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Background: Unexplained Left Ventricular Hypertrophy (ULVH) may be caused by

genetic and non-genetic etiologies (e.g., sarcomere variants, cardiac amyloid, or

Anderson-Fabry’s disease). Identification of ULVH patients allows for early targeted

treatment and family screening.

Aim: To automatically identify patients with ULVH in electronic health record (EHR) data

using two computer methods: text-mining and machine learning (ML).

Methods: Adults with echocardiographic measurement of interventricular septum

thickness (IVSt) were included. A text-mining algorithmwas developed to identify patients

with ULVH. An ML algorithm including a variety of clinical, ECG and echocardiographic

data was trained and tested in an 80/20% split. Clinical diagnosis of ULVH was

considered the gold standard. Misclassifications were reviewed by an experienced

cardiologist. Sensitivity, specificity, positive, and negative likelihood ratios (LHR+ and

LHR–) of both text-mining and ML were reported.

Results: In total, 26,954 subjects (median age 61 years, 55% male) were included.

ULVH was diagnosed in 204/26,954 (0.8%) patients, of which 56 had amyloidosis and

two Anderson-Fabry Disease. Text-mining flagged 8,192 patients with possible ULVH,

of whom 159 were true positives (sensitivity, specificity, LHR+, and LHR– of 0.78, 0.67,

2.36, and 0.33). Machine learning resulted in a sensitivity, specificity, LHR+, and LHR– of

0.32, 0.99, 32, and 0.68, respectively. Pivotal variables included IVSt, systolic blood

pressure, and age.

Conclusions: Automatic identification of patients with ULVH is possible with both

Text-mining and ML. Text-mining may be a comprehensive scaffold but can be less

specific than machine learning. Deployment of either method depends on existing

infrastructures and clinical applications.

Keywords: left ventricular hypertrophy (LVH), electronic health record, anderson-fabry disease, cardiac

amyloidosis, text-mining
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INTRODUCTION

Left ventricular hypertrophy (LVH) is a condition characterized
by thickening of the left ventricular (LV) wall and can be
identified using echocardiography (defined as an LV wall
thickness of >12mm). The disease has a prevalence of ±15% in
the normal population (1–3). LVH in the absence of abnormal
loading conditions (i.e., hypertension or valvular disease) has an
estimated prevalence of±0.2% and is named as unexplained LVH
(ULVH) or hypertrophic cardiomyopathy (HCM) (3, 4). ULVH
is an important cause of sudden cardiac death and is caused
by autosomal dominant genetic mutations in genes encoding
proteins of the cardiac sarcomere in 40–60% of patients (5–7).
Some ULVH cases are explained by a variety of rare, genetic, and
non-genetic etiologies that may produce isolated or syndromic
LVH, such as cardiac amyloidosis in an estimated 5–10% and
Anderson-Fabry’s Disease (AFD) in 0.5–1% of cases (3, 8–11).
These specific etiologies are also referred to as phenocopies.

Identification of patients with ULVH is important to allow
risk stratification for sudden cardiac death and screening of
at-risk family members (12–14). Early identification of cardiac
amyloidosis and AFD is essential to initiate targeted treatment
to slow disease progression and improve patient prognosis (15–
17). However, timely identification is hampered by low disease
prevalence, intrinsic phenotypic heterogeneity, presence of
comorbidities or absence of an indicative family history (18–22).

Electronic Health Records (EHR) consist of a variety of
data including both structured tables with results from clinical
investigations and unstructured text data (i.e., discharge letters,
clinical consultation notes, and etcetera). Text-mining is a
method to extract data from unstructured datasets while machine
learning (ML) algorithms can be deployed on structured datasets.
Both approaches rely on research infrastructures, however
the research infrastructure for text-mining may be easier
to deploy than ML because it only needs one data source
(clinical discharge letters) whereas ML requires a multitude
of standardized clinical measurements (i.e., laboratory values,
electrocardiograms, and echocardiography). Both text-mining
and ML have been proposed as methods to extract diagnoses
and assist in classification of patients using real-life EHR data
(23–26). In this proof-of-concept-study, we aimed to assess the
performance of (i) a text-mining approach and (ii) a data-
driven ML approach to identify patients with ULVH, such as
amyloidosis and other phenocopies.

