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Ischemic diseases are the leading cause of death and disability worldwide. The main

compensatory mechanism by which our body responds to reduced or blocked blood

flow caused by ischemia is mediated by collateral vessels. Collaterals are present in

many healthy tissues (including brain and heart) and serve as natural bypass vessels, by

bridging adjacent arterial trees. This review focuses on: the definition and significance of

pial collateral vessels, the described mechanism of pial collateral formation, an overview

of molecular players and pathways involved in pial collateral biology and emerging

approaches to prevent or mitigate risk factor-associated loss of pial collaterals. Despite

their high clinical relevance and recent scientific efforts toward understanding collaterals,

much of the fundamental biology of collaterals remains obscure.
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INTRODUCTION

Collateral vessels are anatomically defined as inter-tree anastomoses cross-connecting adjacent
arterial trees (1, 2).

Functionally, they represent a specialized network of endogenous bypass vessels, which
serve to partially attenuate hypoperfusion or ischemic injury following blockage of an artery.
Collateral retrograde perfusion from adjacent territories may provide transient or permanent
endogenous protection against ischemic injury in various organs (caused by ischemic stroke,
coronary atherosclerosis, myocardial infarction, peripheral artery disease, etc.). However, the
extent to which collaterals endow individuals with protection against occlusive disease varies
greatly and directly impacts clinical outcome (3, 4). Naturally occurring differences in the
number and diameter of collateral vessels as well as their ability to rapidly increase their
diameter upon arterial vessel occlusion limit the protective capacity of collaterals (5). In humans,
angiography of patients suffering from acute middle cerebral artery (MCA) occlusion show
that retrograde perfusion of the ischemic MCA territory downstream from the occlusion via
pial collaterals exhibits significant variation among individuals. Good collateral flow correlates
with improved likelihood of major reperfusion, reduced infarct expansion and other favorable
outcomes: infarct volume and modified Rankin scale scores at discharge are significantly
lower for patients with better pial collaterals (angiographically assessed), while the National
Institutes of Health Stroke Scale (NIHSS) score and collateral flow scores show an inverse
relationship. Nowadays,MRI diffusion and perfusion imaging together with angiographic collateral
scoring during acute cerebral ischemia show that patients with good collaterals have larger
areas with only mild hypoperfusion and reduced infarct growth within the penumbra (6).
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In an effort to standardize the terminology around collateral
vessels, Faber and colleagues (1) define collaterals as naturally
occurring artery-to-artery or arteriole-to-arteriole anastomoses
present in healthy tissues that increase their anatomic diameter,
i.e., outwardly remodel, in obstructive disease. Furthermore, they
describe two distinct types of collateral vessels:

� Collateral arteries, which are, in fact, artery-to-artery
anastomoses and occur in anatomically similar locations
among humans and other mammals. Due to their common
anatomical location, they often have a defined name (e.g.,
superior ulnar collateral artery, anterior and posterior
communicating arteries/collaterals of the circle of Willis).
Mature healthy collateral arteries exhibit minimal or no
tortuosity, have a considerably smaller capacity to increase
their lumen in obstructive disease and form differently from
microvascular collaterals.

� Microvascular collaterals are arteriole-to-arteriole
anastomoses that cross-connect a small fraction of distal-end
arterioles in the crowns of adjacent arterial trees. These
vessels in healthy humans and animals average <100
microns in diameter. Interestingly, they are completely
absent in the mouse retinal circulation. Examples are: pial
(leptomeningeal) collaterals of the brain and spinal cord,
coronary collaterals, collaterals of the skeletal muscle and
skin. They are characterized by significant tortuosity in
healthy young adults and their inherent capacity to enlarge
their lumen 5–10-fold upon occlusive disease. Between
different inbred mouse strains, there exists a large genetic
background variability in collateral number, diameter and
remodeling capacity. Considering that collateral arteries
have distinct names, usually the term collateral implies the
microvascular collaterals of a given tissue/organ.

