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Background: Early prediction and classification of prognosis is essential for patients

in the coronary care unit (CCU). We applied a machine learning (ML) model using the

eXtreme Gradient Boosting (XGBoost) algorithm to prognosticate CCU patients and

compared XGBoost with traditional classification models.

Methods: CCU patients’ data were extracted from the MIMIC-III v1.4 clinical database,

and divided into four groups based on the time to death: <30 days, 30 days−1 year, 1–5

years, and ≥5 years. Four classification models, including XGBoost, naïve Bayes (NB),

logistic regression (LR), and support vector machine (SVM) were constructed using the

Python software. These four models were tested and compared for accuracy, F1 score,

Matthews correlation coefficient (MCC), and area under the curve (AUC) of the receiver

operating characteristic curves. Subsequently, Local Interpretable Model-Agnostic

Explanations method was performed to improve XGBoost model interpretability. We also

constructed sub-models of each model based on the different categories of death time

and compared the differences by decision curve analysis. The optimal model was further

analyzed using a clinical impact curve. At last, feature ablation curves of the XGBoost

model were conducted to obtain the simplified model.

Results: Overall, 5360 CCU patients were included. Compared to NB, LR, and SVM, the

XGBoost model showed better accuracy (0.663, 0.605, 0.632, and 0.622), micro-AUCs

(0.873, 0.811, 0.841, and 0.818), and MCC (0.337, 0.317, 0.250, and 0.182). In

subgroup analysis, the XGBoost model had a better predictive performance in acute

myocardial infarction subgroup. The decision curve and clinical impact curve analyses

verified the clinical utility of the XGBoost model for different categories of patients. Finally,

we obtained a simplified model with thirty features.

Conclusions: For CCU physicians, the ML technique by XGBoost is a potential

predictive tool in patients with different conditions, and it may contribute to improvements

in prognosis.
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INTRODUCTION

Cardiovascular disease (CVD), the leading cause of global
mortality and disability, causes ∼18.6 million deaths annually.
China has the highest mortality worldwide (1). Coronary care
units (CCU), which concentrate on the treatment of patients with
critical cardiovascular diseases, reduce mortality and prolong
life expectancy in patients (2–6). To further improve survival
outcomes, early evaluation and classification of prognosis are
vital, as this can provide significant information for evaluating
a patient’s condition and deciding on appropriate treatments
in advance. However, despite the availability of many clinical
indicators such as the anion gap (AG) and serum osmolarity
(7, 8), for assessing prognosis, the modest prognostic value of a
single indicator and individual differences in the curative effect
and toxicity of treatments make it difficult for clinicians to
estimate the prognosis of CCU patients accurately and quickly.

The rapid development of medical artificial intelligence (AI)
supported by big data and cloud computing makes it possible
to improve the efficiency and accuracy of individual prognosis
evaluation (9). AI has good adaptability in assessing disease
prognosis given its abilities, including non-linear processing,
high tolerance, intelligence, and self-learning. Machine learning
(ML) has been widely applied in the field of disease prognosis
assessment in recent years (10–13). The traditional ML models
mainly include logistic regression (LR), naïve Bayes (NB), and
support vectormachine (SVM). Compared with serum indicators
or clinical scores, these models can comprehensively evaluate
patient status for accurate prognosis classification. However,
these models still have many limitations. Recently, novel ML
models have demonstrated improved performance compared to
traditional ML models.

The eXtreme Gradient Boosting (XGBoost) model is an ML
algorithm with excellent features, such as the efficient processing
of missing data, flexibility, and assembly of weak prediction
models to build an accurate model (14). It is an up-and-
coming, widely favored algorithm in the field of ML. Besides,
the establishment of specialized medical databases, such as the
Medical Information Mart for Intensive Care III (MIMIC-III
database), helps ML models extract data easily and enables
further analysis. XGBoost (15), submitted by Tianqi Chen in
2016, is an integrated learning algorithm based on gradient
boosting. It has been improved on the basis of the gradient
boosting decision tree algorithm (16), with inclusion of the
ability to customize the loss function, normalize the regular term,
sparse feature processing, missing data processing, and parallel
algorithm design, to name a few. These features allow the model
to use variables with different degrees of flexibility in different
areas of the output space, thereby realizing automatic feature
selection and fitting of high-order interactions.

