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Endothelial dysfunction is a key early mechanism in a variety of cardiovascular
diseases and can be observed in larger conduit arteries as well as smaller resistance
vessels (microvascular dysfunction). The presence of endothelial dysfunction is a
strong prognosticator for cardiovascular events and mortality, and assessment of
endothelial function can aid in selecting therapies and testing their response. While
the gold standard method of measuring coronary endothelial function remains invasive
angiography, several non-invasive imaging techniques have emerged for investigating
both coronary and peripheral endothelial function. In this review, we will explore and
summarize the current invasive and non-invasive modalities available for endothelial
function assessment for clinical and research use, and discuss the strengths, limitations
and future applications of each technique.
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INTRODUCTION

Despite declines in cardiovascular disease (CVD) mortality rates over the past few decades, CVD
still remains the leading cause of morbidity and mortality in the United States (1). Endothelial
dysfunction contributes to atherosclerosis development and progression, which may ultimately
lead to plaque rupture and cardiovascular events. Although the vascular endothelium serves many
important functions including maintaining vasomotor tone and barrier functions, the most readily
detectable means to define endothelial pathology or dysfunction in humans is by quantifying
vasomotor responses to endothelial dependent stressors. The development in recent years of
imaging strategies to measure endothelial function of the coronary and peripheral vessels has
provided insights into important contributors of coronary artery disease (CAD) and the vascular
response to therapeutic intervention. In this review, we will briefly examine mechanisms relating
endothelial function and atherosclerosis, review imaging strategies, both invasive and non-invasive,
to quantify endothelial function of the coronary and peripheral circulation, and discuss recent
insights from human endothelial function studies.

OVERVIEW: THE VASCULAR ENDOTHELIUM

Dysfunction of the vascular endothelium is increasingly recognized as serving a prominent role
in CVD pathology. The endothelium regulates vascular tone, smooth muscle cell proliferation,
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thrombosis, and leukocyte adhesion and platelet aggregation
(2). Endothelial dysfunction, or alteration in normal function,
often precedes the development of anatomic atherosclerotic
disease progression and clinical manifestation. Examination of
endothelial function can enhance risk stratification, improve
early detection of disease and be used to assess the vascular
response to therapeutic intervention (3).

Healthy endothelial cells respond to local and systemic
factors by producing and releasing vasoactive molecules to
maintain vascular tone, a balance between vasodilation and
vasoconstriction (4). A defining feature of endothelium-
dependent relaxation is the release of nitric oxide (NO),
which diffuses to vascular smooth muscle cells and
results in cGMP-mediated vasodilation (4). NO is released
in response to a variety of signals, such as adenosine,
serotonin, catecholamines, ischemia, and shear stress
(5). Conversely, systemic inflammation and increased
reactive oxygen species (ROS) tend to counter the effects
of NO, and can result in chronic endothelial dysfunction
(6). Cardiovascular risk factors such as hyperlipidemia,
hypertension, and diabetes may result in dysregulation
of endothelial nitric oxide synthase (eNOS) and ROS (7),
leading to endothelial dysfunction, one of the earliest
steps in the atherosclerotic disease process (8). Although
dysfunctional endothelium is characterized by increased vascular
inflammation, permeability and thrombosis, it is impaired
vasodilation in response to stressors that increase NO that
is the most readily measurable response in humans and
detectable by imaging.

In the peripheral conduit vessels, endothelial function
is typically evaluated in the brachial artery due to its
accessibility, and measures can be performed invasively
(forearm plethysmography) or non-invasively (brachial
ultrasound for flow mediated dilation) by evaluating the
vasomotor response to endothelial dependent stressors (9).
Measuring endothelial function of the coronary arteries is more
challenging but important as the clinical impact of coronary
endothelial dysfunction is greater than other vascular beds.
Coronary endothelial function (CEF) is typically examined
through invasive measures during coronary angiography.
Coronary arteries are prone to atherosclerosis and studying
CEF provides new information about the heterogeneity of
endothelial function and contributors to plaque formation in
patients with, or at risk for coronary artery disease. However,
the invasive measurement of CEF carries procedural risk and
preclude studies in lower risk patients over time. Newer non-
invasive measures of CEF including with magnetic resonance
imaging (MRI) and positron emission tomography (PET)
promise new insights into the pathophysiology of CVD in
low risk and other populations not undergoing invasive
angiography and can assess response to therapy. Finally,
microcirculatory assessment of smaller vessels, comprised of
pre-arterioles, arterioles, capillaries and venules, investigates
endothelial function in vascular resistance, which mediates
blood pressure and blood flow. The measure of endothelial
function of the larger (conduit) or smaller (microvessels)
provides important and complementary information which can

help gauge CV risk and provide prognostic information for
patients (10).

