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Objective: The biological age progression of the heart varies from person to person. We

developed a deep learning model (DLM) to predict the biological age via ECG to explore

its contribution to future cardiovascular diseases (CVDs).

Methods: There were 71,741 cases ranging from 20 to 80 years old recruited from

the health examination center. The development set used 32,707 cases to train the

DLM for estimating the ECG-age, and 8,295 cases were used as the tuning set. The

validation set included 30,469 ECGs to follow the outcomes, including all-causemortality,

cardiovascular-cause mortality, heart failure (HF), diabetes mellitus (DM), chronic kidney

disease (CKD), acute myocardial infarction (AMI), stroke (STK), coronary artery disease

(CAD), atrial fibrillation (AF), and hypertension (HTN). Two independent external validation

sets (SaMi-Trop and CODE15) were also used to validate our DLM.

Results: The mean absolute errors of chronologic age and ECG-age was 6.899 years

(r = 0.822). The higher difference between ECG-age and chronological age was related

to more comorbidities and abnormal ECG rhythm. The cases with the difference of more

than 7 years had higher risk on the all-cause mortality [hazard ratio (HR): 1.61, 95% CI:

1.23–2.12], CV-cause mortality (HR: 3.49, 95% CI: 1.74–7.01), HF (HR: 2.79, 95% CI:

2.25–3.45), DM (HR: 1.70, 95% CI: 1.53–1.89), CKD (HR: 1.67, 95% CI: 1.41–1.97),

AMI (HR: 1.76, 95% CI: 1.20–2.57), STK (HR: 1.65, 95% CI: 1.42–1.92), CAD (HR:

1.24, 95% CI: 1.12–1.37), AF (HR: 2.38, 95% CI: 1.86–3.04), and HTN (HR: 1.67,

95% CI: 1.51–1.85). The external validation sets also validated that an ECG-age >7

years compare to chronologic age had 3.16-fold risk (95% CI: 1.72–5.78) and 1.59-fold

risk (95% CI: 1.45–1.74) on all-cause mortality in SaMi-Trop and CODE15 cohorts. The

ECG-age significantly contributed additional information on heart failure, stroke, coronary

artery disease, and atrial fibrillation predictions after considering all the known risk factors.

Conclusions: The ECG-age estimated via DLM provides additional information for CVD

incidence. Older ECG-age is correlated with not only on mortality but also on other CVDs

compared with chronological age.
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INTRODUCTION

Cardiovascular disease (CVD) is an important leading cause of
death globally, placing a heavy burden on society and families.
Most guidelines for the primary prevention of CVD recommend
the estimated 10-year risk as the guide to make intervention
decisions (1). Pooled Cohort equations, Framingham and
Systematic Coronary Risk Evaluation (SCORE) use the following
variables: age, sex, cholesterol level, blood pressure, smoking,
and diabetes to predict the risk of CVD (2–4). Mathematical
and statistical methods converting the cardiovascular risks into
heart age were developed to make it easy to understand and to
reflect the biological age (3). The book, Evolutionary Biology of
Aging, offered the definition of aging: a persistent decline in the
age-specific fitness components of an organism due to internal
physiological deterioration. However, increases in mortality with
age due to chronic infections were excluded by the definition (5).
Chronological age represents how long a person has been alive.
Biological age is the accumulation of time, genetic, environment,
lifestyle, and other unknown variables that affect aging, which
means it is more interrelated with the functional status of the
organism. In the past, heart age calculations based on known risk
factors might not provide additional information owing to lack
of unstructured data, such as image and ECG. Bone age is used
to determine the skeletal maturity of children, which is useful
for diagnosing short stature by comparison with chronological
age (6). The success of bone age in diagnosis highlights the
importance of unstructured data.

A deep learning model (DLM) is a technique used to learn
useful features and provide an opportunity to speed up the
process of converting unstructured data for analysis, which can
also provide better accuracy in ECG interpretation (7). Previous
studies have also developed a series of ECG-based DLMs
on arrhythmia (8), acute myocardial infarction (9, 10), aortic
dissection (11), dyskalemia (12–14), left ventricular dysfunction
(15, 16), mitral regurgitation (17), aortic stenosis (18), glycemic
profile (19, 20), etc. Moreover, the ECGs can even be used to
predict the atrial fibrillation after a month (21). These impressive
successes provided an opportunity to improve the CVD risk
screening tools. A previous study used 774,783 patients to train
a DLM for predicting the age of the patient, which confirmed the
feasibility of age extraction from ECG (22). Furthermore, they
investigated the residual between ECG-age and chronological age
and found the residual is an independent predictor of all-cause

Abbreviations: CVD, cardiovascular disease; ECG, Electrocardiography; DLM,

deep learning model; AMI, acute myocardial infarction; CAD, coronary artery

disease; CHF, congestive heart failure; AF, atrial fibrillation; DM, diabetes mellitus;

HTN, hypertension; CKD, chronic kidney disease; AI, artificial intelligence;