MECHANISMS OF FORMATION—BRAIN

VS. HEART

In mice, pial collaterals have been reported to begin forming
between embryonic day 13.5 (E13.5) and 15.5 (E15.5), with the
peak collateral formation at E18.5 (7, 8). The pial vasculature
matures between E18.5 and approximately postnatal day 21
(P21), involving the pruning of a variable proportion of
nascent collaterals. The remaining collaterals undergo wall
maturation, increase their diameter and length and acquire their
characteristic tortuosity. The process of collateral formation
during embryonic and postnatal development to yield the
collateral extent present in the healthy adult tissue is termed
collaterogenesis (1). To date, many details on the mechanism
of collateral formation remain unclear: collaterals present in
the adult may arise either by 1) retention or transformation of
a capillary vessel(s) present early in embryonic/early postnatal
development (pre-existing arteriolar connections) or by 2)
sprouting from established arterioles to form novel inter-
arteriolar connections. One current hypothesis suggests that pial
collaterals form via arteriolar sprouting during late gestation (8).
This is based on the exclusion of intussusception as a forming
mechanism, as no intussusceptive pillars could be observed

via confocal or scanning electron microscopy. Additionally, the
authors identified a vessel which appears to be sprouting from a
pial arteriole.

One angiographic study (9) shows that in human embryonic
hearts (between 19 and 39 weeks, from the mid-second trimester
until the end of the third trimester), collateral coronary arteries
are already present, ranging between 3 and 50 micrometers in
diameter. It has, in fact, been confirmed that human hearts
have inherent collateral vessels in individuals with no previous
occlusion (individuals with normal coronary arteries) (10). A
more recent report investigated the presence of pre-existing
collaterals in the mouse heart using various techniques, namely:
angiographic casting, casting with low-viscosity Microfil or with
high pressure, casting after minimizing resistance, perfusion with
Evans-blue PBS, staining with Isolectin and ephrin-B2Lacz/+ on
two different backgrounds (B6 and BALB/c) (11). This study
alongside others indicates that in the mouse heart, collateral
coronary arteries form only upon vascular occlusion (also termed
neo-collateral formation, de novo collateral formation in adults),
and once again, determine the clinical outcome of infarction.
Patients with significant collateral coronary arteries can survive
having one or two completely occluded native coronary arteries
and exhibit normal heart function. Most studies of embryonic
microvascular collaterogenesis in the past two decades have
focused on microvascular collaterals of the brain and hindlimb.
A genetic lineage tracing study by He et al. (12) identified
that upon myocardial infarction in adult mice, new coronary
collateral vessels are formed from existing arteries. Briefly, the
genetic lineage tracing method uses a cell-type specific Cre driver
mouse line, which in this case is the capillary-specific Apln-
CreER. Cre is expressed as a fusion protein to the mutated
estrogen receptor (ER) to mediate activation in a conditional
fashion by treatment with Tamoxifen. Such a mouse line is
then crossed with a Cre-dependent reporter mouse line, which
can be pharmacologically activated by Tamoxifen as it harbors
a stop cassette flanked by loxP sites that are Cre-responsive
(13). This allows for the reporting of certain cell types and
their permanent lineage tracing over time, as expression of the
reporter is irreversible once activated, and passed on to daughter
cells when they divide. By genetic tracing of capillary-specific
Apln-CreER cells, the authors showed that a mid-embryogenesis
Tamoxifen induction with Apln-CreER will label both coronary
arteries and capillaries at P7. However, if Apln-CreER was
induced only after birth, at P1 or in the adult mouse, only
the coronary microvasculature is labeled. This implies that the
embryonic coronary capillaries significantly contribute to the
formation of coronary arteries. When myocardial infarction was
induced in adult-induced Apln-labeled hearts, no contribution of
capillaries was found to the newly formed collaterals. Kristy Red-
horse and colleagues (14) looked specifically into themechanisms
of formation of collateral coronary arteries and found that upon
permanent ligation of the left coronary artery (LCA) at P2
neonates, arterial endothelial cells migrate from existing arteries,
along capillaries and reassemble into collateral arteries, which
the authors termed artery reassembly. Moreover, this process
was largely dependent on the chemokine CXCL12—CXCR4
receptor signaling axis. In adult mice, the artery reassembly
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after myocardial infarction could be triggered by administering
a single dose of CXCL12.