TECHNIQUES TO MEASURE
ENDOTHELIAL FUNCTION IN HUMANS:
INVASIVE CORONARY ENDOTHELIAL
FUNCTION ASSESSMENT

The measurement of human endothelial function primarily
focuses on vasoreactivity testing, as this is the most clinically
demonstrable function of the vascular endothelium (11).
Coronary endothelial dysfunction predicts cardiovascular events
and remains the most important vascular bed studied in
vasoreactivity (10, 12, 13). The gold standard for coronary
endothelial functional assessment is via invasive quantitative
angiography to detect luminal changes in response to vasoactive
stimuli, either pharmacologic or physiologic, that increase the
endothelial release of NO (Figure 1) (14, 15).

Coronary angiography for epicardial arterial dimension
measurement is often performed with intracoronary infusion
of acetylcholine. Acetylcholine is an endothelial-dependent
vasodilator that is suitable for intracoronary infusion and is
the most commonly used drug for the purposes of invasive
vasomotor testing. Healthy endothelium should result in
coronary arterial vasodilation and increased blood flow (by
>50%) in response to low dose acetylcholine, while dysfunctional
endothelium may lead to diminished blood flow response
and even to paradoxical vasoconstriction. At higher doses,
acetylcholine can result in constriction of small arteries via
direct effect on smooth muscle cells, and may be used to
evaluate microvascular function (16). Less commonly, other
agents used in endothelial-dependent vasomotor testing have

FIGURE 1 | Coronary angiography for endothelial function assessment.
Coronary angiography can be used for both epicardial and microvascular
function assessment. Typically, acetylcholine is used as the endothelium
dependent vasodilator for epicardial coronaries and adenosine is used for
microcirculation assessment.
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included bradykinin, papaverine and Substance P (17). In
addition, adenosine has partial endothelial dependent effects
(18). These vasoactive agents act on coronary microvasculature
through vasodilation and increased flow, resulting in NO release
and proximal coronary artery vasodilation, or flow-mediated
dilation (FMD) (19, 20), permitting the study of epicardial
endothelial function.

Coronary microvascular function can be studied invasively by
measuring coronary blood flow changes and thereby coronary
flow reserve using a Doppler wire. Generally, this is accomplished
by placement of a Doppler-tipped guide wire into the coronary
artery of interest, whereby continuous blood flow velocity is
measured both at baseline and during intracoronary infusion of
vasoactive substances (acetylcholine, adenosine, or papaverine)
through the guiding catheter (17, 21, 22).

Further, invasive CEF assessment can also be performed by
cold pressor testing (CPT) or exercise testing, both endothelial-
dependent stressors (23). Exercise stress testing can be performed
while supine using a bicycle ergometer with concurrent
hemodynamic monitoring (24). Healthy coronary arteries dilate
in response to these stressors, while paradoxical vasoconstriction
occurs in diseased coronary arteries, suggesting underlying
endothelial dysfunction.

Endothelial dysfunction diagnosed by invasive methods has
been reported in several cardiometabolic disease states and
is associated with future atherosclerosis and other adverse
outcomes (13, 25–27). These techniques have also been used in
the assessment of endothelial dysfunction reversal with treatment
therapies (28). The advantages of catheter-based methods of
coronary endothelial assessment include the precision and
accuracy of results obtained using this gold standard of testing,
particularly in comparison to techniques that rely on surrogate
measures of coronary arterial function (17). With this approach,
however, come the limitations of an invasive procedure with
intra-arterial injection of vasoactive medications that can have
systemic adverse effects, along with exposure to radiation and
contrast. Given these risks, repeat evaluation is often not
performed. Invasive techniques are therefore largely limited to
patients undergoing coronary angiography for clinical reasons.
Additionally, in patients with CAD, vessel area measurements
may be limited in coronary segments with atherosclerosis.

NON-INVASIVE EVALUATION OF
EPICARDIAL CORONARY ENDOTHELIAL
FUNCTION

Magnetic Resonance Imaging for
Assessment of Coronary Endothelial
Function
Magnetic resonance imaging provides a reproducible and safe
means to measure CEF non-invasively without contrast and
with high spatial resolution. In addition, MRI offers the ability
to quantify coronary blood flow velocity and determine blood
flow, important in the assessment of microvascular endothelial
vasoreactivity, as well as measures of vessel wall remodeling,

important in the detection of early atherosclerosis. MR measures
of coronary area and blood flow velocity have been validated
and compared to invasive measures using quantitative coronary
angiography with Doppler techniques in response to stress
(29–31). However, MRI has not been exploited to investigate
coronary endothelial-dependent vasomotor responses in healthy
and diseased states until more recently.