SCORE, Systematic COronary Risk Evaluation; ECG-age, ECG-based heart

age; BMI, body mass index; HR, hazard ratio; CI, conference interval; ROC,

receiver operating characteristic; AUC, area under curve; eGFR, estimated

glomerular filtration rate; TG, triglycerides; COPD, chronic obstructive pulmonary

disease; K, potassium; Na, sodium; Cl, chloride; Ca, calcium; Alb, albumin;

GLU, glucose; HbA1c, glycated hemoglobin; BUN, blood urea nitrogen; Cr,

creatinine; WBC, white blood cell count; PLT, platelet; Hb, hemoglobin; AST,

aspartate aminotransferase; ALT, alanine aminotransferase; TG, triglyceride; TC,

total cholesterol; LDL, low-density lipoprotein cholesterol; HDL, high-density

lipoprotein cholesterol.

mortality and cardiovascular mortality (23). Currently, many
research teams had pointed out the strength of mortality risk
stratification using ECG-age (24–26). However, the application
potential of ECG-age was not extensively explored.

In our hypothesis (Figure 1), ECG-age provides more
information on latent cardiovascular factors than chronologic
age because ECG can reflect physiological status of the heart.
The DLM can theoretically apply latent cardiovascular factors to
generate the ECG-age for predicting biological age. The residual
between chronological age and ECG-age may imply information
of latent cardiovascular factors, which help us to promote the
accuracy of CVD predictions. Here, we trained a DLM using an
ECG to predict the biological age to validate the above hypothesis
and to compare the correlations between chronological age,
ECG-age, and themeasured cardiovascular factors. Finally, we try
to use the ECG-age to improve the accuracy of CVD prediction
to validate the usefulness of residual between chronological age
and ECG-age.

METHODS

Data Source and Population
This research was ethically approved by the institutional review
board of Tri-Service General Hospital, Taipei, Taiwan (IRB No.
C202005055). The electronic medical records of our hospital
include digital ECG signals, and records from January 1, 2012
to December 31, 2019 were available. We only included ECGs
from the health examination center to exclude the potential
effect of acute diseases, and people younger than 20 years old
or older than 80 years old were excluded, and Figure 2 shows
the generation process of development, tuning, and validation
sets. There were 71,741 first exam of ECGs and corresponding
demographic characteristics in this study. We divided these
ECGs into development, tuning, and validation set by date. The
development set included 32,707 ECGs collected after January
1, 2016, and the corresponding ages were used to train the
deep learning model, and then 8,295 ECGs collected during
January 1, 2015 to December 31, 2015 were used to guide
the model training as tuning set. The 30,469 ECGs collected
before December 31, 2014 were used to follow the CVD-related
outcomes, and cases were followed up from the date of the ECG
exam to cardiovascular events or December 31, 2019, whichever
came first. We also used two databases from cohort studies, the
CODE-15% cohort (with 218,169 participants) and the SaMi-
Trop cohorts (with 1,631 participants), to perform external
validation (24).

Observational Variables
The outcomes of interest of this study were all-cause mortality,
CV-cause mortality, heart failure (HF), diabetes mellitus (DM),
chronic kidney disease (CKD), acute myocardial infarction
(AMI), stroke (STK), coronary artery disease (CAD), atrial
fibrillation (AF), and hypertension (HTN). For the mortality
data, the survival time was calculated with reference to the date
of ECG. Status of the patient was defined through electronic
medical records and updated by each hospital activity. New-onset
cardiovascular disease is defined as when the patient was first
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FIGURE 1 | (A) Chronological age is not direct correlation to cardiovascular outcome. Cardiovascular outcome is correlated with the influence period of unmeasured

cardiovascular factors and measured cardiovascular factors. (B) Under the assumption of no direct correlation between ECG and chronological age, the DLM can

theoretically use the latent cardiovascular factors to generate the ECG-age for predicting chronological age. The residuals between chronological age and ECG-age

may imply the information of latent cardiovascular factors. The hypothesis of why ECG-age can more accurately predict the cardiovascular outcome than the

chronological age. The ECG provide more information of latent cardiovascular factors.

diagnosed and documented by ICD 9 or 10 codes in our hospital
electronic medical records. Moreover, data for alive visits were
censored at the patient’s last known hospital alive encounter to
limit bias from incomplete records. The cause of death was also
reviewed to distinguish a CV-cause or other reasons.

We used the corresponding International Classification
of Diseases, Ninth Revision and Tenth Revision (ICD-9
and ICD-10) to define certain CVD-related outcomes. The
detail codes were described as previously study (10, 13, 20,
27). For each CVD-related outcome, patients with ICD-9
or ICD-10 with corresponding diagnosis codes before the
first-exam ECG collected in the physical examination center
were excluded.

The ECG-age was estimated by the DLM, which is
described in detail in the next section. We also collected
information on chronological age, sex, body mass index
(BMI), blood pressure, baseline comorbidities, and baseline
biochemistry for risk evaluation and comparisons. Baseline
comorbidities were extracted using ICD-9 and ICD-10 codes.
Baseline biochemistry was obtained within 3 days before and
after enrollment.

