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Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a
high burden of mortality. Chronic inflammation has been postulated as the predominant
pathophysiological process underlying CAVD. So far, no effective medical therapies
exist to halt the progression of CAVD. This review aims to outline the known
pathways of inflammation and calcification in CAVD, focussing on the critical roles of
mechanical stress and mechanosensing in the perpetuation of valvular inflammation.
Following initiation of valvular inflammation, dysregulation of proinflammatory and
osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of
valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs)
into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular
extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways
convert mechanical forces experienced by valve leaflets and circulating cells into
biochemical signals and may provide the positive feedback loop that promotes
acceleration of disease progression in the advanced stages of CAVD. Mechanosensing
is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive
RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in
response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial
cells and platelets to high shear stress results in increased expression of mediators of
VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated
to promote inflammation in CAVD, which normalises following transcatheter valve
replacement. Genetic variants and inhibition of Notch signalling accentuate VIC
responses to altered mechanical stresses. The study of mechanosensing pathways
has revealed promising insights into the mechanisms that perpetuate inflammation and
calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide
the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD.
Mechanosensing pathways may yield promising targets for therapeutic interventions and
prognostic biomarkers with the potential to improve the management of CAVD.

Keywords: aortic stenosis (AS), shear stress, calcific aortic valve disease (CAVD), valvular interstitial cells (VIC),
mechanotransduction, inflammation, monocytes, platelets
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THE SUBSTANTIAL HEALTH BURDEN OF
CALCIFIC AORTIC VALVE DISEASE

Calcific aortic valve disease (CAVD) is a common cause of
mortality and morbidity, with severe aortic stenosis (AS) affecting
between 2.9 and 3.4% of elderly patients in the developed world
(1, 2). Without treatment, symptomatic, severe AS results in
rapid deterioration and death with approximately 50% mortality
within 2 years of diagnosis (3). The only treatments effective at
preventing heart failure and death in CAVD, however, remain
surgical and transcatheter valve replacement, as no effective
disease-modifying medical therapies have been developed to date
(4). Despite substantial advances in surgical and transcatheter
valve replacement (5), severe AS continues to carry a poor
prognosis in the modern era, with a three-fold increased risk of
mortality at 5 years (6).

Calcific aortic valve disease has previously been described
as a “degenerative” valve disease and attributed to mechanical
degradation of the valve leaflets over innumerable cardiac
cycles as the body ages. Development of CAVD, however, is
not ubiquitous in the elderly, and contemporary evidence has
established a cycle of chronic inflammation as the driver of
progressive aortic valve sclerosis and calcification, highlighting a
potential target for therapies to arrest or slow CAVD in the earlier
stages (7, 8).

Surveillance of patients with CAVD has shown that the
rate of stenosis severity progression accelerates as the disease
advances; with more rapid rises in mean pressure gradient and
aortic valve calcification noted in patients with more severe
baseline stenosis (6, 9, 10). This acceleration phenomenon
supports the existence of a positive feedback mechanism by which

mechanical stresses associated with established AS promote
progressive valvular inflammation, sclerosis, and calcification.
Mechanotransduction, the process by which mechanical forces
are converted into biochemical signals, has emerged as a
potential feedback mechanism by which the mechanical stresses
of progressive aortic stenosis may promote further valvular
inflammation (Figure 1).

This review aims to outline the pathways involved in the
initiation and propagation of chronic inflammation of aortic
stenosis, with focus on the mechanical stresses experienced
by the valve and the mechanotransduction pathways that may
act as the perpetuating link in the vicious cycle of chronic
inflammation and stenosis.

NORMAL ANATOMY AND PHYSIOLOGY
OF THE AORTIC VALVE

The aortic valve has unique structural properties to allow it
to open with low impedance to unidirectional forward flow
and close with sufficient strength to withstand systemic blood
pressure loading, all over innumerable cardiac cycles. Each
leaflet of the aortic valve comprises three tissue layers with
distinct properties arising from the mechanical stresses exerted
on the valve leaflets (11). The lamina ventricularis lines the left
ventricular side of the leaflet and experiences predominantly
laminar steady shear stress from forward blood flow during
systole. The ventricularis comprises radially aligned collagen and
elastin fibres to maintain elasticity and recoil. During diastole
the aortic valve is subjected to compressive stress from pressure
loading and tensile stress from radial leaflet lengthening (12).

FIGURE 1 | Feedback mechanisms that perpetuate valvular inflammation in CAVD. Understanding the drivers of chronic valvular inflammation are key to arresting
the progression of CAVD. Following the initiation of valvular inflammation and stenosis, mechanosensitive feedback pathways may provide the coupling link that
promotes further VIC differentiation and valvular inflammation (TNF-α, tumour necrosis factor alpha; IL-1β, interleukin 1-beta; IL-6, interleukin 6; BMP, bone
morphogenetic protein; VIC, valvular interstitial cell; End-MT, endothelial-mesenchymal transition; ECM, extracellular matrix; ROCK, rho-associated protein kinase).
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Subsequently, the lamina fibrosa on the aortic side of the valve
leaflet is composed of densely packed collagen bundles arranged
in a circumferential pattern to maintain structural integrity and
transfer pressure load to the aortic root. The intervening middle
spongiosa layer comprises predominantly glycosaminoglycans
and interstitial cells, with a lower density of collagen fibres
interconnecting between the ventricularis and spongiosa layers
(13). The spongiosa has been thought to provide lubrication
between the two outermost layers, but in vitro mechanical
simulation using porcine aortic valve leaflets suggest the three
layers in fact, move in tandem (14). Valve leaflets are avascular
and receive oxygen and nutrients via passive diffusion from the
circulating blood pool.