MATERIALS AND METHODS

Subject Inclusion
In this single-center, retrospective study, consecutive patients
referred to Department of Cardiology of the University Medical
Center Utrecht (UMCU) were included. Inclusion criteria were
an age ≥18 years and availability of an echocardiographic
interventricular septum thickness measurement before 6
December 2019 (date of text-query deployment). This study
was conducted in accordance with the principles laid out in the
Declaration of Helsinki and in line with guidelines provided
by ethics committees and national GDPR legislature. Due to

its retrospective nature and the large number of participants,
this study was exempt from the Medical Research Involving
Human Subjects Act (WMO) as per judgement of the Medical
Ethics Committee (18/446 and 19/222 UMCU, the Netherlands)
including the requirement for informed consent. Patients who
had opted out of retrospective studies were excluded.

Study Data and Infrastructure
Using the research data platform, available data on
diagnosis, demographics, electrocardiograms (ECG), and
echocardiography parameters, and unstructured text were
retrieved from the EHR in a standardized research data platform.
The design of this infrastructure has been previously published
(27). Data for the ML model were restricted to a basic set
of variables on these modalities to comply with a standard
diagnostic workup for patients presenting for cardiological
screening and to minimize the chance of data leakage. An
overview of the intended parameters, methods used to handle
outliers and missingness is provided in Supplementary Table 1.

Gold Standard (Study Outcome)
The outcome of this study was ULVH diagnosis or related
phenocopies cardiac amyloidosis and AFD. Three reference lists
were used to adjudicate diagnoses: first, patients with ULVH
diagnosis codes were extracted from the EHR (I42.1 and I42.2,
International Statistical Classification of Diseases (ICD10) codes)
(28). This list was then supplemented by a retrospective list
of genetically-confirmed ULVH patients from the Department
of Genetics. Patients were considered genetically-confirmed if
a pathogenic or likely-pathogenic variant was identified, in
accordance with the 2015 American College of Medical Genetics
and Genomics and the Association for Molecular Pathology
Standards and guidelines for the interpretation of sequence
variants (29), in one or more genes with definitive, strong or
moderate evidence for an association to ULVH (by M.J. and
A.F.B) (30). Third, a list of consecutive patients with cardiac
amyloidosis in accordance with the recently published 2021
ESC position statement on diagnosis and treatment of cardiac
amyloidosis (by M.I.F.J.O.) (18). Echocardiographic LVH was
defined as a maximum wall thickness of >12mm or a left
ventricular mass indexed to body surface area >115 g/m2 in
males and >95 g/m2 in females, in line with current guidelines
(3, 18, 21).

Computer Algorithms
Two computer algorithms were used in this study: one
computer algorithm used text-mining, and the other used
ML. The details of these algorithms are available in the
Supplementary Materials. In short, the text-mining algorithm
was designed using CTCue (a Boolean retrieval text-mining
tool) to identify patients with ULVH, defined as LVH
excluding hypertension and aortic stenosis using clinical
discharge letters and notes. The ML algorithm was trained
on patients with echocardiographic LVH to identify patients
with ULVH. Parameters for the ML algorithm are depicted
in Supplementary Table 1. As ML algorithms require training
on one dataset and testing in another, the model was trained
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on a random selection of 80% of data (stratified by outcome)
and tested in 20%. To assess the added value of text-mining,
“identification by text-mining” was also investigated as a
dichotomous (yes/no) variable in the ML algorithm.