We used an automatic analysis system to interpret ECGs in
this study. First, we divided our ECGs into normal and abnormal
groups based on American Heart Association/American
College of Cardiology Foundation/Heart Rhythm Society
Recommendations for the Standardization and Interpretation of
the Electrocardiogram, Part II: Electrocardiography Diagnostic

Statement List (28). The quantitative measurements and
findings within the final ECG clinical reports were extracted to
identify the 31 diagnostic pattern classes and 8 continuous ECG
measurements. The 8 ECGmeasurements included heart rate, PR
interval, QRS duration, QT interval, correct QT interval, P wave
axis, RS wave axis, and T wave axis. Patterns included abnormal
T wave, atrial fibrillation, atrial flutter, atrial premature complex,
complete AV block, complete left bundle branch block, complete
right bundle branch block, first degree AV block, incomplete
left bundle branch block, incomplete right bundle branch
block, ischemia/infarction, junctional rhythm, left anterior
fascicular block, left atrial enlargement, left axis deviation, left
posterior fascicular block, left ventricular hypertrophy, low
QRS voltage, pacemaker rhythm, prolonged QT interval, right
atrial enlargement, right ventricular hypertrophy, second degree
AV block, sinus bradycardia, sinus pause, sinus rhythm, sinus
tachycardia, supraventricular tachycardia, ventricular premature
complex, ventricular tachycardia, and Wolff-Parkinson-White
syndrome. The 31 clinical diagnosis patterns were parsed from
the structured findings statements on the basis of the key phrases
that are standard within the Philips system.

The Implementation of a Deep Learning
Model
We have developed a DLM, ECG12Net, with 82-layer
convolutional layers and an attention mechanism for potassium
concentration estimation. The technology details, such as the
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FIGURE 2 | Development, tuning, and validation sets generation. Schematic of the data set creation and analysis strategy, which was devised to assure a robust and

reliable data set for training, validating, and testing of the network. Once the data of patient were placed in one of the data sets, that individual’s data were used only in

that set, avoiding “cross-contamination” among the development, tuning, and validation sets. The details of the flowchart and how each of the data sets was used are

described in the Methods.

model architecture, data augmentation, and model visualization,
were described previously (10, 13, 27). We used the same
architecture to train a new DLM for linking the ECG and the
chronological age. The estimated age ranged from 20 years old to
80 years old is called ECG-age.

The ECG recordings were collected using a Philips 12-lead

ECG machine (PH080A). The sampling frequency was 500Hz,

with 10 s recorded in each lead. The standard input format
of ECG12Net is a length of 1,024 numeric sequences, and

the original length of our 12-lead ECG signal is 5,000. In
the training process, we randomly cropped a length of 1,024

sequences as input. For the inference stage, the 9 overlapping
lengths of 1,024 sequences based on interval sampling were used
to generate predictions and averaged as the final prediction.
All parameters of the networks were trained jointly using the
optimization algorithm, Adam, with standard parameters. We
trained the networks with mini-batches of size 36 and used an
initial learning rate of 0.001 that was decayed by a factor of
10 each time the training loss plateaued after an epoch. The
only regularization method for avoiding overfitting was a weight
decay of 10−4. Our DLMwas implemented based on the software
package MXNet version 1.3.0. The presented performance in the
validation cohort was only evaluated once, and the estimated

ECG-age in the follow-up cohort was used to predict the CVD-
related outcomes. This system is configured to visualize the basis
for the AI predictions using class activation mappings (CAMs)
and attention mechanism (10, 11, 13, 20, 29).

Statistical Analysis and Model
Performance Assessment
We presented the characteristics of the different sets as the means
and standard deviations, numbers of patients, or percentages.
These values were compared using either analysis of variance
or the chi-square test. The performance of the DLM was
evaluated by the mean absolute errors, which were calculated
in both the validation set and the tuning set. We used the
scatter plot and Pearson correlation coefficient to compare the
correlations between chronological age and ECG-age. Univariate
and multivariable Cox proportional hazard models were used
to evaluate the predictive ability of ECG-age, chronological age,
and other characteristics for CVD-related outcomes, which used
standardized hazard ratio (HR) and 95% confidence interval
(95% CI) for comparison. We used an R package “pspline”
version 1.0–18 to perform and to fit a polynomial smoothing
spline of arbitrary order. For testing the proportional hazards
assumption of our Cox models, we conducted the hypothesis test
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TABLE 1 | Characteristics of the patient and laboratory results in the development, tuning, and validation sets.

Development

set (n = 32,707)

Tuning set (n =

8,295)