The aortic valve leaflet surface is covered by a layer of
valvular endothelial cells (VECs) which is continuous with
the endothelial layers of the aorta and the left ventricular
endocardium. VECs on both the aortic and ventricular surfaces
of the aortic valve are oriented perpendicularly to blood flow
in a circumferential fashion, in contrast to vascular endothelial
cells which are oriented parallel to the direction of blood flow
(15, 16). Haemodynamic forces acting on the healthy valve
vary from systole to diastole and have been described in detail
in many excellent reviews (17–19). One of the main types of
haemodynamic force is shear stress, which is frictional force
derived from the movement of blood through the stationary
vessel wall and is experienced by the ventricular surface of the
leaflets during the systole and the aortic surface as a result of
blood pools into the sinuses during diastole.

While the VECs of the ventricular surface are exposed to linear
high shear stress from forward blood flow, the aortic surface
is exposed to flow vortices within the sinuses of Valsalva and
experiences oscillatory low shear stress with directional reversal
(17, 20). Similar to the vasculature, regions of the valve that
are exposed to oscillatory low shear stress are more prone to
calcification and plaque formation (21). One of the potential
reasons for the development of an atheroprone phenotype in
regions that are exposed to oscillatory low shear stress is the
finding that low shear stress upregulates the expression of
proatherogenic genes and matrix metalloproteinase activity in
endothelial cells (22).

Within the valve matrix itself, the valve is sparsely populated
with valvular interstitial cells (VICs), pluripotent cells of
mesenchymal origin, which express varying phenotypes
under different conditions (23). VICs may differentiate into
myofibroblast, chondrocyte, osteoblast, or adipocyte phenotypes
and have a key role in development of calcific aortic valve disease
(24, 25). In the healthy valve, VICs are involved in regulation and
repair of the extracellular matrix (26).

INFLAMMATION IN AORTIC STENOSIS
PATHOPHYSIOLOGY: THE
INITIATION-PERPETUATION
HYPOTHESIS

Calcific aortic valve disease was traditionally thought of as the
end-result of passive “wear-and-tear” of the aortic valve over

time, an observation supported by the increased prevalence
of CAVD with advanced age. The “wear-and-tear” hypothesis,
however, did not explain why significant AS only occurs in a
fraction of older patients, rather than uniformly developing with
advancing age. Established consensus now favours a “response
to injury” hypothesis, where progression to haemodynamically
significant AS requires three elements: an initiating insult, a
subsequent inflammatory response and perpetuating factors,
which maintain chronic inflammation and fibrosis (27).

Landmark histopathological studies first characterised
the “early lesion” of CAVD; comprising disruption of the
endothelium and basement membrane on the aortic side
of the leaflet with subendothelial accumulation of lipids,
macrophages and T-cells, favouring the leaflet bases over the
tips (28). Subendothelial lipid deposition and inflammatory
cellular infiltration is observed on both sides of the valve
leaflets, with immunohistochemical studies showing increased
populations of CD68+ macrophages and CD3+ T cells (28).
These findings contrasted with histological observations in
healthy ageing of non-specific leaflet tip thickening, reduced
spongiosa thickness, and adipose cell interposition between the
fibrosa and ventricularis (28). Observations of inflammatory
infiltrates and neoangiogenesis in sclerotic valves supported
an active chronic inflammation process being responsible for
progression of CAVD (29).

There are multiple possible “initiating insults” that have been
implicated in CAVD onset, reinforcing the likely heterogenous
pathophysiological pathways that lead to CAVD in different
patient groups. Injuries to valvular endothelium posed by
transient infection or ionising radiation have been shown to
initiate valvular inflammation in select patient groups. Tissue
polymerase chain reaction (PCR) of excised stenotic aortic valve
tissue has shown evidence of previous Chlamydia pneumoniae
infection in a high proportion of patients (30). Circulating
C. pneumoniae IgG antibodies and immune complexes have
also been associated with an increased risk of CAVD (31).
Ionising radiation has been shown to be capable of precipitating
aortic valve disease, with a small autopsy series finding
valvular endothelial thickening in 81% of young patients who
had undergone mediastinal radiation therapy (32). Irradiation
has been shown in vitro to induce osteogenic differentiation
in human aortic VICs, with increased expression of Bone
Morphogenetic Protein 2 (BMP2), Runt-related Transcription
Factor 2 (RUNX2) and Osteopontin (OPN); all markers of
osteogenic VIC differentiation (33).

Following initial injury, lipid deposition appears crucial
to propagation of early CAVD, with focal deposition of
apolipoprotein (apo) B, apo(a) and apoE identified in all
stages of calcific valve lesions; but not in healthy segments of
valve leaflet (34). Oxidised lipids trigger further inflammatory
response, activating toll-like receptors (TLRs) and activating local
macrophages, mast cells and CD4+ and CD8+ T lymphocytes
(35, 36). Lipid-lowering therapies, however, have disappointingly
shown no effect on the progression of aortic stenosis (37–39).

Mechanical stresses are implicated in both initiation and
perpetuation of CAVD. Endothelial disruption, sclerosis and
calcification, all predominantly affect the aortic side of the valve
at the leaflet bases where it is exposed to turbulent diastolic flow
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vortices and oscillatory shear stress, more so than the ventricular
side which experiences predominantly laminar flow in systole
(40). Age is a strong risk factor for CAVD, however, in large scale
echocardiographic surveys up to 50% of elderly patients have no
significant aortic valve calcification (2). Given CAVD does not
occur uniformly with ageing, additional factors may modulate
the effect of normal oscillatory shear stress in the initiation of
CAVD. As of yet unrecognised genetic or acquired variations may
predispose some individuals to aortic valvular inflammation in
response to normal oscillatory shear stress.

Mechanical stress likely contributes to the development and
progression of stenosis in congenital bicuspid aortic valves
(BAV), which are associated with a similar pattern of sclerosis and
calcification as CAVD in tricuspid aortic valves, but with earlier
onset and more rapid progression (41). BAV results in increased
flow vortices in the aortic root and significant increases in wall
shear stress (WSS) along the ascending aorta and oscillatory shear
index (OSI) on the aortic side of the valve (42, 43). This abnormal
blood flow in patients with BAV is consistent with asymmetric
aortic dilation and aortic valve stenosis. Although the field of
valvular mechanobiology is still at its infancy, development of
sophisticated in vitro models capable of exposing valvular tissue
to different haemodynamic forces, has demonstrated that shear
stress overload on the BAV ascending aortas leads to aortic
medial degradation, endothelial activation, extracellular matrix
degradation and bone matrix synthesis (44–46). In both tricuspid
and bicuspid valves, areas of maximal calcification have been
shown to correspond to areas of maximal mechanical stress on
the aortic side of the valve (47).