To measure CEF non-invasively, coronary MRI has been
combined with isometric handgrip exercise (IHE), a known
endothelial-dependent stressor to quantify IHE-induced
coronary cross sectional area and blood flow change as
quantitative measures of CEF (32). Using these MRI-IHE
methods, initial studies showed impaired CEF in patients
with CAD (32, 33) and separately in people living with HIV
compared to risk factor matched control participants (34–
36). MR images were taken perpendicular to a proximal or
middle straight segment of the coronary artery best identified
on scout images (Figure 2) and all quantifications were
performed during a period of least cardiac motion as previously
described (32, 37, 38). Both anatomical (cross sectional area)
and velocity-encoded (for coronary velocity and flow) images
were quantified at baseline and during approximately 5 min
of continuous isometric handgrip exercise while under direct
supervision to ensure compliance. In addition, endothelial
independent coronary vasoreactivity was assessed in a subset
of healthy volunteers and CAD patients who additionally
received sublingual nitroglycerin, and imaging was repeated
(32). Moreover, the degree of coronary artery luminal stenosis
in a given CAD patient was compared to local CEF within the
same segment. In this initial study, normal, physiologic coronary
vasodilation and increased coronary velocity and blood flow
were observed in healthy subjects in response to handgrip, but
not in CAD patients. Nitroglycerin, an endothelial- independent
stressor induced normal vasodilation in patients with CAD,
indicating preservation of vascular smooth muscle relaxation
in the same segments where endothelial function was abnormal
(32). Importantly, local CEF was more severely impaired in
areas with significant luminal stenosis and early coronary wall
thickening than that in minimally diseased vessels (32, 33).
Furthermore, reproducibility (including intra-interobserver
and interscan) on the same day and over time (8 weeks) was
robust, important for designing future intervention studies
using this technique (32, 39). Therefore, these MRI methods
to non-invasively and reproducibly characterize CEF provide
an opportunity to allow the monitoring of inventions aimed
at an early stage of coronary disease. The main limitation of
the technique is lack of widespread availability and that the
2D approach does not permit CEF measurements of the entire
coronary tree. Finally, because the protocol involves serial
breath holds, the study may be difficult in sicker patients with
respiratory problems.

Vascular Insights of Coronary
Endothelial Function Studies
Important for any new study measuring endothelial function is
to demonstrate that the vasoreactive response being measured
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FIGURE 2 | Example of coronary endothelial function (CEF) testing using non-contrast MRI with isometric handgrip exercise (IHE). Scout MRI (A) and cross-sectional
cine (B–D) and phase-contrast images (E,F) in a healthy subject showing RCA in cross-section (red arrow). In the expanded inset sections, coronary area increases
from rest (C) to IHE (D) and velocity and flow increase from rest (E) to stress (F) (note that increased darkness represents increased signal and thus velocity down
through the imaging plane). (G) Stress MRI protocol for CEF measures for endpoints: change in coronary cross sectional area and blood flow velocity (%) from
baseline to stress (continuous IHE for 5–8 min). (H) Example coronary flow velocity curve of RCA.

truly reflects NO-mediated endothelial function. The normal
coronary vasoreactive response to IHE detected by MRI was
quantified before and during the infusion of the NO synthase
inhibitor, NG-monomethyl-L-arginine (L-NMMA), to determine
if the coronary response to IHE is NO-mediated, the defining
feature of endothelial function (39). In this study, L-NMMA
infusion blocked the normal coronary vasodilatory response and
coronary blood flow increase with IHE in healthy participants,
demonstrating that IHE is a primarily NO-dependent endothelial
coronary stressor that can be combined with MRI to measure
CEF. In addition, similar approaches were employed to quantify
endothelial function of the internal mammary artery (IMA), a
systemic vessel that rarely develops atherosclerosis, is often used
as a coronary artery bypass graft, and has been previously used
to study systemic endothelial function (38). These initial studies
showed that the IMA response to IHE was NO-dependent and
reproducible, was impaired in patients with CAD compared to
healthy subjects and differed from the endothelial response of the
coronary arteries in a given patient. In summary, MRI promises a
non-invasive assessment of coronary vascular health that can be
safely applied to low- and medium risk populations without the
risks of invasive angiography.

POSITRON EMISSION
TOMOGRAPHY/COMPUTED
TOMOGRAPHY FOR ASSESSMENT OF
CORONARY ENDOTHELIAL FUNCTION

Nuclear imaging methods can be used to evaluate myocardial
blood flow and response to endothelial-dependent stressors.

