male sex 710 (37.80%) 283 (41.37%) 162 (37.07%) 0.0017**

Age at diagnosis 69.2 (48.0–81.0) 72.0 (54.0–82.0) 75.8 (66.0–83.0) 0.0008***

Baseline hospitalizations

Total number of hospital admissions 15.0 (8.0–25.0) 19.0 (11.0–34.0) 19.0 (11.0–33.0) <0.0001***

Number of emergency readmissions 2.0 (0.0–5.0) 3.0 (1.0–7.0) 2.0 (1.0–7.0) 0.0216*

Mean readmission interval (days) 211.3 (102.0–388.0) 188.0 (98.0–315.0) 219.1 (128.0–405.0) <0.0001***

Cumulative length-of-stay 93.0 (44.0–170.0) 137.0 (74.0–236.0) 120.0 (63.0–226.0) <0.0001***

Baseline comorbidities

Respiratory disease 1,878 (100.00%) 684 (100.00%) 437 (100.00%) 0.5816

Hypertension 1,872 (99.68%) 682 (99.70%) 437 (100.00%) 0.2671

Cardiovascular disease - 593 (86.69%) 382 (87.41%) <0.0001***

Gastrointestinal disease 792 (42.17%) 377 (55.11%) 253 (57.89%) 0.0002***

Kidney disease 645 (34.34%) - 242 (55.37%) <0.0001***

Endocrine disease 56 (2.98%) 24 (3.50%) 14 (3.20%) 0.0017**

Diabetes mellitus 275 (14.64%) 190 (27.77%) - <0.0001***

Obesity 55 (2.92%) 30 (4.38%) 34 (7.78%) <0.0001***

Drug prescriptions for PHTN

Cardiac glycosides 466 (24.81%) 166 (24.26%) 98 (22.42%) <0.0001***

Phosphodiesterase type-3 inhibitors 9 (0.47%) 5 (0.73%) 0 (0.00%) 0.0031**

Thiazides and related diuretics 190 (10.11%) 109 (15.93%) 73 (16.70%) <0.0001***

Loop diuretics 1,377 (73.32%) 525 (76.75%) 323 (73.91%) 0.0211*

Potassium-sparing diuretics and aldosterone 579 (30.83%) 204 (29.82%) 108 (24.71%) 0.0022**

Anti-arrhythmias drugs 224 (11.92%) 98 (14.32%) 48 (10.98%) <0.0001***

Beta blockers 567 (30.19%) 271 (39.61%) 192 (43.93%) <0.0001***

Vasodilator antihypertensive drugs 232 (12.35%) 89 (13.01%) 44 (10.06%) 0.0012**

Centrally acting antihypertensive drugs 56 (2.98%) 30 (4.38%) 22 (5.03%) <0.0001***

Alpha blockers 184 (9.79%); n = 184 116 (16.95%); n = 116 83 (18.99%); n = 83 <0.0001***

Laboratory tests

Hemoglobin, g/dL 11.9 (10.0–14.0); n = 1,862 10.8 (9.0–13.0); n = 679 11.3 (10.0–13.0); n = 432 0.0035**

Hematocrit, L/L 0.4 (0.0–0.0); n = 1,861 0.3 (0.0–0.0); n = 679 0.3 (0.0–0.0); n = 432 0.6241

Lymphocyte, x10∧9/L 1.3 (1.0–2.0); n = 1,858 1.0 (1.0–2.0); n = 679 1.1 (1.0–2.0); n = 432 0.042*

Neutrophil, x10∧9/L 5.2 (4.0–7.0); n = 1,858 5.3 (4.0–7.0); n = 679 5.4 (4.0–7.0); n = 432 0.0071**

Platelet, x10∧9/L 191.5 (144.0–249.0); n =

1,858

180.5 (135.0–240.0); n =

678

191.0 (144.0–238.0); n =

431

0.0063**

APTT, secs 33.0 (30.0–38.0); n = 1,781 33.8 (30.0–39.0); n = 665 31.7 (28.0–36.0); n = 426 0.0163*

INR 1.2 (1.0–1.0); n = 1,789 1.2 (1.0–2.0); n = 668 1.2 (1.0–1.0); n = 425 0.0166*

Prothrombin time, sec 13.6 (12.0–17.0); n = 1,766 13.8 (12.0–17.0); n = 658 12.9 (12.0–15.0); n = 423 <0.0001***

Red cell count, x10∧12/L 4.1 (4.0–5.0); n = 1,861 3.8 (3.0–4.0); n = 679 4.0 (3.0–5.0); n = 432 0.0714