INFLAMMATORY RESPONSE TO INJURY
IN CALCIFIC AORTIC VALVE DISEASE

The nature of calcific aortic valve disease as a chronic
inflammatory disease has been well established over the last three
decades (8, 48). Normal heart valve leaflets contain few CD45+
leucocytes, which are predominantly macrophages and dendritic
cells (49). Stenotic aortic valves show histological features of
neovascularisation and chronic inflammatory infiltrates, with
aggregates of mononuclear cells, CD3+ and CD4+ T cells and
CD20+ B cells (50, 51). CD68+ monocytes adhere selectively
on the aortic side of the valve leaflet at areas of higher shear
stress (52).

Circulating inflammatory markers are raised in aortic stenosis,
with peripheral flow cytometry showing significantly increased
levels of circulating intermediate-phenotype monocytes in
patients with aortic stenosis compared with matched control
patients (53). Elevated levels of C-reactive protein (CRP)
have been demonstrated in CAVD but have not been shown
to correlate with disease severity or progression in larger
observational trials (54–56). A sub-study of the SEAS randomised
controlled trial of lipid-lowering therapy in aortic stenosis
showed a weak correlation between high sensitivity CRP rise and
progression of AS (57).

Increased shear stress caused by aortic stenosis results in
unfolding of large von Willebrand factor (VWF) multimers and

subsequent degradation by the ADAMTS13 metalloproteinase.
This results in reduced circulating levels of large VWF multimers
with consequent impaired platelet adhesion/aggregation in
patients with severe AS, which normalises after valve replacement
surgery (58). The syndrome of aortic stenosis in combination
with gastric angiodysplasia, often associated with bleeding, is
collectively termed Heyde’s syndrome (59).

Macrophage infiltration is observed in both early and
advanced lesions of CAVD (28, 60). Macrophages participate
in tissue inflammation as one of two polarised phenotypes.
Classically activated M1 macrophages are induced by pro-
inflammatory stimuli such as interferon gamma (IFNγ), tumour
necrosis factor alpha (TNFα) or lipopolysaccharide exposure;
and combat pathogens and tumour cells via the production
of reactive oxygen species and inducing Th1 responses via
interleukins IL-12 and IL-23 production (61). M2 macrophages
are induced by IL-4 and IL-13 and mediate tissue healing and
repair in the absence of active pathogens. Calcified human
aortic valve leaflets show increased levels of macrophage
infiltration, with an increase in CD11c+ M1 macrophages
and a reduction in CD206+ M2 macrophages compared with
non-calcified aortic valve leaflets (62). Tissue macrophages
alter the local valvular microenvironment by releasing of
TNFα and transforming growth factor beta (TGFβ), promoting
myofibroblastic differentiation of VICs and calcification (63, 64).

Neutrophils have been implicated in calcific cardiovascular
diseases, and increased neutrophil-lymphocyte ratio (NLR) has
been shown to correlate with coronary artery calcium scores and
severity of aortic stenosis, with normalisation of NLR after TAVR
(65–67). The role neutrophils play in the development of calcific
cardiovascular disease, however, remains unclear and may relate
to activation of platelets via neutrophil extracellular traps (NETs)
(68). Increased neutrophil activation has been demonstrated in
severe AS with NET presence in aortic valve leaflets and elevated
plasma citrullinated histone H3 (69).

THE ROLE OF VALVULAR ENDOTHELIAL
CELLS IN DEVELOPMENT OF CALCIFIC
AORTIC VALVE DISEASE

Valvular endothelial cells (VECs) form the interface between
the aortic valve leaflets and the surrounding microenvironment.
Focal disruption of the fibrosa endothelium with subendothelial
apolipoprotein deposition are observed in histological studies of
human aortic valves with early CAVD, implicating VECs in the
initiation of CAVD (28, 34). Endothelial cells of diseased aortic
valves show increased expression of cell adhesion molecules
such as ICAM1, VCAM1, and E-selectin which may recruit
inflammatory cells to the valve leaflet (70, 71).

Derangements in endothelial redox signalling also play a
role in the development of CAVD. In patients with aortic
stenosis, markers of oxidative protein damage increase in
correlation with rising mean pressure gradients (72). Nitric
oxide (NO) production via endothelial nitric oxide synthase-
3 (NOS3) is critical to cardiac valve development, with Nos3
knockout resulting in a bicuspid valve phenotype in mice (73).
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Endothelial-derived NO inhibits calcification of porcine aortic
VICs in vitro and modulates Notch1 signalling (74). Post-
translational modification of the deubiquitinase USP9X has
been demonstrated as a mechanism for NO-mediated inhibition
of myofibroblastic porcine aortic VIC differentiation (75). In
models of vascular calcification, endothelial-derived NO inhibits
TGFβ signalling in vascular smooth muscle cells, which may
be an additional mechanism by which NO signalling inhibits
pathological VIC differentiation (76). Disruption of protective
redox signalling hence may be a mechanism by which endothelial
cell damage promotes early CAVD.

Under the influence of stimuli such as TGFβ and BMPs,
VECs may express mesenchymal cell-type characteristics in a
process known as endothelial to mesenchymal transition (End-
MT). The process of End-MT is crucial to the embryological
development of cardiac structures such as the atrioventricular
fibrous continuity, valvular apparatus and interventricular
septum (77). In vitro, End-MT can be identified by the reduction
in expression of endothelial genes and proteins such as CD21,
VE-cadherin and endothelial NOS; with commensurate increase
in expression of mesenchymal genes and proteins such as
alpha smooth muscle actin (αSMA), calponin, smooth muscle
protein 22α (SM22α) and versican (78). End-MT is proposed
to play a function in maintaining aortic valve homoeostasis by
replenishing a mesenchymal cell type population in order to
regulate extracellular matrix turnover, however, End-MT may
also play a pathological role in the development of CAVD (79,
80). Proinflammatory cytokines such as TNFα and IL-6 have been
shown to induce End-MT in porcine aortic VECs in vitro, and
cells displaying evidence of End-MT can be found within the
fibrosa of calcified human aortic valve leaflets (80, 81).