PET can be used to estimate coronary flow reserve and
myocardial regional perfusion using intravenously injected
tracers (15Oxygen-labeled water, 13Nitrogen-ammonia,
and 82Rubidium), and studies have revealed abnormalities
in endothelial function prior to visible atherosclerosis on
angiography (40, 41). These techniques have been successfully
combined with CPT to assess CEF. CPT protocols typically
involve immersion of the subject’s hand or foot into an ice bath
at 2◦C for at least 1 min prior to radioactive tracer injection
and PET scan (42). CPT functions to increase myocardial
oxygen demand via sympathetic activation, which should cause
vasodilation and an endothelial-dependent increase in coronary
blood flow in healthy subjects (43). Using these principles,
cardiac PET during CPT has been shown to reflect epicardial
vasomotor dysfunction in subjects at high risk for CAD (44).
Abnormalities in myocardial blood flow on PET, regardless
of concurrent CAD, appear to confer an increased relative
risk of death and heart failure (42, 45). It is important to
recognize that myocardial blood flow is affected by epicardial
coronary vasomotor tone and microvascular function, making it
challenging by PET imaging alone to determine whether changes
in flow are related to conduit or resistance vessels (41).

The addition of computed tomography (CT) to PET can
further enhance the sensitivity for atherosclerosis detection (46).
A hybrid PET/CT approach has the ability to quantify changes
in coronary cross-sectional area in response to stress, global,
and relative myocardial perfusion, left ventricular functional
performance, and coronary calcium score. This non-invasive tool
for assessing coronary vascular health may represent a clinically
relevant evaluation that can be performed in early disease or
to predict downstream risk, however, its use has been primarily
research-related (47).
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NON-INVASIVE EVALUATION OF
MYOCARDIAL BLOOD FLOW RESERVE
AS A MEASURE OF CORONARY
MICROVASCULAR FUNCTION

Positron Emission Tomography
Among the currently available non-invasive methods for
measuring myocardial blood flow and myocardial flow reserve
with stress, PET is the most well studied and validated test
(48). Images are obtained at rest and vasodilator-induced stress
following injection of a radiotracer. Post-processing of images
is then performed to quantify regional and global myocardial
blood flow (ml/min/g of myocardium) (45, 49). Myocardial
flow reserve (MFR) is calculated as the ratio of stress to rest
myocardial blood flow (MBF). MBF is affected by myocardial
oxygen demand, contractility, heart rate, blood pressure and
preload, resulting in a reported resting MBF ranging from 0.4 to
1.4 ml/g/min (50). Typically, MFR < 2.0 is considered abnormal
and consistent with microvascular dysfunction in the absence
of significance epicardial disease as changes in MFR can be due
to epicardial and/or microvascular changes in blood flow (50).
A representative image is provided showing rest and stress images
with PET in a patient with microvascular dysfunction and no
CAD on invasive angiography (Figure 3).

Multiple studies have evaluated the prognostic implications
of MFR by PET. Studies have demonstrated that dysfunction

seen on PET can identify individuals at high risk for major
adverse cardiac events and cardiovascular death in those
with and without obstructive CAD (51–53). Moreover, PET
has been shown to reclassify risk in about one third of
patients when compared to only traditional cardiovascular
risk factors (54). The benefits of PET in prognosticating
cardiac death may be particularly evident in specific groups
such as those with cardiometabolic diseases (55, 56). Notably,
abnormal MFR on PET has also been shown to be predictive
of hospitalizations for heart failure in patients with heart
failure with preserved ejection fraction (57). Despite several
studies enhancing risk assessment using PET, there are
limited studies using PET measures to evaluate therapeutic
interventions and response, likely due to concerns about
radiation exposure. Prior studies using PET imaging have
examined the therapeutic response to statins and bariatric
surgery (45, 58, 59).

Ultimately, the advantages of dynamic PET myocardial
imaging include validation by microsphere blood flow
studies in preclinical animal models and human studies
(60, 61). PET also offers better spatial resolution and
lower radiation exposure compared to single-photon-
emission-computed-tomography (SPECT) perfusion
(60). However, PET imaging is associated with high
cost, limited radiotracer availability and advanced
equipment, which can be a limitation to routine and
widespread use.