Statistical Analysis
Data are presented as counts (percentages) for count data and
means± standard deviation for normally distributed or medians
(interquartile range) for non-normally distributed continuous
data. Performance of the ML models was assessed on the
holdout set (20% of patients, stratified on outcome) after
manual review of overclassified (false-positive) andmissed (false-
negative) subjects. Manual review was performed by a panel of
experienced cardiologists in the fields of ULVH and amyloidosis
(M.I.F.J.O. and F.W.A). Qualitative assessment of reasons for
misclassification by the text-mining algorithm was performed by
A.S. Sensitivity, specificity, positive likelihood ratio (LHR+), and
negative likelihood ratio (LHR–) were reported for the models.
Positive and Negative predictive values (PPV and NPV) are
provided in the supplements. All analyses were performed in
R version 4.0.3 (RStudio Team, 2020) using RStudio version
1.3.1093 (31).

RESULTS

Study Population
From the electronic health record (n = 40,598), adult patients
were included in the dataset if a measurement of interventricular
septal thickness (IVSt) was available (n = 26,954). A flow
diagram of subject inclusion is provided in Figure 1. Subject
characteristics are provided in Table 1. In total, 204 patients
(1 in ±130) were diagnosed with ULVH, of which 56 patients
were diagnosed with cardiac amyloidosis. This included 12
patients with wild-type TTR amyloidosis (median age 74.4
years, interquartile range 70.4–76.3 years) and 7 with genetic
TTR amyloidosis (median age 65.8 years, interquartile range
63.9–69.3 years). Additionally, two patients were diagnosed
with AFD. Genotypes of ULVH patients are summarized in
Supplementary Table 2, with a total of 41 genotype positive
patients and most pathogenic variants in MYBPC3 (56%) and
MYH7 (20%). Most patients with ULVH were male (69%) and
had a significantly lower mean systolic blood pressure compared
to non-ULVH patients (121 vs. 129 mmHg, p < 0.001). ECG
measurements associated with LVH were also more present
in ULVH (R and S amplitudes, p < 0.007) as well as septal
hypertrophy (1.69 vs. 1.03 cm, p < 0.001). All the patients with
an IVSt measurement available (n = 26,954) were included in
the text-mining dataset. To mimic clinical work-up, only patients
with LVH on echocardiography were included in the ML dataset
(n = 12,281) resulting in an exclusion of eight patients that were
diagnosed with ULVH according to our gold standard (of whom
two had cardiac amyloidosis, three had genetically provenULVH,
and three were identified using ICD-10 coding).

Text-Mining
From the 26,954 subjects, the CTCue population finder algorithm
flagged a total of 8,192 patients with possible ULVH, of whom

159 had ULVH and incorrectly excluding 45 ULVH cases.
Patient characteristics stratified by identification by the CTCue
population finder are provided in Supplementary Table 3.
Patients that were identified by CTCue had characteristics that
were comparable to patients with ULVH, for example with larger
IVSt (1.14 vs. 1.00 cm (p < 0.001), larger LA dimensions [4.00 vs.
3.90 cm (p < 0.001) and longer PQ intervals (165 vs. 158ms, p <

0.001)]. Given the identified 159 patients and missed 45 ULVH
cases, Sensitivity, specificity, LHR+ and LHR– of the CTCue
text-mining algorithm was 0.78, 0.67, 2.36, and 0.33, respectively.
Manual reclassification revealed one additional case of ULVH
which was not present in our gold standard. Reasons for under
classification are provided in Supplementary Table 4, and were
mostly a diagnosis of (pulmonary) hypertension (n = 15, 33%)
and ambiguous notation of LVH (i.e., “important hypertrophy”;
n = 7, 16%). However, in 22 patients (49%) the reason for
under classification was not apparent which is discussed in the
study limitations.