ALTERED SHEAR STRESS IN CALCIFIC
AORTIC VALVE DISEASE PROMOTES
LOCAL INFLAMMATION

In normal conditions, the advancing column of blood flow
through the aortic valve generates a trailing ring of vortices
within the sinuses of Valsalva which aids in aortic valve closure
at the end of systole (82, 83). These normal conditions expose
the ventricular side of the aortic valve leaflets to steady shear
conditions, while the aortic surface is exposed to low magnitude
oscillatory shear stress (40). As CAVD progresses, the shear
stresses experienced by both sides of the aortic valve leaflets
are altered. Reduction of the effective valve orifice area in
aortic stenosis results in increased velocity of transaortic blood
flow and increased high magnitude steady shear stress on the
ventricular side of the aortic valve leaflets (40). As blood flow
velocity increases, there is greater turbulence within the aortic
root and sinuses of Valsalva, imparting increased magnitude
of oscillatory shear stress and turbulent flow profiles upon the
ventricularis (84).

Under steady shear conditions normally experienced by the
ventricularis, cultured porcine aortic VECs express an anti-
inflammatory and anti-oxidative gene expression phenotype
manner similar to but distinct from that of vascular endothelial

cells (85). Compared to high magnitude steady shear stress,
low magnitude steady shear and both low and high magnitude
oscillatory shear promotes End-MT in cultured porcine aortic
VECs as evidenced by increased αSMA expression and decreased
expression of the endothelial cell adhesion protein PECAM1 (86).

Exposure of porcine aortic valve leaflets to supra-physiological
oscillatory shear stress magnitudes results in increased expression
of BMP4, TGFβ1, and the matrix metalloproteinases MMP2 and
MMP9 in the fibrosa; all key mediators of VIC differentiation
and extracellular matrix (ECM) remodelling (87). Alterations
in shear stress frequency did not elicit the same effect. BMP4
expression in endothelial cells in response to oscillatory shear
stress additionally has been linked to stimulation of monocyte
adhesion and generation of reactive oxygen species (ROS) (88,
89). Upregulation of the transcription factor Snail has been
shown to be essential for End-MT to occur in response to low
magnitude oscillatory shear in vascular endothelial cells, however,
this mechanism linking altered shear stress to End-MT has not
been confirmed in valvular endothelium (90).

Increased shear stress has been linked to increased oxidative
stress and inflammatory cell recruitment in models of vascular
atherogenesis. Increased magnitude steady shear stress induces
ROS production and inducible NO synthase (iNOS) activity
in aortic vascular endothelial cells in vitro (91, 92). In human
aortic valves, areas of calcification show increased oxidative
stress markers, and reduced antioxidant enzyme expression
co-localised with increased VCAM1 and CD31 expression,
suggesting a link between oxidative stress and inflammatory
activation (93, 94). Exposing human aortic endothelial cells to
oscillatory shear stress results in ROS generation via BMP4
production and promotes increased monocyte adhesion (88).

Altered shear stresses also contribute to activation and
recruitment of circulating cells as they pass through the stenotic
aortic valve, which may in turn promote VIC differentiation and
local valvular inflammation (Figure 2). The role of oscillatory and
low magnitude steady shear stress states in recruiting monocytes
has been well established in atherosclerosis disease models.
Subjecting monocytes to oscillatory shear stress or complex flow
reversals in vitro results in upregulation of cellular adhesion
molecules and increased binding of monocytes to endothelial
cells (95, 96).

Exposure of healthy platelets to high laminar shear rates
in aortic stenosis results in increased platelet activation as
measured by glycoprotein IIb/IIIa activation and P-selectin
surface expression (97–99). There is also evidence of platelet
dysfunction in early stages of CAVD, with platelet nitric
oxide (NO) resistance and increased platelet aggregability
demonstrated in moderate aortic stenosis (100). High shear
conditions promote increased release and activation of platelet-
derived TGFβ1 both in vitro and in mouse models of aortic
stenosis (101, 102). Progression of AS in murine models is
attenuated by the knockout of platelet TGFβ1, supporting a key
role of shear-induced TGFβ1 release and of platelets in general in
the pathogenesis of aortic stenosis (103).

Microparticles are small membrane vesicles released by
ectocytosis, budding of the plasma membrane, from leucocytes,
endothelial cells or platelets (104). Microparticles (MPs) express
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FIGURE 2 | The effect of high shear stress on circulating cells and their role in promoting valvular inflammation. (A) Acceleration of blood velocity through the
narrowed aortic valve exposes circulating cells to high shear stress (HSS) and creates turbulent flow vortices on the aortic side of the aortic valve leaflets. (B) HSS
induces increased expression of monocyte adhesion molecule Mac1 mediated by increased expression and activation of Piezo1. (C) TNF α released by tissue
macrophages, TGFβ released by HSS-activated platelets, and NETosis of shear activated neutrophils promote myofibroblastic differentiation of aortic valve interstitial
cells (VICs). Increased magnitude oscillatory shear stress (OSS) promotes End-MT and impaired protective NO signalling (End-MT, endothelial-mesenchymal
transition; Mac1, macrophage-1 antigen; TGF-β1, transforming growth factor β1; TNF-α, tumour necrosis factor-alpha; NET, neutrophil extracellular trap; NO, nitric
oxide).

parent cell surface molecules that may affect cell-cell interactions
and have been implicated in atherosclerosis, thrombosis
and inflammatory disorders (105, 106). Increased levels of
platelet-derived microparticles (PMPs), endothelial-derived
microparticles (EMPs) and leucocyte-derived microparticles
(LMPs) have been observed in patients with severe aortic
stenosis and correlate with increased monocyte activation (107).
Subjecting whole blood to increase in vitro shear conditions
results in linear increase in PMP production, supporting
transvalvular shear stress as a primary driver of MP release in
patients with aortic stenosis (107).