ML has made breakthroughs in the prognostic evaluation
of diseases, and ML prediction models established for different
diseases have achieved good prediction results. Hou et al. (17)
used 4,559 sepsis patients from the MIMIC-III database and
constructed XGBoost, LR, and SAPS-II score models to predict
the 30-day mortality after admission in the intensive care unit
(ICU). The areas under the curve (AUCs) of the three models

were 0.857, 0.819, and 0.797, respectively. Li et al. (18) extracted
1,244 acute myocardial infarction (AMI) patients and built
Gaussian naïve Bayes, LR, K-nearest neighbor, decision tree,
random forest, and XGBoost models to predict 1-year mortality.
The AUCs of the sixmodels ranged from 0.709 to 0.942. Similarly,
D’Ascenzo et al. (19) enrolled 19,826 patients diagnosed with
acute coronary syndrome and constructed a risk prediction
model based on ML algorithm to predict the 1-year mortality,
recurrent acute myocardial infarction and bleeding risk of
patients. However, most existing prognostic evaluation models
use only two categories to predict the prognosis of patients, by
prediction of 30-day morality and 1-year morality, which have
limited clinical applications due to the lack of precision.

Therefore, we extracted CCU patients’ data from the MIMIC-
III database. Fifty-six clinical features were selected as inputs for
the model, based on clinical experience and the completeness
of prognostic indicators. Further, we attempted to construct an
XGBoost model to prognosticate the time to death of CCU
patients and used traditional ML models, such as LR, BN, and
SVM, as benchmark comparisons. Finally, we established sub-
models of each model to assess the clinical value and utility of the
models. To our knowledge, this is the first study to apply a multi-
category prediction approach in prognostic evaluation of CCU
patients, and its findings will be of great significance to clinicians
and patients.

MATERIALS AND METHODS

Data Source
We used the MIMIC III version 1.4 for the study. MIMIC-
III, an openly usable critical care database, includes data of
46,520 patients admitted to multifarious ICUs of the Beth Israel
Deaconess Medical Center (BIDMC) in Boston, Massachusetts,
from 2001 to 2012 (20, 21). The database contains general

FIGURE 1 | Screening flowsheet of the study population. CCU, coronary care

unit; MIMIC-III, Medical Information Mart for Intensive Care III.
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information (such as demographics, the dates of birth and
death, ICU admission, and discharge information), laboratory
parameters, vital signs, body fluid analyses, medication use, and
nursing records. Permission to use the MIMIC-III database was

TABLE 1 | Predictor variables used in this study.

Predictor

Demographic data Serum osmolarity*

Age Urine output*

Gender Diagnosis of heart disease

Ethnicity Coronary heart disease (CHD)

Height Acute myocardial

infarction (AMI)

Weight AMI_ anterior wall

Body mass index (BMI) Atrial fibrillation

Acute physiology (first 24h

in the CCU)

Ventricular arrhythmias†

Vital signs Third-degree

atrioventricular block

Heart rate* (HR) Congestive heart failure (CHF)

Systolic blood pressure* (SBP) Primary cardiomyopathy‡

Diastolic blood pressure* (DBP) Valve disease

Mean blood pressure*(MAP) Endocarditis

Respiratory rate* (RR) Cardiogenic shock

Temperature* (TEMP) Comorbidity and medical

history

blood oxygen saturation*

(SpO2)

Diabetes

Laboratory parameters Chronic obstructive pulmonary

diseases (COPD)

Anion gap* (AG) Hypertension

Bicarbonate* Respiratory failure

Glucose* Hypercholesterolemia

Sodium* Chronic liver disease

Potassium* Chronic kidney disease

Calcium* Prior myocardial infarction

Chloride* Medication use

Creatinine* Antiplatelet

Blood urea nitrogen* (BUN) Anticoagulants

White blood cell* (WBC) Beta-blocks

Hemoglobin* ACEI/ARB

Platelet* Statin

Mean corpuscular volume*

(MCV)

Vasopressin

Mean corpuscular hemoglobin*

(MCH)

Other

Red blood cell volume

distribution width* (RDW)

Sequential organ failure

score (SOFA)