Validation set

(n = 30,469)

p-value

Chronological age (years) 53.3 ± 16.9 52.8 ± 17.3 51.8 ± 16.9 <0.001

Gender (male) 18,044 (52.1%) 4,454 (50.3%) 16,726 (51.7%) 0.011

BMI (kg/m2 ) 24.6 ± 4.0 24.5 ± 4.0 24.5 ± 4.0 0.047

SBP (mmHg) 125.5 ± 19.9 124.8 ± 19.6 124.4 ± 19.5 <0.001

DBP (mmHg) 78.4 ± 12.4 77.9 ± 12.3 78.0 ± 12.3 <0.001

Disease history

DM 6,054 (17.5%) 1,142 (12.9%) 4,008 (12.4%) <0.001

HTN 9,509 (27.4%) 2,508 (28.3%) 10,027 (31.0%) <0.001

HLP 9,682 (27.9%) 2,171 (24.5%) 6,935 (21.5%) <0.001

CKD 1,312 (3.8%) 283 (3.2%) 781 (2.4%) <0.001

AMI 362 (1.0%) 83 (0.9%) 283 (0.9%) 0.079

STK 1,913 (5.5%) 525 (5.9%) 1,829 (5.7%) 0.315

CAD 4,740 (13.7%) 1,321 (14.9%) 4,917 (15.2%) <0.001

HF 1,147 (3.3%) 343 (3.9%) 1,518 (4.7%) <0.001

AF 783 (2.3%) 222 (2.5%) 795 (2.5%) 0.161

COPD 3,281 (9.5%) 958 (10.8%) 3,050 (9.4%) <0.001

Laboratory test

GLU (mg/dL) 107.4 ± 37.7 101.9 ± 32.8 102.5 ± 33.7 <0.001

HbA1c (%) 6.0 ± 1.2 5.8 ± 1.0 5.8 ± 1.0 <0.001

TG (mg/dL) 129.5 ± 86.7 126.2 ± 81.4 127.6 ± 81.8 0.001

TC (mg/dL) 186.1 ± 39.0 187.0 ± 39.1 187.6 ± 38.3 <0.001

LDL (mg/dL) 113.2 ± 33.7 113.9 ± 33.8 115.4 ± 33.6 <0.001

HDL (mg/dL) 51.9 ± 13.7 51.7 ± 13.6 51.4 ± 13.6 <0.001

eGFR (mL/min) 91.0 ± 24.0 91.2 ± 24.0 92.3 ± 23.1 <0.001

BUN (mg/dL) 15.6 ± 9.2 15.5 ± 8.7 15.1 ± 8.4 <0.001

Na (mEq/L) 139.8 ± 2.8 140.0 ± 2.9 140.0 ± 2.9 <0.001

K (mEq/L) 4.1 ± 0.4 4.1 ± 0.4 4.0 ± 0.4 <0.001

Cl (mEq/L) 103.6 ± 3.1 103.7 ± 3.0 103.8 ± 3.1 <0.001

Ca (mg/dL) 9.4 ± 0.4 9.4 ± 0.4 9.3 ± 0.4 <0.001

Mg (mg/dL) 2.2 ± 0.2 2.2 ± 0.2 2.2 ± 0.2 0.005

AST (U/L) 22.3 ± 19.4 22.3 ± 16.3 22.2 ± 18.7 0.931

ALT (U/L) 23.3 ± 25.2 22.9 ± 25.7 23.4 ± 29.7 0.234

Alb (g/dL) 4.4 ± 0.3 4.4 ± 0.3 4.4 ± 0.4 0.009

CRP (mg/L) 0.9 ± 2.1 0.8 ± 2.0 0.9 ± 2.1 0.046

WBC (103/uL) 6.5 ± 3.2 6.5 ± 2.6 6.5 ± 2.0 0.003

PLT (103/uL) 245.5 ± 68.5 232.1 ± 62.6 230.9 ± 63.6 <0.001

Hb (mg/dL) 13.7 ± 1.8 13.7 ± 1.8 13.8 ± 1.8 <0.001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; DM, diabetes mellitus; HTN, hypertension; HLP, hyperlipidemia; CKD, chronic kidney disease; AMI,

acute myocardial infarction; STK, stroke; CAD, coronary artery disease; HF, heart failure; AF, atrial fibrillation; COPD, chronic obstructive pulmonary disease; GLU, glucose; HbA1c,

glycated hemoglobin; TG, triglyceride; TC, total cholesterol; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; eGFR, estimated glomerular filtration

rate; BUN, blood urea nitrogen; Na, sodium; K, potassium; Cl, chloride; Ca, calcium; Mg, magnesium; AST, aspartate aminotransferase; ALT, alanine aminotransferase; CRP, C-reactive

protein; Alb, albumin; WBC, white blood cell count; PLT, platelet; Hb, hemoglobin.

using a global Schoenfeld method. In principle, the Schoenfeld
residuals are independent of time. A plot that shows a non-
random pattern against time is evidence of violation of the
proportional hazard assumption. The analyses that violated
this assumption were emphasized and concluded a related
conservative interpretation. A survival curve was used to
visualize the people who has an older ECG-age. To evaluate the
additional predictive contribution from ECG-age, we used the
concordance index, also called the C-index, to present the global
performance. The statistical analysis was carried out using the
software environment R version 3.4.4. We used a significance
level of p < 0.05 throughout the analysis.