Total protein, g/L 68.0 (62.0–74.0); n = 1,831 68.0 (62.0–73.0); n = 671 70.0 (64.0–74.0); n = 430 0.5312

Total bilirubin, umol/L 14.0 (9.0–23.0); n = 1,834 13.0 (8.0–22.0); n = 668 11.4 (8.0–18.0); n = 431 <0.0001***

Alkaline phosphatase, U/L 49.0 (34.0–71.0); n = 1,826 53.6 (35.0–78.0); n = 668 48.5 (33.0–68.0); n = 431 <0.0001***

Red cell distribution width, % 15.2 (14.0–17.0); n = 1,844 15.7 (14.0–18.0); n = 670 15.0 (14.0–17.0); n = 431 0.0615

Mean cell volume, fL 90.1 (85.0–95.0); n = 1,861 90.5 (86.0–95.0); n = 679 89.8 (86.0–94.0); n = 432 <0.0001***

Mean cell hemoglobin concentration, g/dL 34.2 (33.0–35.0); n = 1,861 34.2 (33.0–35.0); n = 679 34.0 (33.0–35.0); n = 432 0.0915

APTT, activated partial thromboplastin time; INR, international normalized ratio; IQR, interquartile range; LOS, length of stay; PHTN, pulmonary hypertension.
* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001.
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FIGURE 2 | Kaplan-Meier curves for all-cause mortality and the predicted mortality. The Kaplan-Meier survival curves demonstrate the moralities of the patients with

pulmonary hypertension (PHTN) (A) and the predicted mortalities using the random survival forest (RSF) prediction (B). Each line represents a single patient in the

training data set, where censored patients are colored blue, and patients who have experienced the mortality event are colored in red. The median survival (black) with

a 95% shaded confidence band (gray) are indicated.

FIGURE 3 | Predicted survivals of cardiovascular, kidney, and diabetes complications with RSF model.

TABLE 3A | Descriptive statistics of electronic frailty index for all-cause mortality risk prediction.

Characteristics Cut-off All Median (IQR); All-cause mortality Median (IQR); Alive (N = 1,213)

(N = 2,560) N or Count (%) (N = 1,347) N or Count (%) Median (IQR); N or Count (%) P-value

Electronic frailty index 9.5 8.0 (7.0–10.0); n = 2,560 9.0 (8.0–10.0); n = 1,394 8.0 (6.0–9.0); n = 1,166 <0.0001***

Electronic frailty index≥9.5 - 722 (28.20%) 527 (39.12%) 195 (16.08%) <0.0001***

* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001.

TABLE 3B | Prediction strength of electronic frailty index for all-cause mortality risk prediction.

Characteristics HR[CI]; P-value Precision Recall AUC C-index

Electronic frailty index 1.25 [1.22–1.29]; <0.0001*** 0.8234 0.8867 0.9015 0.9109

Electronic frailty index≥9.5 1.90 [1.70–2.12]; <0.0001*** 0.8351 0.8909 0.9105 0.9202

* for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001.

to instabilities of the laboratory results, including the equipment
modifications and blood samples artifacts, and changes in the
clinical criteria for the diagnosis of the PHTN. Furthermore,
clinical information suggested in the European PHTN guidelines,

such as the clinical courses and syncope episodes, is also lacking.
Furthermore, in our predictive model, the number of patients
on centrally acting antihypertensive drugs and phosphodiesterase
type-3 inhibitors was relatively small. Lastly, due to the lack of
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FIGURE 4 | Cumulative incidence curves for all-cause mortality stratified by the constructed electronic frailty index and age.

TABLE 3C | Prediction strength of the constructed electronic frailty index for

mortality risks within 2-year follow-up, 5-year follow-up, 10-year follow-up,

15-year follow-up, and 20-year follow-up.

Characteristics All-cause mortality HR [95% CI]; P-value

Within 2-year follow-up

Electronic frailty index 1.03 [1.00–1.07];0.0459*

<9 1.0 [Reference]

(9, 10) 1.15 [1.02–1.28];0.0183*

>12 1.15 [0.64–2.09];0.6394

High vs. low 1.15 [1.02–1.28];0.0169*

Within 5-year follow-up

Electronic frailty index 1.15 [1.11–1.18];<0.0001***

<9 1.0 [Reference]

(9, 10) 1.50 [1.34–1.67];<0.0001***

>12 1.86 [1.03–3.38];0.0409*

High vs. low 1.51 [1.35–1.68];<0.0001***

Within 10-year follow-up

Electronic frailty index 1.21 [1.17–1.24];<0.0001***

<9 1.0 [Reference]