FIGURE 3 | PET rest/stress images and coronary angiography in a patient with microvascular dysfunction. (A) Perfusion images demonstrate no evidence of stress
(regadenoson)-induced myocardial ischemia. (B) Provides quantitative myocardial perfusion analysis with an overall reduced coronary flow reserve of 1.89, indicative
of mild diffuse microvascular disease. The functional analysis for this patient showed normal wall motion. No obstructive coronary artery disease was seen on
angiography of the left anterior descending (C), left circumflex (C) and right coronary (D) arteries.
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CARDIOVASCULAR MAGNETIC
RESONANCE PERFUSION IMAGING

Non-invasive assessment of impaired myocardial blood flow,
which contributes to ischemia in patients with CAD and
cardiomyopathy, can be performed using stress perfusion
cardiovascular magnetic resonance (CMR), which may be
especially helpful for serial examinations evaluating treatment
success (62). Stress perfusion CMR, distinct from coronary
vasoreactivity approaches mentioned above, typically uses
vasodilator stress (i.e., adenosine) to detect macrovascular
(i.e., coronary stenosis) and microvascular differences in
myocardial blood flow in response to stress. Recently, studies
have employed fully quantitative stress myocardial perfusion
techniques in patients with no obstructive CAD and detected
reduced myocardial perfusion reserve, not explained by cardiac
hypertrophy or fibrosis (63). The ability of CMR to study
ventricular function/structure and fibrosis make it well-suited
to be used in combination with stress perfusion techniques,
especially in patients with left ventricular hypertrophy.

Stress perfusion CMR techniques have also been employed to
evaluate patients at risk for microvascular dysfunction. Clinical
guidelines have recently added microvascular dysfunction to
epicardial stenosis and epicardial coronary spasm as one of
the mechanisms of myocardial ischemia in patients with CAD
(64). One study used stress CMR techniques and showed that
myocardial perfusion reserve index was impaired in women
with no obstructive CAD on coronary angiography, reflecting
microvascular dysfunction compared to reference controls (65).
A randomized trial in this setting showed that medical therapy
with ranolazine improved angina and reduced ischemic burden
in woman with myocardial ischemia detected by stress CMR in
the absence of obstructive CAD, suggesting a possible use of
MRI for therapeutic assessment (66). Additionally, in patients
with infiltrative heart disease such as amyloidosis, it has been
demonstrated that impaired myocardial perfusion is related to
abnormalities in myocardial structure and function not only at
stress, but also at rest (67). Taken together, studies support the
use of stress perfusion CMR to investigate myocardial perfusion
reserve, which reflects microvascular dysfunction in the absence
of CAD. In addition, stress CMR has already demonstrated
high prognostic value and cost-effectiveness compared to
invasive strategies (68, 69). While classically, limitations of this
technique included the need for highly specialized equipment and
providers, recent technical developments now allow quantitative
and fully automated assessment of myocardial ischemia using
stress CMR, which may enable the broad use of this modality
outside of specialized centers (70).

COMPUTED TOMOGRAPHY
ANGIOGRAPHY

The homogeneity of myocardial perfusion can be readily assessed
by its uptake of iodine contrast medium and its associated
X-ray attenuation. George et al. demonstrated that myocardial
perfusion can be quantified using CT and that reversible
perfusion defects can be identified after vasodilator challenge

analogous to nuclear imaging techniques (71). CT scanning is
performed using injection of an iodinated contrast agent with
prospective electrocardiographic gating. Microvascular function
may be assessed by determining MBF at rest and after vasodilator
challenge with abnormal flow reserve typically defined as a ratio
of <2.0 (60). In the absence of obstructive CAD and local
myocardial perfusion defects, reduced MFR can be attributed to
microvascular dysfunction. Figure 4 shows an imaging example
of a patient with a severe myocardial perfusion defect in the
lateral and posterolateral walls post infarct.

Advantages of CT include faster image acquisition than with
nuclear techniques and markedly superior spatial resolution.
Directly compared to nuclear myocardial perfusion imaging
using exercise or vasodilator challenge, CT myocardial perfusion
yields at least equivalent accuracy for identifying patients
with CAD (72). Another major advantage of cardiac CT
is the assessment of both coronary arterial anatomy and
myocardium. Using contemporary technology, rest-vasodilator
CT for coronary angiography and myocardial perfusion imaging
can be performed with radiation doses lower than standard
nuclear perfusion imaging using SPECT, though requiring
two contrast applications of approximately 60 ml each (72).
Determining MBF and coronary flow reserve by CT myocardial
perfusion imaging is possible using dynamic imaging, i.e.,
continued imaging over several cardiac cycles (73).