RESULTS

The patient characteristics in the development set, tuning set,
and validation set are in Table 1. These sets showed different
distributions of almost all the characteristics of the patient. As the
output of the age estimation network was a continuous variable,
the statistics of the mean absolute error were calculated with the
overall correlation and the explained variance (R squared), which
is presented in Figure 3. The difference between chronologic age
and ECG-age was 1.03± 8.69 years with a mean absolute error of
6.899 years. The explained variance by ECG-age on chronologic
age in the validation set is 66.8% (r = 0.822), which showed in
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FIGURE 3 | The association between chronological age and ECG-age in validation set. (A) Shown is the ECG age (y-axis) vs. the reported chronologic age (in years;

x-axis, dotted line). The difference between chronologic age and ECG-age was 1.03 ± 8.69 years with a mean absolute error of 6.899 years. (B) It demonstrates a

multi-group classification to the age (in years). There are 16 groups which divided by ECG age and chronologic age. The y-axis is ECG age and the x-axis is

chronologic age. Each group is in terms of the percentage of patients with a specific chronologic age who had a specific corresponding ECG-age (eg, a patient from

<35 y of age having a ECG age from <35 y). The squared weighted kappa value was 0.76 in this analysis. (C) Shown a subgroup analysis about patient without any

diseases. The difference between chronologic age and ECG-age was 1.69 ± 8.53 years with a mean absolute error of 6.86 years. (D) Shown a subgroup analysis

about patient with one of any diseases. The difference between chronologic age and ECG-age was 0.24 ± 8.82 years with a mean absolute error of 6.95 years. The

MAE is highest in patient with any one of disease.

Figure 3A. For the multi-group classification to the age groups
of <35, 35 to 49, 50 to 64, and >75 and the squared weighted
kappa value was 0.76 in this analysis (Figure 3B). We further

evaluate the impact of different groups on MAE. We divided
the patients into 2 groups. One group is patients without any
diseases. Another group is patients with any one of the diseases.
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FIGURE 4 | The comparison between higher ECG-age and lower ECG-age for outcomes of interest in validation set. The plots display three groups, with ECG-age

more than 7 years greater than the chronological age (denoted by: ECG-age –Age >7, red columnar) those with ECG-age within a range of 7 years from their

chronological age (denoted by: ECG-age –Age-7 to 7, blue columnar); and, those with ECG-age more than 7 years smaller than the chronological age (denoted by:

ECG-age –Age <7, green columnar). X-axis is cumulative incidence and y axis is year. We can find red columnar is obvious with high hazard ratio on all outcomes of

interest with statistics significant. Green columnar demonstrated opposite effect on all outcomes of interest.

Figure 3C showed that the difference between chronologic age
and ECG-age was 1.69± 8.53 years, with amean absolute error of
6.86 years. Figure 3D showed a subgroup analysis about patients
with one of any diseases. The difference between chronologic
age and ECG-age was 0.24 ± 8.82 years with a mean absolute
error of 6.95 years. The MAE is highest in patient with any one
disease. We further explored the contribution of residuals on
CVD-related outcomes.

In the validation set, we further separated patients into
three groups, one is high residual which means the ECG-
age minus chronologic age more than 7 years, low residual
which means ECG-age minus chronologic age <–7 years,
and the group between high residual and low residual. In
patients with discrepancy of chronologic age and ECG-age
higher than 7 years, there was higher preexisting comorbidities
including DM, HTN, CKD, AMI, CAD, and HF. These patients
also have a higher BMI, blood urea nitrogen (BUN), fasting
glucose, HbA1c, white blood cell counts (WBC), triglyceride
(TG), and lower eGFR. On the other hand, those with
ECG-age of 7 years less than the chronological age have a
lower comorbidities and better laboratory examination. The
trend test is significant between higher residual (older ECG-
age) and lower residual (younger ECG-age) no matter what
comorbidities or laboratory examination (Figure 4). We further
analyzed the relationship between residual and all the ECG
features (Supplementary Figure 1) and demonstrated the most
significant ECG abnormal features related to the higher ECG-
age in Figure 5. High residual is associated with more ECG
abnormal features such as atrial fibrillation, left bundle branch
block, atrioventricular block and ventricular premature complex,
and all ECG abnormal features which revealed the statistics
significance. In summary, the high residual represented more of
the risk factors of CVD and might lead to a higher incidence
of extensive CVD events. Figure 6 presents an ECG from a
typical patient with discordant ECG-age and chronological age.

In this case, the AI model detected multiple concerning features
and predicted a much higher ECG-age, and, finally, the patient
suffered poor outcomes despite her related low chronological age
(49-year-old) initially.