Machine Learning
From the 12,281 patients with echocardiographic LVH, 196
patients were previously diagnosed with ULVH. Subject
characteristics stratified by echocardiographic LVH are provided
in Supplementary Table 5. Patients with echocardiographic
LVH were more frequently male (66.1 vs. 46.7%, p <

0.001), with larger LA dimensions (4.23 vs. 3.69 cm, p <

0.001), longer PQ interval (166 vs. 154ms, p < 0.001) and
longer QRS duration (102 vs. 92ms, p < 0.001). The tuned
hyperparameters for the trained models are provided in
Supplementary Table 6. The performance of the ML models
is shown in Supplementary Table 6. The test set included 39
patients with ULVH, in which ML correctly identified 10 out of
39 (26%) patients with ULVH and 2,412 (99.8% of total) without
ULVH. Manual review of overclassified (false-positive, n = 5)
cases in the test-set revealed that three were in fact true positives
and missed by our golden standard list. Manual review of the
misclassified (false-negatives, n= 29) in the test-set revealed that
one case of the false-negatives was in fact sufficiently explained
by hypertension resulting in a true-negative by the model.
This led to a total of two false positives and 28 false negatives.
Additionally, one novel case of ULVH was also identified that, in
retrospect, required further work-up of LVH. Final sensitivity,
specificity, LHR+ and LHR– after manual review were 0.32, 0.99,
32, and 0.69, respectively. Important variables for classification
included IVSt, systolic blood pressure, and age (Figure 2).

Added Value of Text-Mining
As shown in Supplementary Table 6, including identification
by CTCue as a dichotomous variable (yes/no) did not improve
performance over the baseline ML model (sensitivity, specificity,
LHR+ and LHR– of 0.18, 0.99, 18, and 0.83, respectively).
Coefficients and explanation of Lasso logistic regression were
provided in Supplementary Table 7 and showed that including
identification by CTCue as a dichotomous variable (yes/no)
slightly decreased performance, correctly identifying the same
number of subjects with ULVH and misclassifying one.
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FIGURE 1 | Flow diagram of patient inclusion. Flow diagram showing the patients excluded in each step. For the text-mining algorithm, 26,954 patients were

included. The machine learning algorithm was trained on patients with echocardiographic LVH. IVSt, interventricular septum thickness; LVH, left ventricular

hypertrophy; ULVH, Unexplained Left Ventricular Hypertrophy; HCM, Hypertrophic Cardiomyopathy; G+, genetically-confirmed; ICD10, World Health Organization

International Statistical Classification of Diseases and Related Health Problems, tenth revision.
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TABLE 1 | Patient characteristics.

ULVH

(n = 204)

No ULVH

(n = 26,750)