SIDE-SPECIFIC PRO-CALCIFIC
CHARACTERISTICS OF THE LAMINA
FIBROSA

Histological descriptions of CAVD have long identified that
the early disease process predominantly affects the aortic side
of the leaflets rather than the ventricularis (28). When the
high magnitude steady shear conditions experienced by the
ventricularis and the low magnitude oscillatory shear conditions
experience by the fibrosa are applied to cultured human
umbilical vein endothelial cells (HUVECs) in vitro, the steady
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shear conditions induce a protective response with reduced
expression of monocyte chemoattractant protein-1 (MCP1)
and increased expression of krüppel-like transcription factor-2
(KLF2) and nephroblastoma overexpressed protein (NOV) (20).
VECs however, have many unique properties compared to other
endothelial cells, and further study has suggested that VECs of the
fibrosa possess properties predisposing to calcification compared
to VECs of the ventricularis. VECs on the fibrosa side of
healthy porcine aortic valve leaflets exhibit increased expression
of osteoprotegerin (OPG) protein and downregulation of anti-
calcific genes such as OPG and parathyroid hormone (PTH) at
baseline (108). Exposing the aortic surface of porcine aortic valve
leaflets to abnormal steady shear stress in vitro induces increased
endothelial expression of TGFβ1 and BMP4 which in turn
mediates increased expression of ICAM1 and VCAM1. Exposure
of the aortic surface, however, to physiologically normal low-
magnitude oscillatory shear stress and exposure of the ventricular
surface to either physiologically normal steady shear stress or
abnormal oscillatory shear stress does not elicit the same change
in TGFβ1 or BMP4 expression (109). The presence of differing
side-specific behaviours suggests that not all VECs are equivalent,
adding to the complexity of performing and interpreting in vitro
experiments using VEC cultures.

THE ROLE OF VALVULAR INTERSTITIAL
CELLS IN CALCIFIC AORTIC VALVE
DISEASE PROPAGATION

All three layers of the aortic valve leaflets are populated with
VICs, which are responsible for the regulation and repair of
valvular tissue. Under the influence of pro-inflammatory signals
and mechanical stress, quiescent VICs differentiate into active
phenotypes, which play a major role in the propagation of
valvular sclerosis and calcification following an initial insult
(Figure 3) (110).

In the presence of TGFβ1, quiescent VICs differentiate into
activated VICs with a myofibroblast phenotype, characterised
in vitro by expression of the contractile protein alpha-smooth
muscle actin (αSMA). Application of tensile stress to the collagen
matrix has been shown to greatly enhance the myofibroblastic
response to TGFβ1 with VICs displaying increased expression
of αSMA and increased contractile properties (111). Aortic
endothelial cells increase secretion of TGFβ1 in response to the
application of increasing steady shear forces (112).

Given the role of TGFβ1 in both End-MT of VECs and
myofibroblastic differentiation of VICs, interactions between
VEC and VIC may contribute to the development of CAVD.
Under physiological steady shear conditions in vitro, the
presence of co-cultured VECs reduces αSMA expression and
appears to protect against Myofibroblastic differentiation of
porcine VICs (113). Similarly, co-culture of VICs with ovine
VECs protects against End-MT and calcification despite the
influence of TGFβ1 (80, 114). These observations suggest that
disruption of normal VIC-VEC interactions may precipitate
End-MT and myofibroblastic differentiation in the early
development of CAVD.

Activated myofibroblast-phenotype VICs secrete the
collagenases MMP1, MMP2, MMP9, and MMP13 and appear
to play a key role in ECM remodelling in response to injury
(115). Myofibroblastic differentiation of porcine VICs can be
suppressed by basic fibroblast growth factor (FGF2), which
inhibits TGFβ1-mediated Smad transcription factor activation
and αSMA expression, with subsequent reduction in valve
leaflet fibrosis and nodule formation (116). When exposed to
osteogenic medium and TGFβ1, activated ovine and porcine
VICs aggregate and undergo apoptosis, forming a nidus for
formation of dystrophic calcific nodules typical of advanced
CAVD (117, 118). TGFβ1 stimulated calcific nodule formation
by porcine aortic VICs can be inhibited conversely by exposure
to nitric oxide donors, suggesting a role for oxidative stress in the
promotion of valvular calcification (119).

CYCLIC TENSILE STRESS PROMOTES
EXTRACELLULAR MATRIX
REMODELLING

Studies of the effect of shear stress on valvular endothelium
have flourished, in no small part due to the extensive prior
examination of the role of shear stress in vascular atherosclerosis.
The aortic valve, however, is also subjected to bending stresses,
stretch and pressure loading with each cycle of opening and
closure, and less is known about the role these stresses play in the
development of CAVD. In diastole, tensile stress is exerted on the
convex ventricular side of the leaflet with compressive stress of
the concave aortic side. Conversely as the leaflet opens in systole
the aortic side becomes convex and experiences tensile stress,
and the concave ventricularis experiences compressive stress
(120). Throughout the cardiac cycle the leaflets experience net
tensile stress, and under normal loading conditions experience
radial and circumferential stretch of approximately 10% in
diastole (121). Increasing systemic blood pressure increases the
magnitude of cyclic stretch, and diastolic hypertension has been
associated with poorer outcomes in patients with AS (122, 123).

Applying cyclic mechanical stretch to cultured porcine aortic
VICs induced increased type III collagen production and cycle
increased ALP expression following addition of osteogenic
medium, suggesting that mechanical loading in diastole may
promote increased ECM remodelling (124). Application of
physiological cyclic stretch to porcine AV leaflets enhances
TGFβ1 mediated myofibroblastic differentiation of VICs and
increased collagen synthesis in a synergistic fashion (125).
Escalating the magnitude of cyclic stretch to supraphysiological
levels increases expression of MMP-1, -2, and -9 and increases
collagen deposition (121).