Application of dynamic CT imaging had been hindered
by high associated radiation exposure to the patient but
new protocols have been developed using lower tube settings
which have reduced radiation to levels similar to that by
conventional rest-vasodilator myocardial perfusion protocols
(73). Comparison to PET revealed high accuracy of dynamic
CT for detecting abnormal MBF using a mean radiation dose of
8.4 mSv (74). Further radiation dose reductions are feasible using
intermittent instead of continuous scanning, thus overcoming
one of the major limitations of dynamic CT perfusion imaging
and opening the possibility of comprehensive coronary arterial
and myocardial assessment.

PERIPHERAL ENDOTHELIAL FUNCTION
ASSESSMENT

Brachial Artery Flow Mediated Dilatation
In the early 1990s, high-resolution B-mode ultrasound and
Doppler emerged as a non-invasive tool to measure brachial
artery diameter and flow changes in response to vasomotor
stimuli in research investigations of endothelial function, and
remain as such currently (9, 75). Specifically, flow-mediated
vasodilatation (FMD) of the brachial artery (or forearm radial
artery) measures a focal segment of the artery to dilate in
response to NO release induced by a 5 min blood pressure cuff
occlusion and release (hyperemic stimulus). Oral nitroglycerin
is typically used as the non-endothelium dependent vasoactive
stimulus. Calculation of the % FMD is the percent change
in arterial diameter post-stimulus compared to the baseline
diameter, measured manually or with edge-detection software
(76). Doppler velocity of the artery is also acquired at baseline,
and upon immediate and 2 min post cuff release. Baseline and
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FIGURE 4 | Representative CT perfusion images and polar plots. Images demonstrate severe myocardial perfusion abnormalities in the lateral and posterolateral
walls in a patient with history of myocardial infarction. (A) Depicts a cardiac four-chamber view with arrows pointing to hypodense areas in the subendocardial and
mid myocardial levels, representing perfusion defects. In addition, thinning of the myocardium is consistent with prior infarct. (B) Provides a cross-sectional
assessment of the same case. (C) (Polar plot) shows the corresponding perfusion indices, with the affected myocardial segments provided in (D).

hyperemic blood flow are calculated from the time-averaged
pulsed Doppler spectral trace time-velocity integral (NOVA
Medical School) from the onset of one waveform to the beginning
of the next waveform. A representative image is shown in
Figure 5 (9). Over the course of time, there have been some
modifications of the technical method and exam protocol, but
studies relying on this technique provide insight into endothelial
function at the imaging site, the time course of diameter
changes and flow, and the role of distal microvascular physiology
(75, 77).

Advantages of the FMD technique include relative cost-
effectiveness, easy access, availability, and validated digital

software for more automated analyses. In addition there is robust
reproducibility in experienced labs and importantly, strong
evidence that endothelial dysfunction measured with FMD
predicts cardiovascular events (78). However, optimal acquisition
of the vessel images and Doppler in a time-sensitive manner
is technically challenging, with a significant learning curve
to achieve and maintain high-quality, consistent performance
and reproducibility in data acquisition and interpretation.
Differences in methodological technique and exam protocols also
limit the comparability, accuracy, validity, and reproducibility.
Nevertheless, brachial FMD methods provide a validated non-
invasive assessment of endothelial function.
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FIGURE 5 | Ultrasound Images Demonstrating Brachial Flow-Mediated Dilatation. (A) Shows the brachial artery at rest with arterial diameter of 3.88 mm. (B) Shows
the artery 1 min after hyperemic stimulus with arterial diameter of 4.09 mm. Figure reproduced with permission from Corretti et al. (9) copyright JACC (Elsevier).

TABLE 1 | Comparison of the invasive and non-invasive methods for assessing endothelial function.

Modality Strengths Limitations

Coronary angiography • Gold standard method
• Direct visualization and quantitation of endothelial
function
• Able to assess dose-response
• Precise and accurate results

• Invasive
• Expensive
• Vasoactive medications can have systemic effects
• Largely limited to clinical studies

Brachial artery flow mediated dilatation • Non-invasive
• Cost-effective
• Validated software for automated analyses
• Well correlated with coronary endothelial function

• Operator dependent
• Technically challenging to obtain optimal images
• Variable measurements, which limit comparability
and reproducibility

Forearm plethysmography/Applanation tonometry • Minimal training required
• Inexpensive
• Portable
• Well tolerated
• Can provide indirect information on the structure of
small resistance arteries

• No clear cutoff values
• Used mostly for mechanistic research studies
• Limited reproducibility
• Requires specialized training for standardization
• Findings may not reflect endothelial function only

Venous occlusion plethysmography • Validated technique
• Reproducible
• Easier to access than coronary arteries

• Invasive
• Limited ability to compare application between
individuals or groups

Positron emission tomography • Well-validated in animal and human studies
• Automated software for quantitative analysis