*Each predictor marked with * means that it is a time-stamped variable, and its

corresponding average values within the first 24 h in the CCU were used as inputs in

model development.
† Includes ventricular tachycardia, ventricular flutter, and ventricular fibrillation.
‡ Includes disorders of mitral, aortic, pulmonary, and tricuspid valve; rheumatic diseases of

valves and congenital diseases of valve. CCU, coronary care unit; ACEI/ARB, angiotensin-

converting enzyme inhibitor/angiotensin receptor blocker.

acquired from the institutional review boards of BIDMC and
the Massachusetts Institute of Technology. Moreover, the user
must pass an examination to gain access to the database and be
authorized by the MIMIC-III institute. Our certificate number is
9648065. All patient data from MIMIC-III were extracted using
Structured Query Language (SQL).

Study Population
CCU patients registered in the MIMIC-III database were
included. Only the first admission of each patient was included.
The exclusion criteria were (a) age <18 years, (b) ≥20% missing
individual data, and (c) length of CCU stay <1 day. Eventually,
5,360 patients were included (Figure 1).

Data Collection
All data were extracted from the MIMIC-III database using
SQL. The following data were extracted: demographics, acute
physiology (vital signs and laboratory parameters), diagnoses
of heart disease, comorbidities and prior myocardial infarction,
medication use, and sequential organ failure score. As shown
in Table 1, 56 clinical features were selected as inputs for the
model, based on clinical experience and the completeness of
prognostic indicators. In addition, although viral myocarditis
may lead to heart failure or cardiac arrest (22), this indicator was
excluded because of the lack of sufficient samples in the MIMIC-
III database. Serum osmolarity was calculated using the equation
(2 × Na+ + K+) + (glucose/18) + (urea nitrogen/2.8) (7). Only
values of the three variables measured at the same time were used
for calculations. All laboratory parameters and vital signs were
extracted within 24 h of CCU admission; we calculated the mean
of each indicator separately.

Outcome and Statistical Analysis
The outcome was time to death, defined as the time from CCU
admission to death. Fatality information was extracted from the
file named “Patients” in the MIMIC-III database. Based on the
time to death, we divided patients in this study into four groups:
<30 days (class 0), 30 days−1 year (class 1), 1–5 years (class 2),
≥5 years (class 3), and variables were displayed and compared
between the groups. Normally and non-normally distributed
continuous variables were, respectively, summarized as the mean
± SD and the median (interquartile ranges, IQR). One-way
analysis of variance or the Kruskal-Wallis test was used to analyse
differences. Categorical variables were summarized as a number
(percentage) and were compared between groups using the chi-
square test or Fisher’ exact test. All analyses were performed using
the STATA 15 software, and statistical difference was defined as
p-value < 0.05.

Model and Metrics
In the model-construction phase, we employed an ML model
using XGBoost to predict the time to death, while using LR,
NB, and SVM models as benchmark comparisons. For XGBoost,
we set the reduction rate to 0.3, the maximum tree depth as 2,
while other parameters were set to the default parameters of the
scikit-learn library. In the model-comparison phase, we tested
and compared the performances of the four predictive models for
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FIGURE 2 | Areas under the receiver operating characteristic curves for evaluating the classification performance of the different models. (A) XGBoost model; (B)

naïve Bayes model; (C) logistic regression model; (D) support vector machine model; (E) a comparison of four models. Class 0: time to death < 30 days; Class 1: 30

days ≤ time to death < 1 year; Class 2: 1 year ≤ time to death < 5 years; Class 3: time to death ≥5 years. XGBoost, eXtreme Gradient Boosting.

their accuracy (ACC), F1 score, Matthews correlation coefficient
(MCC), and AUCs of the receiver operating characteristic curves
(ROC). The AUCs and F1 score were calculated bymicro-average
and macro-average methods (23). For classification tasks with
imbalanced data, AUCs, the F1 score, and MCC have better
adaptability (24). Thus, these three indicators were included
in the performance evaluation of the model. Subsequently, we
performed the Local Interpretable Model-Agnostic Explanations
(LIME) algorithm to obtain the direction in which the features
change. LIME places emphasis on training local surrogate models
to explain individual predictions (25). Besides, to further assess

the clinical practicability of the model, we divided patients into
four two-class data sets according to the time of death (for
example, class 1 is for one group, classes 0, 2, and 3 are for
another group) and sequentially established sub-models of each
model. Decision curve analysis (DCA) was used to calculate
the net benefit and compare differences between these four
sub-models. The optimal model was further analyzed using a
clinical impact curve (CIC) to assess the clinical practicability
and net benefit of the model with the best prognostic predictive
value. Finally, the feature ablation curves (excluded one by
one according to the feature importance score from low to
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TABLE 2 | Performance of the four prediction models.