The relationship between cyclical loading and AVIC
differentiation and ECM remodelling reinforces the sensitivity
of the aortic valve microenvironment to mechanical stress. The
pattern of increased MMP activity and disorganised collagen
deposition induced by cyclic strain is observed in human aortic
stenosis, but not in aortic regurgitation (126). Systemic blood
pressure is the major determinant of tensile stress in the aortic
valve, and the effect of blood pressure lowering on CAVD
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FIGURE 3 | Myofibroblastic and osteoblastic differentiation of aortic valvular interstitial cells (VICs) in calcific aortic valve disease (CAVD). Under the influence of
circulating and local chemical stimuli, pluripotent valvular interstitial cells differentiate into myofibroblastic and osteoblastic phenotypes, which are the major cellular
effectors of valve leaflet remodelling and calcification (TGFβ1, transforming growth factor beta-1; BMP, bone morphogenetic protein; OPN, osteopontin; TLR, toll-like
receptor; LPS, lipopolysaccharide; End-MT, endothelial-to-mesenchymal transition; FGF2, fibroblast growth factor-2; αSMA, alpha-smooth muscle actin; TNFα,
tumour necrosis factor-alpha; IL-1β, interleukin 1-beta; MMP, matrix metalloprotein; ECM, extracellular matrix).

progression has not been directly studied. The Ramipril in
Aortic Stenosis (RIAS) trial examined the potential of ACE
inhibitor therapy to reduce LV hypertrophy in AS and showed no
significant difference in AS progression at 12 months compared
with placebo, however, a significant difference in blood pressure
between groups was not achieved either (127).

INCREASED VALVE LEAFLET STIFFNESS
PROMOTES PROGRESSION OF
CALCIFIC AORTIC VALVE DISEASE

Once valvular sclerosis is established, the mechanical properties
of valve leaflets directly influence VIC differentiation and
classification in a positive feedback loop promoting the
progression of CAVD. Culture of naïve VICs in osteogenic
medium on stiffer substrate promotes myofibroblastic
differentiation and increased αSMA expression (128–130).

VICs cultured on a more compliant collagen-based substrate,
however, exhibited osteoblastic characteristics, but only when
cultured in a calcifying medium (128). ECM stiffness also
modulates VIC response to TGFβ1 which induces calcified
apoptotic nodule formation on stiff, but not compliant, matrix
substrates (128). As formation of αSMA stress fibres increases
cellular contractility and tension this may in turn promote
further myofibroblastic VIC differentiation in a positive feedback
loop (131).

OSTEOREGULATORY PATHWAYS
IMPLICATED IN THE DEVELOPMENT OF
CALCIFIC AORTIC VALVE DISEASE

Valvular calcification is a key step in the progression of
advanced CAVD and has been associated with local and
systemic derangements in the OPG/RANK/RANKL bone
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metabolism regulatory pathway. An understanding of the
OPG/RANK/RANKL pathway aids in the identification of the
downstream pro-calcific pathways that may link mechanical
stresses to the development of CAVD.

Receptor-activator of nuclear factor kappa B (RANK) is a cell
surface receptor expressed primarily on osteoclasts, macrophages
and dendritic cells (132). Receptor-activator of nuclear factor
kappa B ligand (RANKL), a membrane protein expressed on
the surface of T cells in lymphoid tissue and osteoblasts, binds
to the RANK receptor, stimulating osteoclast differentiation and
activity and inhibiting osteoclast apoptosis (133).

Osteoprotegerin (OPG) is a member of the TNFα superfamily
and acts as a counterregulatory decoy receptor for RANKL,
preventing RANK-RANKL binding and hence downregulating
osteoclast activity. OPG has a protective effect against arterial
calcification, with Opg knockout mice exhibiting increased
rates of arterial atherosclerosis and calcification (134, 135).
Upregulation of RANKL and downregulation of OPG has
been observed in calcified human aortic valve leaflets, with
RANKL stimulation promoting osteoblastic differentiation of
VICs in vitro (136). In a hypercholesterolemic mouse model
of CAVD, exogenous OPG reduces valvular calcification and
functional valvular stenosis (137). The fibrosa layer of the aortic
valve displays pro-calcific elements with increased endothelial
expression of Bone Morphogenetic Protein-4 (BMP4) and
reduced expression of OPG and PTH (108).

The Bone Morphogenetic Protein (BMP) family constitutes
several signalling proteins implicated in cartilage and bone
formation. BMP-2, -4, -5, -6, -7, and -9 promote cartilage
formation and ossification in normal embryonic development;
and BMP3 acts as an antagonist, inhibiting BMP2 mediated
skeletogenesis (138). Studies of human CAVD have shown
increased expression of BMP2 and BMP4 as well as increased
downstream pSmad1/5/8 signalling on the fibrosa of calcified
aortic valves (89).

Mechanical stress has been shown to induce alterations in the
OPG/RANK/RANKL and BMP pathways in other organ systems.
Mechanical stress is a major regulator of skeletal bone resorption
and deposition, with both tensile and compressive stress
promoting osteogenic differentiation of human mesenchymal
stem cells in vitro (139). Tensile stress applied to human
osteoblast-like cells in vitro stimulates initial increased expression
of BMP2 and BMP4 which returns to baseline with prolonged
stretching (140).