• Radiation exposure
• Expensive
• Lack of easy access

Computed tomography • Good spatial resolution
• Relatively cost-effective
• Fast image acquisition

• Radiation exposure
• Image may be compromised by increased heart rate
• Calcium related beam hardening may result in
artifacts

Magnetic resonance imaging • High spatial and temporal resolution
• No ionizing radiation
• Cardiac structure and function assessment included

• Limited availability
• Expensive
• Long study length
• Limited use in patients with arrhythmias,
claustrophobia or implanted devices

Venous and Arterial Plethysmography
Venous occlusion plethysmography is an invasive, extensively
used research technique to study human vascular physiology
and pharmacology in vivo. The technique indirectly measures
microvascular function as forearm blood flow in response
to an intra-arterial infusion of a vasoactive substance such

as acetylcholine, adenosine, or nitroglycerin into either the
brachial or radial artery, or alternatively to reactive hyperemia
induced by increased shear stress. The contralateral arm
is used as the control, and the results are expressed as
the ratio of the changes in flow measured in both arms
(79). Training is essential to ensure standardization and
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quality control. The technique is validated, reliable, and
highly reproducible (79). However, its invasive nature
precludes application for routine clinical use. Additionally,
the various anatomic, physiologic and technical factors
involved with venous plethysmography limit its application
to study changes between individuals, groups or in
large populations. A limitation to plethysmography and
applanation tomography include lack of standardization.
Nonetheless, it remains a valuable research tool to evaluate the
pathologic mechanisms underlying endothelial dysfunction,
the effect of various therapeutic interventions and risk
factor modifications.

Similarly, finger plethysmography (peripheral
arterial/amplitude tonometry) can be used to assess peripheral
endothelial function in the digital microvasculature (75,
80). Pulse amplitude tonometry (commercially available as
Endo-PAT2000 (Pulse Arterial Tone), Itamar Medical) is an FDA
approved product that records pulse amplitude in the individual’s
fingertip at rest and during reactive hyperemia (81). Hyperemia
is induced by occluding blood flow through the brachial artery
for 5 min using an inflatable cuff. Hyperemia in the fingertip
increases the pulse amplitude. Proprietary software is applied to
obtain the net response is expressed as the reactive hyperemia
pulse amplitude tonometry index (RHI), considered a marker
of endothelial function. The endothelium-mediated change in
the PAT signal, elicited by the downstream hyperemic response,
is calculated automatically by the system. A PAT ratio is then
created using the post and pre occlusion values normalized to
measurements from the contralateral arm (control). Importantly,
studies have shown that peripheral microvascular dysfunction
predicts future cardiovascular events (82, 83).

Endothelial Function in the Coronary vs.
Peripheral Circulation
Although abnormal systemic and coronary endothelial function
are predictors of cardiovascular events, vasoreactivity across
different vascular beds are not always closely associated. Studies
comparing to coronary systemic endothelial function have shown
that the correlation between the two may be modest (38, 84).
Further, other studies have shown that endothelial dysfunction
is not always uniform across vascular regions or even within the
coronary tree of the same individual (32, 38). These regional
differences in endothelial function may be due differences in local
shear, downstream resistance vessels, neurohormonal regulation
or propensity to develop atherosclerosis and plaque rupture.
Taken together, endothelial function measures of different
vascular beds may provide complementary information, each
with unique strengths and limitations (Table 1). However, further
studies are need to elucidate the relative role of endothelial
measures in different vessels.

CLINICAL STUDIES AND APPLICATIONS

Both established and newer cardiovascular risk factors can
adversely affect endothelial function, including obesity, diabetes,
smoking, and inflammation/oxidative stress (7, 8). To this end,

the measurement of endothelial vasoreactivity serves as an index
of the sum total effects of environmental and genetic factors
on the vasculature. Furthermore endothelial dysfunction is a
marker for subclinical disease, an independent predictor of
adverse cardiovascular events, and a potential target for medical
interventions (78, 82). One study using PET showed that cigarette
smokers have reduced MFR, with improvement seen with
smoking cessation (85). Similarly, initiation of antihypertensives
can result in improved endothelial function in patients with
hypertension (86). Obese patients were reported to demonstrate
impaired MBF with improvement after bariatric surgery (59). In
addition, MFR is reduced in patients with diabetes, with some
suggestion that endothelial function (measured by FMD) may
improve with dapagliflozin (55, 87).