PIAL COLLATERALS—PATHWAYS THAT

PLAY A ROLE IN THEIR DEVELOPMENT

AND MAINTENANCE

Although the question of whether collaterals possess a truly
unique transcriptional and proteomic profile remains open,
several molecular factors have been shown to affect collateral
formation, maturation, maintenance and response to ischemia.

Formation
Embryonic collateral formation is dependent on VEGF signaling.
In two mouse strains which exhibit large differences in collateral
density, namely C57BL/6 and BALB/c, Vegfa expression was
higher in the C57Bl/6 (the strain with higher collateral
density) than in BALB-c mice (7). Functionally, hypomorphic
Vegflo/+ embryos developed almost no collaterals. Inducible,
global knockdown of either Vegfa or Flk1 (VEGFR2 gene)
impairs embryonic collateral formation. However, endothelial
specific inducible Vegfa deletion had no effect on collateral
formation, suggesting that paracrine VEGF signaling is relevant
in collateral formation (8). Notch signaling works in conjunction
with VEGF signaling in the process of endothelial tip
cell selection and sprout formation. Membrane-bound Notch
becomes active only upon two cleavage steps (ADAM sheddases
participate in the 1st step, gamma secretase in the 2nd
step), which allow for its translocation to the nucleus and
target gene activation (15). Both endothelial-specific Adam10
knockdown and pharmacological inhibition of gamma-secretase
lead to an increase in embryonic collateral formation (8). The
authors suggested that paracrine VEGF through the endothelial
VEGFR2-ADAM10-Notch signaling pathway is crucial for
embryonic development of pial collaterals, and when altered,
permanently changes collateral density in the adult.

Intercellular communication to Notch is transmitted via
Delta-like 4 (Dll4). Dll4-Notch signaling is a pathway implicated
in the regulation of arterial identity and angiogenic sprouting
(15–17). Dll4 is a transmembrane ligand of Notch receptors,
selectively expressed in arterial and angiogenic tip cells during
development. Similarly, Dll4-Notch signaling restricts pial
collateral artery formation by modulating arterial branching
morphogenesis during embryogenesis (18). DLL4 heterozygous
mice show an increased number of pial collaterals compared to
littermates, whereas the infarct volume upon MCA occlusion
remains unchanged. Furthermore, functional recovery and
ischemic outcome in stroke and hindlimb ischemia models
were not improved in Dll4+/− mice, despite the clear increase
in collateral vessel number. The authors speculate that this
discrepancy is due to the adverse effects Dll4-Notch loss has on
vessel formation and remodeling during development. Together,
these results indicate that the protection pial collateral networks
provide in ischemic stroke is not only determined by collateral
numbers, but also by collateral functionality.

Mouse strains with different genetic backgrounds exhibit
wide variation in collateral density, ∼80% of which is assigned
to a polymorphic region on chromosome 7, Dce1. A single
gene, Rabep2, was identified as responsible for most of the
differences in native collateral density. Collateral formation is
impaired in Rabep2−/− embryos (5). Rabep2 is ubiquitously
expressed and associated with vesicular trafficking, particularly
in the internalization of cell surface receptors into vesicles
which fuse into early endosomes in a Rab4- and Rab5-
dependent matter. The embryonic pial plexus of Rabep2−/−

mice exhibits increased vessel diameter and reduced branching.
Moreover, early endosomes are enlarged in E14.5 Rabep2−/−

mice. In vitro, Rabep2-deficiency leads to increased Rab7 co-
localization of VEGFR2, indicating that in absence of Rabep2,
a higher proportion of internalized VEGFR2 is targeted for
degradation (19).

Maturation
Chloride intracellular channel-4 (CLIC4) is a member of a 7-
membrane-spanning family of proteins (CLICs). Knockdown of
CLIC4 impairs EC proliferation, as well as formation of EC cords
and tubular plexus. Clic4(–/–)mice have reduced native collateral
density, which results in more severe infarctions (20). In a follow-
up study, the authors have shown that Clic deficiency has no
effect on embryonic collaterogenesis, yet leads to reduced mural
cell recruitment and excessive pruning of pial collaterals. VEGF-
A overexpression in CLIC4-deficient mice partially rescues
deficits in perinatal collateral mural cell investment, and fully
rescues aberrant perinatal collateral pruning and enlarged infarct
volume after stroke in adults (21). Whereas Vegfr2 signaling is
involved in both formation and maturation of pial collaterals,
other pathways are more confined: Notch signaling seems crucial
in collateral formation and CLIC4 in collateral maturation.