OSTEOGENIC DIFFERENTIATION OF
VALVULAR INTERSTITIAL CELLS

Under the influence of osteogenic medium, aortic valve
VICs differentiate down an osteoblastic pathway and are
strong mediators of aortic valve calcification (25). Osteoblastic
phenotype VICs are characterised in vitro by expression
of alkaline phosphatase (ALP), bone sialoprotein and Runt-
related Transcription Factor 2 (RUNX2); a marker of terminal
osteoblastic differentiation. Osteoblastic differentiation of human
aortic VICs in vitro is promoted by exposure to BMP2, RUNX2,

and osteopontin (110, 141). Stimulation of TLR2 and TLR4 by
lipopolysaccharides has also been shown to induce increased
expression of BMP2, RUNX2, and ALP in human aortic valve
VICs (142). Pro-inflammatory cytokines such as TNFα and IL-1β

have also been shown to induce a transition from myofibroblastic
to osteogenic phenotype in porcine VICs, with reduced
αSMA expression and increased RUNX2 expression (143).
Silencing of αSMA in myofibroblastic phenotype VICs reduces
transition to osteoblastic differentiation and development of
calcification (144). Incubation with conditioned medium from
M1-differentiated macrophages has been shown to induce
osteoblastic differentiation of VICs in a partially TNFα and
IL-6-dependent manner (62).

MECHANOTRANSDUCTION PATHWAYS
AS POSSIBLE THERAPEUTIC TARGETS
IN CALCIFIC AORTIC VALVE DISEASE

Mechanotransduction, the conversion of mechanical stress
into biochemical signals, is mediated by different groups of
mechanoreceptors ranging from ion channels and adhesion
molecules to the components of the cytoskeleton and
transcription factors (19). Identifying the mechanosensitive
pathways which link altered mechanical stresses to inflammation
and progression of CAVD may provide novel therapeutic targets.

Endothelial cells detect shear stress by a number of
mechanisms including G-protein-coupled receptor activation,
tyrosine kinase receptor activation, mechanosensitive ion
channel activation and conformational changes in the glycocalyx
and primary cilia (145). Shear-mediated activation of cellular
adhesion molecules results promotes leucocyte recruitment, and
an intracellular signal cascade results in altered protein and gene
expression, increased NO production and cytokine production;
all of which may contribute to the cellular processes that drive
CAVD (95).

Yes-associated protein 1 (YAP) and Transcriptional
coactivator with PDZ-binding motif (TAZ) are transcriptional
co-regulators of the Hippo growth regulatory pathway and
act as key signals in mechanotransduction; the pathways by
which mechanical stresses are translated into cellular responses
(146). Focal upregulation of cytoplasmic and nuclear YAP
is found in calcified portions of stenotic human aortic valve
leaflets, and culture of human aortic VICs from stenotic valves
on increasingly stiff substrate resulted in increasing nuclear
translocation of YAP (147, 148).

The RhoA/ROCK signalling pathway has been shown to
be involved in aortic valve leaflet mineralisation in response
to cyclic stretch; and ROCK inhibition interrupts osteoblastic
differentiation of human aortic VICs on a compliant substrate
(149, 150).

Mechanosensitive ion channels trigger ion currents in
response to mechanical stresses and are implicated in a
diverse range of sensory functions such as touch, hearing and
pain. Piezo1 is a mechanosensitive ion channel that generates
ion currents in response to increased membrane tension,
shear stress, pressure and stretch (151–154). Piezo1 channels
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regulate embryonic cardiac valve development in response to
mechanical stress, with impaired valve formation observed
in piezo1 knockout zebrafish (155). Piezo1-mediated calcium
influx has been demonstrated in shear-stress induced monocyte
activation, and monocyte populations from patients undergoing
transcatheter aortic valve replacement (TAVR) have shown
upregulation of Piezo1 (52).

The Notch signalling pathway is a highly conserved
signalling pathway responsible for cell proliferation and
tissue development. Notch signalling is regulated by mechanical
stress and plays a key role in cardiogenesis and maintenance of
cardiac tissue homoeostasis (156, 157).

Genotyping of a familial cluster with an autosomal dominant
pattern of congenital bicuspid and tricuspid calcific aortic valve
disease revealed the loss-of-function R1108X mutation encoding
a premature stop codon in the Notch1 extracellular domain
(73). Notch1 knockout in mice results in increased expression
of Bmp2, Runx2, and aortic valve calcification, suggesting
that normal Notch signalling may protect against pathological
osteogenic differentiation of VICs (158, 159). Analysis of
explanted valves from adults undergoing aortic valve replacement
identified upregulation of long non-coding RNA H19 which
reproducibly suppressed NOTCH1 gene expression, further
implicating NOTCH1 inhibition in sporadic CAVD (160). The
micro-RNA miR-34a has also been identified in explanted valves
as an inhibitor of Notch1 mRNA expression, and administration
of an miR-34a inhibitor results in attenuation of aortic valve
calcification and stenosis in a murine wire-injury model of
CAVD (161).

The effect of Notch1 inhibition is modulated by mechanical
stress, and aortic VICs isolated from Notch1+/− genotype mice
and exposed to mechanical strain exhibit exaggerated αSMA
expression, myofibroblastic differentiation and dystrophic calcific
nodule formation compared to wild-type VICs (162). Similarly,
exposure of human aortic VICs to oscillatory shear stress (OSS) in
combination with a Notch1 inhibitor resulted in increased αSMA
expression, where Notch1 inhibition alone resulted in calcific
nodule formation with reduced αSMA expression (163). Genetic
variations in NOTCH1 may predispose some individuals to aortic
valvular inflammation in response to normal oscillatory shear
stress (73).

A contradicting role for Notch1 signalling has been observed
in promoting TLR-mediated chronic inflammation in CAVD.
Diseased aortic valves show increased expression of TLR2 and
TLR4, and stimulation of human aortic VICs with peptidoglycan
and lipopolysaccharide (LPS) resulted in increased expression
of pro-osteogenic BMP2, BMP4, and RUNX2 (142). TLR4
stimulation in aortic VICs results in increased Notch1 expression,
and upregulation of downstream pro-inflammatory NF-κB and
ICAM-1 and pro-osteogenic BMP-2 that is partially Notch1-
dependent and reproducible with the Notch1-ligand, Jagged1
(164, 165). Shear-stress induced Notch1 activation in a Piezo1-
dependent fashion has previously been demonstrated in hepatic
endothelial cells (166). These differing roles of the Notch1
pathway in CAVD highlight that there are likely heterogenous
pathophysiological pathways leading to clinical CAVD, and
suggest that the mechanosensitive Notch1 pathway may be

suppressed in congenitally predisposed CAVD, while being
accentuated in LPS-induced chronic inflammation.