Recently, coronary microvascular dysfunction has been
implicated in multiple disease processes including microvascular
angina, a common encountered disorder which can lead to
ischemia or myocardial infarction, even in the absence of
obstructive coronary artery disease (60). Microvascular angina
due to ischemia with non-obstructive coronary arteries (INOCA)
can be challenging to diagnose, with a heterogenous approach to
patients and many knowledge gaps with regards to treatment.
The CorMicA trial showed that guiding therapy by invasive
provocative coronary testing in patients with INOCA identified
to have microvascular dysfunction may be of clinical benefit
(88). Recent methods using stress perfusion CMR are being
employed in the CorCMR study to evaluate whether a non-
invasive approach to assess coronary microvascular dysfunction
in INOCA patients improves cardiovascular risk and anginal
symptoms (89). The results of study may have important

TABLE 2 | Range of normal values for coronary flow reserve (invasive) and
myocardial flow or perfusion reserve (non-invasive) with different
imaging modalities.

Modality Values used to diagnose CMD

Invasive methods

Angiography + adenosine CFR: abnormal <2.0 (94)

Angiography + acetylcholine CFR: abnormal <1.5 (95)

Non-invasive methods

CMR + adenosine MFR: definite CMD <1.5, borderline CMD 1.5–2.6
(96)
MPRI: abnormal <1.84 (97), ≤1.47 predicts MACE
(98)
Global stress MBF without visual perfusion defects:
abnormal ≤2.25 ml/g/min (70)

PET + adenosine MFR: definite CMD <1.5, borderline CMD 1.5–2.6
(96)

CT-perfusion MFR: abnormal <2 (60)

Forearm plethysmography No established cutoff

Finger plethysmography RHI: <1.6–1.75 portends high risk for
cardiovascular events (99)

CMD, coronary microvascular disease; CFR, coronary flow reserve; MFR,
myocardial flow reserve; MPRI, myocardial perfusion reserve index; MACE,
major adverse cardiac events; MBF, myocardial blood flow; RHI, reactive
hyperemic index. Non-invasive measures of MFR reflect CMD if significant
contribution of reduced from epicardial coronaries has been ruled out.
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clinical implications in this patient population, where there
is less evidence in terms of diagnostic testing and treatment.
Furthermore, using these approaches to quantify coronary
microvascular function may provide clinically meaningful
information beyond what is possible using standard anatomic
and ischemia assessment with the ultimate goal of improving
patient outcomes. It is important to note that many of the
techniques described in this review (PET, specialized CMR, and
CT perfusion) are not yet widely available clinically, however,
may play an important role in the evaluation of patients with
INOCA and to test early therapies to justify larger clinical trials
with hard end points.

Both coronary and systemic endothelial function measures
have been used as endpoints in clinical intervention trials
after the techniques were shown to be reproducible in the
short and intermediate term (90). Studies using endothelial
function as an endpoint enable the assessment of the vascular
impact of emerging treatment strategies and can guide novel
drug development, such as approaches to target oxidative stress
or inflammation. Studies targeting the xanthine oxidase (XO)
system, a significant source of vascular oxidative stress, or
systemic inflammation using colchicine have used CEF testing as
a surrogate imaging endpoint over time in randomized placebo-
controlled clinical trials (90, 91). Recently, impaired CEF in
people with HIV and dyslipidemia improved with short term
treatment with the PCSK9 inhibitor, evolocumab, indicating that
the MRI-CEF technique can detect rapid improvements in CEF
in response to treatment (92). Therefore, this approach enables
future studies focused on repeated CEF measures in healthy and
lower risk populations over time.

CONCLUSION

Endothelial dysfunction is now a well-established gauge of
cardiovascular risk and predicts future adverse events. Recently,
endothelial dysfunction has been implicated as a contributor
to a variety of cardiovascular diseases including INOCA, stress
cardiomyopathy, preeclampsia and heart failure with preserved
ejection fraction among others (26, 93). We have summarized
multiple methods that are available for probing coronary
and peripheral endothelial, each with specific strengths and
weaknesses, and different values for defining pathology (Table 2).

Currently available endothelial testing methods are helpful for
mechanistic understanding of disease and for risk stratification
and prognostication. It is important to recognize, though, that
using a pharmacological stressor for imaging to assess endothelial
function will often detect function in response to a combination
of endothelial and non-endothelial dependent mechanisms,
and depending on the stressor and imaging modality, this
should be considered. Increasingly endothelial function testing
is being explored for clinical management and evaluation of
therapeutic response, although there are currently no guidelines
recommending use of endothelial function in routine patient
management. Nonetheless, evidence continues to grow in the
role of the vascular endothelium in disease pathophysiology and
ongoing large-scale studies are essential for the evaluation of
therapies targeting endothelial function.
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