Ephrin (Eph) receptors are known to control cell migration,
proliferation and mediate responses to guidance/repulsive cues.
They have well-identified roles in neuronal development (axon
guidance, neural crest migration, etc.) (22). EphrinB2 and EphB4
null mice show defects in arterio-venous patterning. Ephrin-
B2, an Eph family transmembrane ligand, marks arterial but
not venous endothelial cells from the onset of angiogenesis
whereas Eph-B4, a receptor for ephrin-B2, marks veins but not
arteries. Interestingly, endothelial-specific EphA4 deletion leads
to an early postnatal increase in collateral number, but not
diameter (23). By P21, this number lowers to wild-type values.
Further work suggests that EphA4 acts as a major suppressor of
pial collateral remodeling, as well as cerebral blood flow (CBF)
and functional recovery after permanent middle cerebral artery
occlusion, by acting as a negative regulator of Tie2 receptor
signaling (24).

Signaling in the Collaterals of the Heart
Molecular effectors and pathways responsible for collateral
formation in the mouse heart have only started to be studied.
In 2015, Zhang and Faber showed the dependency of neo-
collateral formation on MCP1—CCR2 signaling. MCP1 is
released from cardiomyocytes, endothelial, smooth muscle
cells and a variety of hematopoietic cells types and binds
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CCR2 receptors which are present on monocytes, CD4 T-
cells, endothelial cells and others. Mice lacking either MCP1 or
CCR2 exhibited reduced neo-collateral formation and increased
infarct volume (11). Interestingly, a recent cohort study showed
that low matrix metalloproteinase-9 (MMP-9) and high MCP1
levels are associated with good pretreatment collateral status in
patients suffering from acute ischemic stroke with large vessel
occlusion (25).

The chemokine CXCL12, also known as SDF1, has
chemotactic and mitogenic activity on many cell types (26).
CXCL12 signaling has an important role in vasculogenesis,
including endothelial cell migration, arterial-nerve alignment
and mediation of plexus connections to systemic arteries.
CXCL12 primarily acts through the G protein coupled receptor
CXCR4; global mouse knockouts of Cxcl12 or of Cxcr4 die
shortly before birth with vascular deficiencies in the gut, kidney,
and skin, and with a number of additional hematopoietic and
neural defects (27). Cxcl12 is important for guiding coronary EC
migration during embryonic development. One study identified
the CXCR4—CXCL12 axis as necessary for early postnatal
collateral formation in response to myocardial infarction.
Moreover, coronary collateral development was inhibited upon
endothelial Cxcl12 or arterial Cxcr4 deletion. One dose of
CXCL12 at the time of adult myocardial infarction stimulated
collateral growth. The authors suggest that in this mechanism
of arterial reassembly, arterial endothelial cells are attracted by
a capillary CXCL12 gradient, in order to migrate, expand and
establish a novel collateral artery network (14).

PIAL COLLATERALS—EMERGING

CONCEPTS IN ISCHEMIA: PREVENTIVE

CONDITIONING OF COLLATERALS (ROLE

OF EXERCISE, HYPOXIA, eNOS

SIGNALING)

The field of pial collateral biology has gained a lot of momentum
in the past two decades, yet there are still many unknowns.
Important questions are yet to be answered: 1) What prevention
measures can be taken to halt or revert the progressive loss
(rarefaction) of collaterals in aging individuals? 2) What acute
intervention steps can be taken to stimulate the inherent
bypassing capacity of collaterals upon stroke? 3) What acute
intervention steps might stimulate neo-collateral growth in
the adult?