p-value

Demographics

Male sex 141 (69.1) 14,792 (55.3) <0.001

Age (years) 62 [54, 70] 61 [47, 72] 0.591

Body surface area (m2 ) 1.92 [1.82, 2.10] 1.92 [1.76, 2.07] 0.053

Mean systolic blood pressure (mmHg) 121 (18) 129 (18) <0.001

Mean diastolic blood pressure (mmHg) 72 (11) 74 (11) 0.001

Electrocardiography

Atrial rate (bpm) 71 [61, 84] 72 [62, 84] 0.675

Ventricular rate (bpm) 70 [61, 82] 71 [62, 83] 0.383

P axis (◦) 54 [30, 70] 54 [37, 68] 0.982

R axis (◦) 19 [−38, 68] 31 [−8, 63] 0.114

T axis (◦) 94 [46, 135] 51 [30, 72] <0.001

PQ interval (ms) 176 [152, 206] 160 [142, 182] <0.001

QRS duration (ms) 118 [98, 148] 96 [86, 110] <0.001

QT interval (ms) 432 [394, 465] 396 [370, 422] <0.001

QTc (Fredericia) (ms) 448 [425, 484] 417 [400, 439] <0.001

R amplitude V6 (µV) 693 [364, 1,176] 937 [634, 1,274] <0.001

S amplitude V2 (µV) 1,254 [649, 2,094] 1,098 [717, 1,557] 0.007

Echocardiography

IVS thickness (mm) 16.9 [13.8, 20.0] 10.3 [8.9, 12.0] <0.001

IVS/LV posterior wall ratio 1.32 [1.09, 1.69] 1.09 [0.99, 1.24] <0.001

LV posterior wall thickness (mm) 13.1 [11.6, 15.4] 9.8 [8.6, 11.2] <0.001

LV mass (g) 275.1 [219.6, 326.6] 177.3 [140.0, 225.6] <0.001

Indexed LV mass (g/m2) 144.2 [116.3, 177.2] 91.8 [74.8, 114.4] <0.001

LV end-diastolic diameter (mm) 45.8 (8.7) 49.3 (8.0) <0.001

LV end-diastolic volume (mL) 96.9 [74.5, 119.0] 110.0 [87.6, 137.0] <0.001

LV end-systolic diameter (mm) 30.0 [24.1, 36.3] 31.6 [27.2, 37.2] 0.003

LV end-systolic volume (mL) 39.6 [28.3, 57.7] 42.6 [30.1, 61.6] 0.048

LV ejection fraction (%) 55.9 [45.1, 66.5] 58.6 [49.0, 67.4] 0.026

LV fractional shortening (%) 32.8 [24.0, 43.5] 34.9 [27.2, 41.7] 0.226

LV outflow tract gradient (mmHg) 5.1 [3.4, 8.2] 4.0 [3.0, 5.3] <0.001

Aortic valve gradient (mmHg) 8.4 [5.4, 14.3] 7.0 [5.2, 10.5] 0.01

LA diameter (mm) 4.5 [4.0, 5.1] 3.9 [3.5, 4.5] <0.001

E/A 1.2 [0.8, 1.9] 1.0 [0.8, 1.4] <0.001

Average E/e′ 13.0 [9.9, 18.3] 8.1 [6.4, 10.7] <0.001

Lateral E/e′ 10.5 [7.0, 15.3] 6.9 [5.3, 9.3] <0.001

Septal E/e′ 14.7 [11.1, 19.5] 9.2 [7.2, 12.1] <0.001

MV deceleration time (ms) 170 [140, 220] 180 [150, 220] 0.009

TAPSE (mm) 20.5 (5.4) 22.1 (5.2) <0.001

Criterium on which “outcome” was defined

Echocardiographic LV hypertrophy 196 (96.1) 12,085 (45.2) <0.001

Maximum wall thickness >12mm 174 (85.3) 6,010 (22.7) <0.001

Indexed LV mass >115 (males) or >95 (females) g/m2 170 (90.4) 10,408 (45.2) <0.001

Identified by CTCue population finder 159 (77.9) 8,033 (30.0) <0.001

Patient characteristics, shown as means (standard deviation), medians [interquartile range] or counts (%), stratified by ULVH diagnosis according to the reference lists (amyloidosis,

genetically confirmed, and classified based on World Health Organization International Statistical Classification of Diseases and Related Health Problems, tenth revision). P-values <0.05

are shown in bold. IVS, interventricular septum; LV, left ventricular; LA, left atrial; MV; TAPSE, tricuspid annular plane systolic excursion.
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FIGURE 2 | Feature importance. Relative importance for the top 25 variables of each of the three XGBoost models (41 variables in total), measured by gain. Numbers

denote the rank of the top 25 variables for each model (1 being the most important). LVH, left ventricular hypertrophy.
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FIGURE 3 | Summary figure. Summary figure of the study. BP, blood pressure. IVSt, interventricular septum thickness; LVH, left ventricular hypertrophy; LVPWt, left

ventricular posterior wall thickness; LHR, likelihood ratio; ULVH, unexplained LVH.

DISCUSSION

In this study, we evaluated computer methods (text-mining and
ML) in EHR data to identify patients with ULVH. These methods
are feasible strategies to assist in patient screening for research
databases, trial recruitment or clinical follow-up (26, 32, 33).
Our results suggest that both methods can reduce the bulk of
patients needed to screen with a high negative predictive value
(summarized in Figure 3).