XGBoost NB LR SVM

Accuracy (%), 95% CI 0.663 (0.655–0.671) 0.605 (0.594–0.617) 0.632 (0.621–0.642) 0.622 (0.618–0.627)

AUC-micro, 95% CI 0.873 (0.867–0.879) 0.811 (0.802–0.820) 0.841 (0.833–0.849) 0.818 (0.812–0.825)

AUC-macro, 95% CI 0.795 (0.782–0.808) 0.758 (0.745–0.772) 0.741 (0.727–0.756) 0.691 (0.678–0.711)

F1-micro, 95% CI 0.663 (0.655–0.671) 0.605 (0.594–0.617) 0.632 (0.621–0.642) 0.622 (0.618–0.627)

F1-macro, 95% CI 0.416 (0.395–0.434) 0.441 (0.424–0.455) 0.343 (0.326–0.360) 0.275 (0.262–0.287)

MCC, 95% CI 0.337 (0.318–0.357) 0.317 (0.295–0.340) 0.250 (0.224–0.276) 0.182 (0.166–0.198)

NB, Naive Bayes; LR, logistic regression; SVM, support vector machine; CI, confidence interval; AUC, area under the curve; MCC, Matthews correlation coefficient.

high) of the XGBoost model were conducted to obtain the
simplified model.

For all the models above, we used a 10-fold cross validation
method to obtain the performance of the model for the whole
data set. For cross validation, the dataset was divided into 10-
folds, of which 1-fold was used as the test set and the remaining
were used as the training set; all results of the 10 repetitions were
averaged as the overall performance. In the XGBoost model, we
used 20% of the training set as the validation set to perform the
early stopping strategy. All experiments of the XGBoost model
and other models were constructed using the scikit-learn of the
standard ML software package in the Python 3.8 software.

RESULTS

Baseline Characteristics
In total, 5,360 patients admitted to the CCU were included
(Figure 1). The baseline characteristics of patients stratified
by time to death are displayed in Supplementary Table S1.
Except for the ethnicity, third-degree atrioventricular block,
primary cardiomyopathy, chronic liver disease, prior myocardial
infarction, and blood oxygen saturation (SpO2), other clinical
features showed a statistically significant difference between the
groups (p < 0.05).

Model Comparisons and Validations
In the model-construction and validation phase, ML models had
different recognition and classification capabilities for different
classes. These capabilities had some consistency, that is, the
model had better classification capabilities for classes 0 and 3,
while the classification performance for classes 1 and 2 was poor.
If the XGBoost model is taken as an example, the micro-AUCs of
classes 0 and 3 were 0.88 and 0.836, respectively; those of classes
1 and 2 were 0.764 and 0.7, respectively (Figures 2A–D). All
four models (XGBoost model, NB model, LR model, and SVM
model) showed good discriminatory power with micro-AUCs
of 0.873 (95% CI 0.867–0.879), 0.811 (95% CI 0.802–0.820),
0.841 (95% CI 0.833–0.849), and 0.818 (95% CI 0.812–0.825),
respectively, and macro-AUCs of 0.795 (95% CI 0.782–0.808),
0.758 (95% CI 0.745–0.772), 0.741 (95% CI 0.727–0.756), and
0.691 (95% CI 0.678–0.711), respectively. The accuracy and F1-
micro of themodels were 0.663 (95%CI 0.655–0.671), 0.605 (95%
CI 0.594–0.617), 0.632 (95% CI 0.621–0.642), and 0.622 (95%
CI 0.618–0.627), respectively. The MCCs of models were 0.337

(95% CI 0.318–0.357), 0.317 (95% CI 0.295–0.340), 0.250 (95%
CI 0.224–0.276), and 0.182 (95% CI 0.166–0.198), respectively.
These indicators showed that the XGBoost model was the most
optimal option, although its F1-macro was not the largest among
the four models (Figure 2E; Table 2).