(9, 10) 1.70 [1.52–1.90];<0.0001***

>12 1.98 [1.09–3.59];0.0244*

High vs. low 1.71 [1.53–1.90];<0.0001***

Within 15-year follow-up

Electronic frailty index 1.22 [1.18–1.25];<0.0001***

<9 1.0 [Reference]

(9, 10) 1.76 [1.58–1.96];<0.0001***

>12 2.09 [1.15–3.79];0.0153*

High v.s. low 1.77 [1.58–1.97];<0.0001***

Within 20-year follow-up

Electronic frailty index 1.25 [1.22–1.29];<0.0001***

<9 1.0 [Reference]

(9, 10) 1.89 [1.70–2.11];<0.0001***

>12 2.23 [1.23–4.04];0.0085**

High vs. low 1.90 [1.70–2.12];<0.0001***

* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001.

High: Electronic frailty index≥9.5; Low: Electronic frailty index<9.5.

TABLE 4A | Performance comparisons between multivariable and random

survival forest with five-fold cross validation.

Model Precision Recall AUC C-index

Multivariable Cox analysis 0.8382 0.8992 0.9051 0.9240

Random survival forests 0.9263 0.9058 0.9478 0.9361

the relevant diagnostic codes, the PHTN cases were not classified
according to the World Health Organization (WHO) PHTN
classification (2). Nevertheless, frailty models with the lack of
enlisted information are still strong predictors of mortality and
mortality (33).

Comparing the Findings With the Other
Studies
Our data presented different risk factors that contributed to
the development of the PHTN complications. Older patients
and male patients showed a higher mortality risk. Patients
with a higher comorbidity burden, including cardiovascular,
hypertension, and renal conditions, had a lower survival rate
and were more likely to develop complications (34). The variable
importance and minimal depth approach indicated that the age
of PHTN diagnosis had the highest predictive strength. This is
in accordance with the previous predictive model (REVEAL),
indicating that old male patients would have a worse prognosis,
even though PHTN is a predominantly female disorder. This
is worrying given the average age of patients diagnosed is
shifting toward an older population (35). In agreement with
previous studies, the hospitalization characteristics and drugs
are also associated with the survival outcome in a pattern (36,
37). Compared to other predictive models, our study does not
involve the use of the hemodynamic data nor lung function and
radiological test results (38). However, our study demonstrated
a higher AUC compared to the previous studies (39, 40).
Nevertheless, the PHTN diagnosis in our study was not classified
according to the WHO classification owing to the lack of the
CDARS code.
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TABLE 4B | Performance comparisons between multivariable Cox and random survival forest with five-fold cross validation.

Cardiovascular Kidney Diabetes Mortality

Metric Multivariable Cox RSF Multivariable Cox RSF Multivariable Cox RSF Multivariable Cox RSF

Precision 0.84 0.92 0.83 0.92 0.84 0.92 0.84 0.93

Recall 0.83 0.91 0.78 0.91 0.87 0.91 0.83 0.91

AUC 0.90 0.95 0.85 0.94 0.85 0.95 0.76 0.94

C-index 0.88 0.94 0.87 0.93 0.90 0.94 0.79 0.91

Our results demonstrated that eFI significantly predicts the
risks of complications and mortality among elderlies. Compare
to the traditional Cox models, prediction models based on
RSF have improved prediction performance across diseases
such as heart failure (41), Brugada syndrome (42), congenital
(43, 44) and acquired (45) long QT syndromes, diabetes
mellitus (46, 47), metabolic diseases (48), stroke (49), and
cancer (50). It improved the risk prediction in the context
of PHTN for disease onset (51) and pressure prediction
based on echocardiographic parameters (52). However, few
studies have examined the long-term prognosis of patients with
PHTN. In our study, the RSF model had a higher predictive
accuracy with 5-fold cross-validation than the Cox model
since it does not have a strong assumption about individual
proportional hazard functions. Furthermore, the model can
capture the interactions, reducing the prediction variances and
bias (20, 53). The interactions formed by a variable with
the influential individual risk factors demonstrated a high
predictive strength.

The Implications for the Clinicians and
Future Research Directions
The eFI derived from the significant variables allows
predicting the risks of mortality and complications of
the patients with PHTN, especially among elderlies.
Clinicians can make use of the electronic medical records
to estimate the outcome of the patients with PHTN without
using any hemodynamic and radiological investigation
modalities. The eFI can be further translated into a risk
diagnosis tool to be deployed in the computer for real-time
clinical applications.

CONCLUSION

The RSF model identified the influential prognostic risk factors
and their interaction from the clinical accessible data. The
usage of this RSF-derived eFI would allow stratifying the
risks of complication and mortality and optimizing the PHTN
management among elderlies.
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