Figure 7A represents which new-onset CVD-related
outcomes, including all-cause mortality, CV-caused mortality,
HF, DM, CKD, AMI, STK, CAD, AF, and HTN, were most likely
associated with a predicted ECG-age that is more than 7 years
greater than the chronological age after adjustment for age and
gender. We excluded the cases with corresponding histories
of diseases to focus on the new-onset disease. During median
follow-up years of 2.15 (interquartile range, IQR: 0.28–4.61), 2.15
(IQR: 0.28–4.61), 2.72 (IQR: 1.08–5.06), 2.55 (IQR: 0.91–4.90),
2.72 (IQR: 1.07–5.06), 2.76 (IQR: 1.10–5.12), 2.64 (IQR: 1.03–
4.96), 2.47 (IQR: 0.92–4.72), 2.73 (IQR: 1.09–5.08), and 2.31
(IQR: 0.80–4.52), the at-risk patients of all-cause mortality, CV-
caused mortality, new-onset HF, DM, CKD, AMI, STK, CAD, AF,
and HTN initially were 38,764, 38,764, 32,164, 29,033, 32,635,
33,132, 31,636, 28,179, 32,749, and 22,849, respectively. The high
residual group had an increased risk for the all-cause mortality
(HR 1.61, 95%CI 1.23–2.12), CV-caused mortality (HR 3.49,
95%CI 1.74–7.01), newly onset HF (HR 2.79, 95%CI 2.25–3.45),
and newly onset AF (HR 2.38, 95%CI 1.86–3.04). On the other
hand, those with ECG-age of 7 years less than the chronological
age have a lower cumulative incidence of new-onset CVD-related
outcomes compared with predicted ECG-age range from−7 to 7
years. The low residual group had a decreased risk for CV-caused
mortality (HR 0.37, 95%CI 0.19–0.76), newly onset HF (HR
0.54, 95%CI 0.44–0.67), and newly onset AF (HR 0.61, 95%CI
0.49–0.75). Not only on mortality, but also other CVD-related
outcomes were demonstrated with statistical significance in
a high residual group. The low residual group demonstrates
opposite results compared to the high residual group. We used
the spline curves showing the relationship between the new-
onset CVD-related outcomes and the residual of ECG-age and
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FIGURE 5 | The relationship between ECG-age and ECG important features. The plots display three groups, with ECG-age more than 7 years greater than the

chronological age (denoted by: ECG-age –Age >7, red columnar) those with ECG-age within a range of 7 years from their chronological age (denoted by: ECG-age

–Age-7 to 7, blue columnar); and, those with ECG-age more than 7 years smaller than the chronological age (denoted by: ECG-age –Age <7, green columnar). Sinus

rhythm is associated with ECG-age –Age <7, green columnar. ECG abnormal is associated with ECG-age –Age >7, red columnar. #p < 0.05; ##p < 0.01;
###p < 0.001.

chronologic age. Abnormal ECG features account for about 25%
of the total in our validation set, which is 7,729 ECGs. The high
residual (ECG age - age>7) is significantly increased hazard ratio
of new-onset CVD-related outcomes (Figure 7B). We conducted
a Global Schoenfeld test for the above Cox models (the details
were shown in Supplementary Figure 2). The analyses using all
the ECGs, normal ECGs, and abnormal ECGs were conducted in
this assumption test. The violated analyses were new-onset AMI
(p = 0.04091), new-onset STK (p = 0.001849), new-onset AF (p
= 0.01449), and new-onset HTN (p < 0.00001) in all ECG, and
new-onset STK (p = 0.01883), new-onset CAD (p = 0.00127),
and new-onset HTN (p < 0.00001) in normal ECG group. In
the above violated cases, some of them were contributed from
sex and age, and the new-onset AMI in all ECGs (p = 0.0229),
new-onset AF in all ECGs (p = 0.0016), new-onset HTN in
all ECGs (p = 0.0004), new-onset AF in normal ECGs (p =

0.0359), and new-onset HTN in normal ECGs (p = 0.0012).
These violated analyses results should be interpreted carefully. In
summary, the high residual represented that the patient might
lead to a higher incidence of extensive CVD events.

Cox proportional hazard model and C-index are used as
the performance assessment for a series of models in Figure 8.
We conducted 3 kinds of models to analyze the additional
contributions of ECG-age on each outcome. Model 1 includes
significant demographic data selected by the stepwise program
for each outcome. Model 2 includes variables in model 1
and additional significant comorbidities, and model 3 includes
variables in model 2 and additional significant laboratory tests.
The more valuable variables were included, and the better C-
index was conducted on each interesting outcome. In model 1

and model 2, ECG-age almost provided additional contributions
on each interested outcome with statistical significance. The
analysis presented here shows that the ECG-age can provide
more information of the CVD-related outcomes than traditional
cardiovascular risk factors. In model 3, ECG-age provided
additional contributions with statistical significance on newly
onset HF, newly onset STK, and newly onset AF. While
not statistically significant, ECG-age demonstrated a trend to
improve the C-index on each interested outcome.

Figure 9 shows the DLM validation in two external cohorts,
the SaMi-Trop and CODE-15% (24). During median follow-up
years of 2.08 (IQR: 1.98–2.23) and 3.46 (IQR: 2.12–5.22), the
initial at-risk patients in SaMi-Trop and CODE-15% were 1,556,
and 218,070, respectively. Whether it be the SaMi-Trop cohort
or the CODE-15% cohort, the high residual revealed a high all-
caused death after adjustment for age and gender. The SaMi-Trop
cohort showed an HR of 3.16 (95% CI: 1.72–5.78). The CODE-
15% cohort showed an HR of 1.59 (95% CI: 1.45–1.74). In low
residual, it also revealed a decreased HR in all-cause mortality.