The performance indicators of the validation set and test set
under the 10-fold cross validation test of the XGBoost model are
shown in Table 3. There was no significant difference between
the two sets. Subsequently, we applied the XGBoost model to the
subgroup analysis of the four major heart diseases. The results are
shown in Table 4, and the models all showed good performance.
The coronary heart disease subgroup was the best.

Features Assessed Using XGBoost
As shown in Figure 3, according to the results of each feature’s
analysis in the XGBoost model, age was most important
feature of the data set. The remaining top 10 features were
temperature, mean arterial pressure (MAP), SpO2, systolic blood
pressure (SBP), chloride, red blood cell volume distribution
width urine_24 h, hemoglobin, and body mass index, in that
order. However, traditional prognostic-related indicators, such
as diabetes and hypercholesterolemia, showed poor importance
contribution scores.

Interpretability of the Prediction Model
Figure 4 shows the decision process for the single-sample
prediction of class 0, which is a local interpretation of the
XGBoost model based on LIME. This sample was correctly
classified as class 0 by the model, where the features in green
allowed the model to identify the sample as class 0, and the
features in red allowed the model to identify the sample as
not class 0. The LIME results of classes 1–3 are shown in
Supplementary Figure S1.

Sub-models Comparisons
According to DCA of four prediction sub-models, the net
benefit for the XGBoost model was all greater than that of the
traditional models for the threshold probabilities of different
outcomes, meaning that the XGBoost model was the most
optimal (Figures 5A–D). Thus, the XGBoost model was further
analyzed using CIC. The CIC is shown in Figures 6A–D, and
clearly shows that the XGBoost model had an excellent clinical
net benefit within the general range of threshold probabilities
and impacted patient outcomes, which verifies that the XGBoost
model had better clinical decision-making performance than
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the other models for different categories of patients. Table 5
shows the quantitative results of the DCA and CIC curves of the
XGBoost sub-model. For example, for class 0, the risk probability
threshold of 0.15 (cost-benefit ratio 15:85) corresponds to at least
75% of the population. This means that <25% of patients were
classified as positive by the model (245 patients). Among these,
99 patients had a positive outcome. The calculated net benefit is
as follows: 99/1,000–(245–99)/1,000× 0.15/(1–0.15)= 0.07.

Simplified Model
As presented in Figure 7, When the number of features of the
XGBoost model is reduced from 56 to 30 one by one, the MCC
remains basically constant, that is, TOP30 in Figure 3 is the
input feature of the simplified model. The detailed information
of Figure 7 is listed in Supplementary Table S2.

DISCUSSION

In this study based on the need for clinical applications, we
pioneered the multi-category ML model for predicting time to
death, rather than the traditional two-category model, for the
first time. We found that the XGBoost model, when compared
with some traditional classification models, showed obvious
superiority in classification performance and clinical utility for
different categories of patients.

In previous ML model studies, predictive performance was
evaluated and compared. However, clinical applicability and
clinical consequences were not investigated. These models,

TABLE 3 | Performance of the validation set and test set under the 10-fold

cross-validation test of the XGBoost model.

Validation set Test set

Accuracy, 95% CI 0.661 (0.654–0.667) 0.663 (0.655–0.671)

AUC-micro, 95% CI 0.870 (0.867–0.874) 0.873 (0.867–0.879)

AUC-macro, 95% CI 0.789 (0.783–0.795) 0.795 (0.782–0.808)

F1-micro, 95% CI 0.661 (0.654–0.667) 0.663 (0.655–0.671)

F1-macro, 95% CI 0.420 (0.410–0.430) 0.416 (0.395–0.434)

MCC, 95% CI 0.336 (0.320–0.352) 0.337 (0.318–0.357)

CI, confidence interval; AUC, area under the curve; MCC, Matthews

correlation coefficient.