Unexplained LVH
LVH is an echocardiographic abnormality often encountered
in the normal population (±15%) (1–3). As abnormal loading
conditions, such as hypertension and valvular disease are also
quite common, the distinction between LVH that is sufficiently
explained by these conditions and ULVH requires further
investigation (3, 4). Early detection of ULVH is essential to
initiate targeted treatment, for instance in AFD and cardiac
amyloidosis, for risk stratification of sarcomeric ULVH and for
family screening (3, 5–11). As AFD and cardiac amyloidosis are
rare and therefore difficult to detect, the imperative to recognize
them largely depends on availability of specific therapeutic
workflows (11, 17, 20). More likely, patients present to non-
experts with their initial symptoms, leading to an operational
challenge to construct systems that can facilitate identification
of these rare phenocopies (34). Automatic strategies to augment
ULVH detection can therefore provide a systematic framework
for further cardiogenetic screening of patients and relatives. With

accessible EHR data approaches like text-mining or ML are
practicable (35).

Computer Algorithms
Text-mining is the process of deriving high quality information
from text, in this case from clinical discharge letters. It can
range from simple rule-based algorithms, to complex computer
models that understand semantics and word ambiguity (26).
State-of-the-art deep neural networks offer the best performance
but require large amounts of language specific training data,
mostly lacking for rare diseases and especially in Dutch (26,
36–38). For less-frequent diagnoses such as ULVH, rule-based
methods may be a more viable option, given that the terms in
text follow regular patterns (26, 32). A well-performing example
is a simple classification algorithm to identify patients with
systemic sclerosis using data from the EHR (32). However, the
broad definition of ULVH, including phenocopies and allowing
presence of concomitant abnormal loading conditions (not
explaining the degree of left ventricular hypertrophy), makes
precise identification of ULVH an especially challenging task (3).
Furthermore, Dutch terminology for ULVH is heterogeneous,
including different ways of denoting hypertrophy and spelling
of hypertrophic cardiomyopathy. By using a Boolean retrieval
algorithm software (CTCue), clinical criteria for ULVH were
entered: excluding cases when patients had hypertension or
aortic stenosis. These retrieval algorithms may be hampered
by ambiguous spelling in the EHR whereas medical experts
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would easily identify cases when presented to them (as illustrated
in the reasons for under-classification, Supplementary Table 4).
In our study, text-mining identified patients with ULVH with
reasonable sensitivity and LHR- which, given the epidemiology
of ULVH, translates to identification of most patients with ULVH
while reducing the number of patient files needed to be screened
(high negative predictive value). Our results are in line with
other studies using the same approach, for instance reducing
the number of patients that needed to be screened for trial
inclusion by 80% and a yield of 2–5% for inclusion (25). Other
applications for such algorithms include retrospective cohort
building, further emphasizing the supportive role of text-mining
applications rather than a comprehensive solution replacing
human assessment of patient inclusions (25, 39, 40). Further
differentiation amongULVH typesmay be achieved using disease
specific markers in text-mining. For instance, the search may be
further targeted toward amyloidosis by following the recently
published expert consensus statement, including variables such
as risk factors for cardiac amyloidosis (i.e., bilateral carpal tunnel
syndrome, atrioventricular block of polyneuropathy) (41). The
possibility of other risk factors remains up to investigation, as
a recently developed ML model identified atrial fibrillation and
pericarditis to be pivotal in the selection of cardiac amyloidosis
patients as well (42). Differentiation for AFD on the other hand
may include variables such as kidney failure. Whether these
differentiated searches for ULVH types are a viable screening
method, needs to be further explored.

ML algorithms build a model based on training data to
make decisions on new data without being explicitly told
how to do so (learning). Our existing research data platform
provided structured and standardized data to train our ML
(XGBoost) algorithm (27). It identified ULVH patients with high
specificity, however at the cost of sensitivity compared to the
text-mining algorithm. Artificial intelligence (AI) models have
previously been developed to identify patients with heart failure,
or to identify patients with PLN p.Arg14del cardiomyopathy
(43, 44). Our final model was efficient in identifying patients
with ULVH, with a specificity of 0.99, LHR+ of 32 resulting
in a positive predictive value of 0.72. Moreover, the model
identified a previously undiagnosed patient with ULVH. A
highly specific model like this would be better suited for
clinical applications that require high degrees of certainty, e.g.,
when selecting patients to perform expensive diagnostic testing
(such as Whole Genome Sequencing) or in the context of
ethical considerations (whether to inform family members of a
potentially inheritable phenotype) (3). As expected, coefficients
were generally positive for echocardiographic characteristics
of ULVH [(septal) wall thickness, LV outflow tract pressure
gradient, diastolic dysfunction, and LA diameter] and negative
for variables associated with abnormal loading conditions (age,
blood pressure, and aortic pressure gradient).