DISCUSSION

In this study, we trained our DLM to predict age by ECG.
The mean difference between ECG-age and chronologic age was
6.899 years, which is consistent with a previous report (22).
Such results indicated that the residual does not contribute to
random errors.We considered that ECG-age was an independent
risk factor correlated with CVD-related outcomes. In a previous
study, patients with higher residual have more comorbidities
such as low ejection fraction, hypertension, and coronary diseases
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FIGURE 6 | AI-ECG visualization of a 46-year old female with older ECG-age. A 46-year-old woman who had type 2 diabetes mellitus, hyperlipidemia under regular

OPD follow up. Her ECG-age is 61.4 years old which is much higher than her chronological age. Using the class activation mapping and attention mechanism to

explain the AI-ECG prediction, we used white-to-red gradient to indicate the importance of each lead, and the darker-to-light gradient to indicate the contribution of

each position in prediction of ECG-age. Light green and yellow mean older and younger rhythms. The most important part in this case is aVL, which accounts for

18.6%, while AI considered it was an old feature with widely green color. Although it presents sinus rhythm, we can see the part emphasized by AI-ECG shows relative

irregular baseline, which may be caused by a patient with muscle tremor, muscle tension, dry skin turgor, and Parkinson’s disease. We considered that AI-ECG may

acquire information from these tiny changes. The patient was diagnosed of coronary artery disease, single vessel disease status has post-percutaneous coronary

intervention with a drug-eluting stent implanted at left circumflex artery after 3 years.

(22). Our study evaluated the relationship between ECG-age and
ECG abnormal features, and the results revealed that the high
residual was the high frequency of ECG abnormal features. We
further applied an ECG-age to predict CVD-related outcomes
and found that patients with a high residual were significantly
susceptible to an all-cause mortality, CV-caused mortality, and
CVD-related outcomes after adjusting for potential confounding
factors. Subgroup analysis showed the group with any one of
diseases with bigger MAE than health group. In the external
validation cohort, high residual was also demonstrated with an
increased HR of all-cause mortality.

Traditional risk factors, such as age, sex, blood pressure,
smoking, DM, and cholesterol level, have been used to
predict CVD-related outcomes (2–4). Interestingly, certain ECG
abnormalities have been applied to predict adverse events
(30). In the previous study, they proposed 4 ECG variables
[i.e., AF/AF, Q/QS, intraventricular conduction delay, and left
ventricular hypertrophy (LVH) by voltage] as independent

predictors for CVD-related outcomes (30). Here, we also
discovered a similar correlation between AI-derived ECG-
age and ECG abnormal features. The CVD guideline which
published by the National Vascular Disease Prevention Alliance
in Australia incorporates ECG and traditional CVD risk factors
to achieve better CVD event risk prediction (31). Many
studies were dedicated to obtaining more information from
ECG, such as predicting serum potassium concentration (13),
and the presence of AF in the future (21), or predicting
mortality from a 12-lead ECG (24–26). Although current CVD
risk prediction models and ECG abnormalities provide great
information regarding CVD events and outcomes, they lack
integration, which is not convenient for clinical use. Our
study provides a practical approach model, the ECG-age, to
predict not only the focus on mortality but also the CVD-
related outcomes.

Under normal development, the physiological age is the same
as the chronological age. Many cardiovascular risk factors can
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FIGURE 7 | The comparison between higher ECG-age and lower ECG-age for outcomes of interest in validation set. (A) Long-term incidence of developing

corresponding adverse event in patients at risk, stratified by the difference between chronological age and ECG-age. The table shows the at-risk population and

cumulative risk for the given time intervals in each risk stratification. (B) Continuous association of the difference between chronological age and ECG-age on each

outcome. The solid line and dashed line are the point estimation and the corresponding 95% conference interval, respectively. All hazard ratios were adjusted by

gender and chronological age. “Normal” refers to the ECGs labeled as normal by the original interpreting physician at the time of ECG acquisition, “abnormal” refers to

any ECGs not identified as normal. The black line, green line, and red line represent the risk curve in all ECGs, normal ECGs, and abnormal ECGs, respectively.

lead to an early CVD and cause morphological changes on
ECG. We used a class activation mapping to see which portion
is AI-focused. However, we cannot fully understand how AI
can predict the age and extensive CVDs. We can only find
some abnormal ECG that is correlated with old ECG age. Some
pathologic tiny change was probably observed by DLM. The
heuristic previous study on ECG derived the heart age connected
with the Bayesian approach. They used a P-wave duration, axis
of QRS and T wave, RR interval variability, and QRS root mean
squared voltages to estimate heart age. This study showed a
good relation between ECG-age and chronological age in the
adult health. It also found highly endurance-trained athletes
and patient with CVD risk factors have older ECG age (32).
The QRS-T angle is also a well-established ECG feature about
sudden cardiac death, ventricular arrhythmia, and an all-cause
mortality. It is considered a sensitive and strong predictor of
heart ventricular remodeling. The widened QRS-T angle is also

correlated with age (33, 34). The AI-derived ECG-age was used to
evaluate a patient who received heart transplantation. The result
demonstrated that the post-transplant ECG-age correlates more
closely with the donor’s than the recipient’s chronological age,
which means that the AI-derived ECG-age can reflect more of
the heart age than the chronological age (35). All of the results
partially elucidate the contribution of CVD to the morphological
changes of ECG. Our ECG-age may present a more precise
evaluation of the heart condition than the chronological age
based on the obtained ECG information.