including XGBoost (17, 18, 26, 27), were applied to patients
diagnosed with AMI, those who underwent open-heart surgery,
or those admitted to the ICU. All of them had a two-
category pattern, that is, they focused on identifying high-risk
populations for early intervention. However, this type of model
is limited by the fact that patients outside the high-risk category
are not accurately classified. Therefore, some intermediate-risk
groups of patients do not receive clinicians’ full attention. In
our study, we divided patients into four categories according
to the time to death. We further optimized the XGBoost
micro-parameters, making it more suitable for multi-category
prediction. Consequently, our ML model could assist CCU
physicians in developing treatment strategies and determining
the follow-up intensity according to different risk levels. For
example, when patients enter the CCU, their baseline data, vital
signs, and laboratory data on the first day will be inputted into
the model for analysis. According to the analysis results, the
patient’s prognosis can be stratified. Those predicted to die within
30 days are classified in the high-risk group. Improved vital sign
monitoring and continue hospitalization are recommended for
such patients. Those predicted to die between 30 days and 1 year
belong to the medium-risk group. Increased follow-up frequency
after discharge is recommended, and the attending physician
should pay attention to these patients’ potential risks. Those
predicted to die 1 year later are categorized as the low-risk group
and should be followed up regularly after discharge. However,
these are only approximate clinical decisions. Moreover, specific
treatment measures also depend on the immediate state of the
individual. This study has not discussed this in depth.

An important finding of this study was that the ML model
had a different classification performance for different classes, but
still had a few commonalities. All models had better classification
capabilities for classes 0 and 3, and classification performance for
classes 1 and 2 was poor. This phenomenon may be explained
as follows. First, the grouped data set was unbalanced. More
than 3,000 patients survived for more than 5 years. The models
we built were all supervised ML models. When the samples are
unbalanced, the model tends to ignore the small sample loss
to reduce the overall loss (28). Due to the model’s intrinsic
characteristics, the classification results are often influenced
several categories, resulting in the overestimation of classification
performance. Therefore, the model had a higher classification
accuracy for survival over 5 years. Further, the scales of classes

TABLE 4 | Performance of the XGBoost model in the four major types of heart disease.

CHD AMI CHF VA

Accuracy (%), 95% CI 0.703 (0.691–0.715) 0.751 (0.725–0.777) 0.571 (0.551–0.592) 0.666 (0.628–0.704)

AUC-micro, 95% CI 0.897 (0.888–0.906) 0.917 (0.903–0.931) 0.811 (0.797–0.826) 0.873 (0.855–0.891)

AUC-macro, 95% CI 0.812 (0.791–0.834) 0.815 (0.782–0.849) 0.755 (0.733–0.777) 0.806 (0.773–0.838)

F1-micro, 95% CI 0.703 (0.691–0.715) 0.751 (0.725–0.777) 0.571 (0.551–0.592) 0.666 (0.628–0.704)

F1-macro, 95% CI 0.428 (0.401–0.456) 0.394 (0.348–0.439) 0.414 (0.392–0.435) 0.409 (0.357–0.461)

MCC, 95% CI 0.343 (0.310–0.375) 0.371 (0.294–0.448) 0.306 (0.279–0.333) 0.384 (0.310–0.458)

CHD, coronary heart disease; AMI, acute myocardial infarction; CHF, congestive heart failure; VA, ventricular arrhythmia; CI, confidence interval; AUC, area under the curve; MCC,

Matthews correlation coefficient.
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FIGURE 3 | Feature importance score ranking for 56 clinical features of the four-group XGBoost predictor. The information reflects the contribution of different features

to the classification performance of XGBoost model (from top to bottom). Green, demographic data; Blue, vital signs; Yellow, laboratory parameters; Gray, others.

TEMP, temperature; MAP, mean arterial pressure; SpO2, oxygen saturation; SBP, systolic blood pressure; RDW, red blood cell volume distribution width; BMI, body

mass index; DBP, diastolic blood pressure; WBC, white blood cell; BUN, blood urea nitrogen; MCH, mean corpuscular hemoglobin; HR, heart rate; RR, respiratory

rate; MCV, mean corpuscular volume; AG, anion gap; SOFA, sequential organ failure score; CKD, chronic kidney disease; AMI, acute myocardial infarction; CHF,

congestive heart failure; CHD, coronary heart disease; COPD, chronic obstructive pulmonary diseases.
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FIGURE 4 | The local interpretation of the XGBoost model for class 0. The features of the green column make the model identify the sample as class 0, while the

features of the red column allow the model to identify the sample as non-class 0. Since the sum of green column score exceeded red, the model finally identifies this

sample as class 0.
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FIGURE 5 | Decision curve analysis (DCA) of the four prediction sub-models. (A) class 0 (<30 days); (B) class 1 (30 days−1 year); (C) class 2 (1–5 years); (D) class 3