Infrastructure and Clinical Considerations
Big-data infrastructures improve accessibility of EHR data and
methods such as machine and deep learning can model complex
interactions, find new phenotype clusters, or predict prognosis
(35, 45). The phenotypic data usually included in EHR systems

complies with the definitions of big data and include detailed
laboratory, investigations, ECG data, device data, questionnaires,
and (unstructured) text (27, 35, 46). Importantly, text-mining
requires little data infrastructure: it requires only one database
(clinical discharge letters) and can already be implemented using
a single piece of open-sourced software (47). This advantage
enables easier dissemination to other centers than complex ML
pipelines which often require a multitude of standardized data.
Future developments for data infrastructures should focus on
interoperability between EHR systems to enable validation of
(complex) machine and deep learning models (35, 48).

While using text-mining andML for patient identification and
possible treatment, there are considerations limiting widespread
adoption in clinical setting which including (i) algorithm
performance and (ii) clinical follow-up of identified patients (45,
49). AI-algorithms may fail if selection bias occurred in dataset,
reducing external validity and performance of themodel. Dealing
with rare diseases may for instance lead to underrepresentation
in training data and subsequently be missed by AI algorithms
(49). While algorithms with high positive predictive value and
LHRs would accurately capture true cases, this is usually at the
expense of sensitivity (33). By focussing on the needle in the
haystack, the learning metric for AI algorithm must encompass
a combination of both positive predictive value and sensitivity,
both summarized in the F1-score. External validation in non-
tertiary centers may also be necessary in rare diseases to compare
effectiveness of screening algorithms. Furthermore, clinical
follow-up of selected cases within a common care pathway may
improve effective implementation of these algorithms compared
to fragmented clinical care (50, 51).

Study Limitations
As we used real-world data, it is possible that values in our dataset
were wrong or biased due to clinical, billing, or administrative
interests. Even though our center employs specialized coders
to classify cardiology diagnoses (kappa of 0.78) (26), given the
nature of this work, human errors in classifying disease may have
added noise to the training data which is resembled by the fact
that three genotype positive patients were diagnosed with ULVH
without LVH. As the CTCue population finder algorithms remain
proprietary (essentially a black box), this poses a major limitation
in assessing algorithm shortcomings, exemplified by the fact
that in 22 (49%) of patients the reason for under classification
was not apparent. Use of exclusion terms for hypertension and
aortic stenosis may have contributed to this, by exclusion of
patients with concomitant hypertension or aortic stenosis not
explanatory of the degree of hypertrophy. Conversely, the ML
models were limited to structured variables. As family history is
not standardized in our EHR, we could not include this in our
ML models. Additionally, our manual review was restricted to
misclassified subjects. The (academic) single-center study design
with internal validation may limit external validity. Given GDPR
compliance and the use of privacy sensitive clinical text, external
validation was not available. However, our aim was not to train
and publish a model that can be used, but rather to assess the
feasibility of such a pipeline. Further work may be specific for
data capturing systems per EHR/hospital system.
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CONCLUSION

In this study, we investigated two methods (text-mining and
ML) to identify ULVH patients using EHR data. Our results
suggest that these methods are viable options to reduce the bulk
of patients needed to screen. We conclude that (i) text-mining
can be easily set-up in terms of infrastructure and observed that
it had reasonable sensitivity when deployed to identify patients
with ULVH, (ii) ML was more specific and could be used to
efficiently identify patients with ULVH though at the cost of
sensitivity and infrastructure needs. Deployment depends on
specific requirements of pre-existing data infrastructure, clinical
framework, and ethical considerations.
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