This model exhibits an excellent predictive performance in
AF and HF, for which ECG changes are related to pathological
changes in the myocardium and structural changes (36, 37). In
AF, the most frequent structural change of the atrial myocardium
is interstitial fibrosis, which interferes with atrial conduction (38).
Although these electrical signal changes are recorded by the ECG,
they are difficult to observe due to subtle changes (21). With
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FIGURE 8 | Additional contributions of ECG-age on each outcome in validation set. Cox proportional hazard model and C-index are used as the performance

assessment for a series of models. The model 1 includes significant demographic data selected by stepwise program for each outcome, the model 2 includes

variables in model 1 and additional significant comorbidities, and the model 3 includes variables in model 2 and additional significant laboratory tests. #p < 0.05;
##p < 0.01; ###p < 0.001.
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FIGURE 9 | Survival analysis in SaMi-Trop and CODE15 datasets. Cox proportional model for each risk stratification on all-cause mortality in SaMi-Trop and CODE15

datasets. The table shows the at-risk population and cumulative risk for the given time intervals in each risk stratification. Both of the patients are taken into

consideration: those with ECG-age more than 7 years greater than the chronological age (denoted by: “>7 years older”); those with ECG-age within a range of 7

years from their chronological age (denoted by: “±7 years”); and, those with ECG-age more than 7 years smaller than the chronological age (denoted by: “>7 years

younger”).

AI, these signals can be analyzed and integrated to make useful
predictions (36). A previous study proposed that an AI-enabled
ECG in normal sinus rhythm permits an excellent prediction
of individuals with AF in the future (21). The CHF may be
associated with several ECG characteristics (36), such as AF, a
long PR interval, LVH, pathological Q wave, and widened QRS
(37). A previous study had proposed the accurate diagnostic
power for HF via ECG-based computer-aided detection systems
(36). All of the evidence elucidates the ECG-ages on AF and
CHF, and highlights the strength of our DLM in the prediction
of CVD-related outcomes.

In the target and application, our system could be applied to
reduce the medical costs and screen for cardiovascular disease
incident, which provides beneficial effects on public health. As
illustrated by the British Whitehall II cohort study, people were
classified into three categories by the severity of CVD risk,
who received a different frequency of screening for CVD. Such
a strategy reduced the number of person-years, which were
unrecognized in the high-risk group by 62%, and decreased
the major CVD events by 8% in the study (39). Appropriate
risk stratification equals proper distribution of resources, which
means that those with the highest risk have the clearest indication
for various technologies. In another field, lung age was developed
via a pulmonary function test that compares the expected effects
of aging on the pulmonary system and the presumed additional
damage from tobacco smoke inhalation. Lung age is a tool to
motivate people to quit smoking. A previous study reported
that providing patients with their lung age was associated with

higher quit rates than the general smoking cessation protocol
(40). Such evidence points out the promising role of ECG-age on
motivating patients to conduct a lifestyle modification. If there
is more precise risk stratification, we can detect CVD earlier
and provide more precise medical interventions, which achieve
a better prognosis and reduce medical costs.

Some limitations of this study should be mentioned. First,
this is a hospital-based retrospective study. The included samples
were collected from our physical examination center, which could
not represent the community-based studies. Yet, we used open
access cohort databases to improve this problem, and similar
results were found that high residual correlated with a higher
hazard ratio of mortality. Second, there was a lack of a gold
standard for the physiological age of the heart. We directly
used ECG to predict chronological age, which was based on the
assumption of the same aging speed of chronological age and
heart age. Third, transparency, explainability, and bias are the
limitations of using AI algorithms.We tried to use class activation
mappings and attentionmechanism to improve the explainability
and provide a new figure to demonstrate it. Fourth, biological
age is the accumulation of time, genetic, environment, lifestyle,
and other unknown variables that affect aging. Our electronic
medical records did not store this information, which may
influence the biological age. This single-center study included a
limited number of cases. Although the performance of our DLM
has achieved the state-of-art results of previous studies, larger
multicenter validations are needed. Finally, the Cox regression
analyses in some outcomes of interest, such as the new-onset
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AF and the new-onset HTN, violated the proportional hazard
assumption. Although similar risk curves were presented in
all analyses that patients with the higher difference between
ECG-age and chronologic age had a higher risk of CVDs, we
should emphasize this limitation for future applications in these
two outcomes.

In this study, we have achieved comparable accuracy to
previous studies in age predictions (23–26). The ECG-age is
correlated with mortality which was known by many heuristic
studies (24–26). Here, we demonstrated that ECG-age was not
only correlated with mortality but also extensive CVD-related
outcomes. Although the future study may perform better to
reduce the difference between predictions and actual value, this
study still revealed a part of difference including an extensive
biological meaning. Deep learning accelerates the production of
new risk factor prediction models by integrating unstructured
data. We have shown that DLM has the potential to provide
additional prognostic information by one of themost widely used
medical tests, the 12-lead ECG, which, with further study, could
prove useful in a clinical context, both for risk prediction and for
improving outcomes.
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