(≥5 years). The net benefit curves for the four prognostic sub-models are shown. The lateral-axis shows the threshold probability for different class outcomes, and the

direct-axis shows the net benefit. The horizontal dashed line represents no intervention in all patients, with a net benefit of 0, and the sloping gray line represents

intervention in all patients. The four colored curves represent the four schemes (prediction models) with a larger net benefit to XGBoost compared to the other models

for the threshold probabilities of different outcomes.

0, 1, and 2 were very similar and they all had about 700 patients.
This may have attributed to the immediacy of the clinical
indicators. The patients’ physiological state changes all the time.
Over time, the predictive performance of the indicator collected
early may decline. Three studies published previously, in fact,
have predicted the short-term prognosis of patients based on this
feature (17, 18, 26).

Additionally, many studies applied statistical methods
to initially screen predictors and then, incorporated the
screened factors into the model. However, we did not pre-
process the input factors for the following reasons: firstly,
in the initial selection process, we screened out these 56
predictors from hundreds of clinical factors in the database
based on the literature and clinical practical applications.
Secondly, for the first time, we innovatively divided the patient’s
time to death into multiple intervals for prediction. We do
not know whether predictors with or without significant
differences in traditional two-category studies are applicable to
multi-category situations. Furthermore, traditional statistical
screening methods may have limitations in case of multiple
classifications. This may have led to over-screening or
meaningless screening of predictors. Finally, the XGBOOST
algorithm model used can automatically screen the importance

of predictive variables while ignoring the interference of
irrelevant variables, which greatly improved the effectiveness of
our research.

The AUCs, accuracy, F1 score, and MCC testified for the
excellent performance of the XGBoost model. The XGBoost
model builds a host of sub-models for classification, and finally
assembles the classification results. Since the sub-model only uses
a few indicators for model construction, some of the outliers and
missing values will have a smaller impact on the performance of
the model, thus making the model more robust (15). This feature
has good suitability for the MIMIC-III database. Moreover, the
XGBoost algorithm can standardize the regularization term to
prevent the model from overfitting. Thus, these features enable
the model to have a stronger classification performance for
retrospective data. However, accuracy, AUCs, and the F1 score
focus solely on the predictive accuracy of the model, without the
results caused by the prediction information. For improvement
in purely mathematical metrics, DCA is widely used in clinical
analysis (17, 29). DCA is based on a decision-making theoretical
framework that considers both the benefit of the intervention
and the cost of the intervention for patients who cannot benefit
(30). Therefore, DCA can compare the clinical application value
of different models and tell us which model is worth using.
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FIGURE 6 | Clinical impact curve (CIC) of the XGBoost model. (A) class 0 (<30 days); (B) class 1 (30 days−1 year); (C) class 2 (1–5 years); (D) class 3 (≥5 years).

The red curve (number of high-risk individuals) indicates the number of people classified as positive (high risk) by the model at each threshold probability; the blue

curve (number of high-risk individuals with outcome) is the number of true positives at each threshold probability.

However, DCA is used to evaluate the clinical value of the two-
category model. To make it suitable for multi-category models,
we divided the patients into binary data sets in turn, for example,
group 1: class 2 and group 2: classes 0, 1, and 3, and built
sub-model of each model. Then, DCA was used to evaluate
the clinical practicability and decision-making performance of
different models for patients with different outcomes.