A report from Rzechorzek et al. studied the effect of voluntary
wheel running, a proxy for aerobic exercise in mice, on the
outcome of permanentMCA occlusion in agingmice (26-month-
old mice). In this study, the authors compared 3-month-old
sedentary mice to 26-month-old sedentary and running mice.
Their results indicate that regular aerobic exercise prevents age-
induced rarefaction of pial collaterals and associated increase
in infarct volume (28). Another interesting report from Zhang
et al., examined the impact of hypoxia on adult mice neo-
collateral formation. After gradually acclimating mice to lower
concentrations of inspired oxygen and maintaining them for 2–8
weeks at 12, 10, 8.5, or 7% inspired oxygen concentrations, the

authors observed a correlation between neo-collateral formation
and hypoxemia, as well as remodeling of native collaterals and
decreased infarct volume after permanent MCA occlusion and
hypoxemia. Hypoxia led to an increased expression of Hif2α,
Vegfa, Rabep2, Angpt2, Tie2, and Cxcr4. Moreover, neo-collateral
formation was abolished in mice lacking Rabep2, and inhibited
by conditional knockout of Vegfa, Flk1, and Cxcr4 (29). These
results suggest mechanistic links between embryonic collateral
formation and neo-collateral formation in adult mice. Whether
an increased need for oxygen is enough of a stimulus for
adult physiological neo-collateral formation in humans as well is
not known.

Additionally, a recent publication indicated that pial collateral
cells are endowed with primary cilia more frequently than
their neighboring vessels, distal-most arterioles. Moreover,
collateral vessels showed an increased expression of Pycard,
Ki67, Pdgfb, Angpt2, Dll4, and Ephrinb2 when compared to
their neighboring distal-end arterioles. Collaterals were enriched
in both eNOS and phospho-eNOS compared to distal-most
arterioles (30).

Interestingly, global eNOS KOmice have fewer pial collaterals
and worse perfusion capacity upon femoral artery ligation
(31). One recent report (32) proposed the cell cycle gene
networks as the pathways responsible for the role of eNOS
in collateral health and disease. It remains to be seen which
of the effects of eNOS loss are specific for the endothelium
and what is the role of paracrine signaling in pial collateral
response to injury. In rodents, aging correlates with collateral
rarefaction (33). According to Wang et al. (31), in a hind-
limb ischemia model, aging decreases collateral responsiveness
to angiogenic stimuli and increases endothelial and smooth
muscle cell susceptibility to apoptosis via lack of functional
eNOS signaling.

CONCLUDING REMARKS AND OUTLOOK

Collateral vessels are a rare gem in vascular biology. They
undergo massive remodeling in a matter of days upon an
ischemic event, all while maintaining vessel integrity and
function. In the brain, an organ of high complexity and
metabolic demand and low regenerative capacity, this ability
of pial collateral vessels to quickly expand directly determines
the volume of the damaged neuronal tissue. Therefore, it is
of utmost importance for vascular biologists to understand
the fundamentals of collateral formation, maintenance
and remodeling in order to harness this knowledge and
translate it into generation of more targeted therapeutics.
If we understood exactly how pial collaterals form on the
levels of brain morphogenesis, individual cell behavior
and molecular drivers, we would know more about how
to reactivate collateral formation or opening in patients
suffering from ischemia with particularly poor prognosis
due to collateral rarefaction or low collateral blood flow.
In this review, we aimed to highlight the most important
findings in collateral biology, in terms of endothelial
cellular behavior in developing collaterals as well as in
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terms of molecular effectors driving collateral formation
and maturation. Despite their anatomical and biomechanical
uniqueness, we still do not know whether native collaterals are
somehow molecularly equipped to adapt to new blood flow
requirements so rapidly. Only in recent years have scientists
started to understand ways of preserving or increasing the
abundance of collaterals in tissues by means of exercise and
hypoxic treatment.

Pre-clinical models and animal research is currently
highlighting commonalities and differences in heart and
brain collaterals, and point toward signaling mechanisms of
general importance in vascular formation and remodeling,
such as hypoxia and VEGF, as well as blood flow, shear forces
and chemokine signaling. Future research will need to identify
whether specific endothelial cell types are uniquely endowed with
the capacity to form neo-collaterals upon injury, what genetic
and epigenetic mechanisms confer the risk to progressively lose
collaterals in aging, and how we can devise both preventative
and therapeutic measures to maintain and functionalize
collaterals to mitigate the most devastating consequences of
ischemic disease.
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