The relationship between the contribution features of the
XGBoost model and death cannot be fully explained. Thus,
further research is needed to investigate the specific relationship
between these features and death. The following is a brief
summary of the important results obtained by the XGBoost
model. Among these features, the weight of age was the greatest,
meaning that it was the most significant predictor for the time
to death of CCU patients. This result is consistent with those of
previous clinical studies. Albanese et al. (31) reported that for
CCU patients after percutaneous coronary intervention, older
age was associated with major endpoints such as ventricular
fibrillation, tachycardia, and sudden cardiac or arrhythmic death.
Al-Ghamdi et al. (32) concluded that age >50 years was an
independent predictor of death in CCU patients. Ruiz-Bailén
et al. (33) enrolled 17 761 CCU/ICU patients with AMI, and
indicated that age was an important independent predictive
variable for mortality. This may be due to the following

potential mechanisms: first, older patients tend to have more
complications and infection risks (33); second, older patients,
despite the higher mortality risk, are treated with less aggressive
therapies than younger patients (34); finally, older patients show
poor adaptability and tolerance under stressful conditions such
as hypoxia, myocardial ischaemia, and so on. Besides, we find
that the top 2–4 important features of the XGBoost model
are temperature, MAP, and SpO2, which are all clinically vital
signs. This reminds clinicians to focus on the modest change
in patients’ vital signs at an early stage. Vital signs have been
shown to be the most accurate predictors of clinical deterioration
(35). In the CCU, hyperthermia often indicates infection and
hypothermia indicates shock, both of which are predictors of
poor prognosis; body temperature is thus a good prognostic
factor. Similarly, MAP, SBP, and SpO2 reflect the respiratory
and circulatory state of the patients, and their abnormalities
may indicate early physiological duress. However, traditional
prognostic indicators, such as diabetes, hypercholesterolemia,
had poor contribution scores. On one hand, these indicators
may display lower performance in predicting death in multi-
class classification. In contrast, due to them being categorical
variables, the model may reduce its prognostic classification
weight while simultaneously dealing with categorical and
continuous data.
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TABLE 5 | Critical prediction accuracy under different XGBoost sub-model risk thresholds.

Model risk percentile RPT Cost-benefit

ratio

NHR

(out of 1,000)

NHR with event

(out of 1,000)

Sensitivity

(%)

Specificity

(%)

NB

<30 days (class 0)

≥0 0.00 1: ∞ 1,000 130 100 0 0.13

≥25 0.03 3: 97 710 127 97 33 0.11

≥50 0.06 6: 94 497 121 93 57 0.10

≥75 0.15 15: 85 245 99 76 83 0.07

≥90 0.36 36: 64 99 62 48 96 0.04

30 days−1 year (class 1)

≥0 0.00 1: ∞ 1,000 128 100 0 0.13

≥25 0.04 4: 96 738 124 97 30 0.10

≥50 0.10 1: 9 480 105 83 57 0.06

≥75 0.19 19: 81 239 70 55 81 0.03

≥90 0.29 29: 71 91 28 22 93 0.00

1–5 years (class 2)

≥0 0.00 1: ∞ 1,000 136 100 0 0.14

≥25 0.06 6: 94 740 126 93 29 0.09

≥50 0.12 12: 88 498 103 76 54 0.05

≥75 0.20 20: 80 225 58 43 81 0.02

≥90 0.27 27: 73 90 26 19 93 0.00

≥5 years (class 3)

≥0 0.00 1: ∞ 1,000 606 100 0 0.61

≥25 0.40 2: 3 750 550 91 49 0.42

≥50 0.66 66: 34 494 422 70 82 0.28

≥75 0.85 85: 15 246 230 38 96 0.14

≥90 0.93 93: 7 84 81 13 99 0.04

RPT, risk probability thresholds; NHR, number high risk; NB, net benefit.

FIGURE 7 | Feature ablation curves of XGBoost model. MCC, Matthews

correlation coefficient; CI, confidence interval.

Our study has several limitations due to its retrospective
design. First, a few patients had small amounts of missing data.
Although statistical methods were used to compensate, they
could also have led to data bias and inaccurate prediction results.
Second, measurement bias within calculations is possible, as the
methods were based on specialists’ individual opinion. Finally,
as patient data were extracted from the MIMIC-III database,

clinically common prognostic indicators of cardiovascular
disease, such as troponin, creatine kinase-MB, and lactate,
were excluded because the measurement volume was too small.
Nonetheless, the XGBoost model is an efficient and robust
method for multi-categorically predicting patients’ time to death.

CONCLUSIONS

In summary, our study indicates that the XGBoost model does
outperform traditional models. It has the potential to assist
physicians in the CCU to perform optimal clinical interventions
quickly and accurately, and may thus improve the prognosis of
CCU patients.
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