THE UNSOLVED QUEST FOR MEDICAL
THERAPY OF AORTIC STENOSIS

Risk factors for the development of CAVD overlap heavily
with traditional risk factors for atherosclerotic coronary artery
disease, such as male gender, smoking, hypertension, low-density
lipoprotein cholesterol (LDL-C) levels and lipoprotein(a) levels
(167). Unlike coronary disease, however, modification of these
factors has not been shown to significantly alter the mortality
associated with aortic stenosis. At present, United States and
European guidelines recommend no effective medical therapy for
AS beyond the control of hypertension (4, 168).

Randomised trials examining the utility of lipid-lowering
using HMG-CoA reductase inhibitors have failed to show an
effect on CAVD progression. The largest SEAS trial randomised
1873 patients with asymptomatic, mild-to-moderate AS to either
40 mg simvastatin plus 10 mg ezetimibe or placebo and showed
a reduction in ischaemic events, but no difference in mortality or
in progression to symptomatic valve disease or valve replacement
over 4 years follow-up (38). Meta-analysis incorporating data
from smaller trials also failed to demonstrate any benefit from
statin therapy in CAVD.

Identification of abnormal angiotensin-converting enzyme
(ACE) and angiotensin II (Ang II) expression in stenotic
valves has implicated the renin-angiotensin system (RAS) in
the pathophysiology of CAVD (169). ACE and Ang II are
known to promote fibrosis and ventricular remodelling following
myocardial infarction and have been implicated as a mediator
of LV hypertrophy in response to pressure overload (170–172).
Animal models of aortic stenosis and small-scale randomised
trials have shown reverse remodelling of LV hypertrophy with
RAS inhibition (127, 173), but no trial so far has demonstrated
a reduction in mortality or echocardiographic progression
of AS (174).

Observational studies have examined the effects of anti-
osteoporotic agents on the progression of calcific aortic
valve disease. Bisphosphonates are pyrophosphate analogs
which inhibit osteoclast activity, thereby reducing bone
resorption and turnover (175). Multiple small observational
studies have observed suggested reductions in the rate of
change of echocardiographic parameters of AS in patients on
bisphosphonate treatment compared with matched control
patients (176–179). The largest retrospective registry study to
date, however, showed no significant change in AS progression in
patients on bisphosphonate therapy (180). These observational
studies are confounded by the comparison of patients with and
without osteoporosis, a disorder of calcium homoeostasis that
may promote cardiovascular calcification independent of the
action of bisphosphonates (181). Denosumab is a monoclonal
antibody inhibitor of RANK ligand, which mimics the activity
of OPG and is used in the treatment of osteoporosis. Given the
protective properties of OPG against cardiovascular calcification,
denosumab has raised interest in the prevention of CAVD and
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has been shown to inhibit porcine aortic VIC calcification in vitro
(182). The SALTIRE2 trial randomised 150 non-osteoporotic
patients with moderate calcific AS to either denosumab, the
bisphosphonate agent alendronate or placebo, and found no
significant difference detected in the progression of CAVD as
assessed by computerised tomography (CT) calcium scoring,
doppler echocardiography and 18F-sodium fluoride positron
emission tomography (183, 184).

Given the inflammatory nature of the disease process, anti-
inflammatory therapies remain of interest in arresting CAVD.
Randomised trials examining the role of anti-inflammatory
therapies in atherosclerotic heart disease have shown some
promising benefits. The CANTOS trial assessed canakinumab,
a monoclonal antibody interleukin-1β (IL-1β) antagonist,
in patients with previous myocardial infarction and raised
inflammatory markers and showed a small reduction in rates
of myocardial infarction, accompanied by an increase in
deaths attributable to infections (185). Further trials of the
anti-inflammatory drug colchicine have also demonstrated a
reduction in major adverse cardiovascular events in patients at
high risk of myocardial infarction (186, 187). Despite showing
no mortality benefit, these trials demonstrate the potential
for anti-inflammatory interventions to alter the progression of
atherosclerotic cardiovascular disease. To date, no randomised
trials have assessed the utility of anti-inflammatory interventions
in the treatment of CAVD.

Balloon aortic valvuloplasty is a temporising treatment for
symptomatic, severe aortic stenosis which has a limited role
in the TAVI-era due to the inevitable disease recurrence
and high mortality that follows (188). Histological study of
excised valve leaflets in patients undergoing AVR who had
previously undergone balloon valvuloplasty shows a distinct
pattern of leaflet microfracture healing with collagen deposition,
fibroblast proliferation and true bone formation (189, 190).
The comparatively good long-term outcomes following balloon
mitral valvuloplasty may suggest a role of the greater transaortic
shear stress in promoting rapid restenosis following balloon
valvuloplasty (191). There have been limited investigation of
the potential for anti-inflammatory interventions to increase the
longer-term success of balloon valvuloplasty. A non-randomised
pilot trial of external beam radiation therapy following balloon
valvuloplasty showed low rates of echocardiographic restenosis
at 12 months (192). Experimental trial of aortic valvuloplasty
using a balloon coated with the antiproliferative agent paclitaxel
showed a reduction in collagen formation, cell proliferation and
restenosis compared to plain balloon valvuloplasty in a rabbit
model of AS, however, there is no available human data on the
potential safety or efficacy of drug-coated balloon valvuloplasty
(193, 194).

VALVE REPLACEMENT

Aortic valve replacement remains the only effective treatment
at reducing mortality and morbidity from symptomatic aortic
stenosis. In the last decade, transcatheter aortic valve replacement
(TAVR) has emerged as the dominant alternative to surgical

aortic valve replacement (SAVR) with low thromboembolic
and bleeding complication rates and comparable survival in
patients at high and intermediate surgical risk (195–197). TAVR
additionally allows for valve replacement to occur with a far
lesser systemic inflammatory response compared to surgical valve
replacement, allowing study of the effect of valve replacement
on the inflammatory milieu of CAVD (198). Increased levels of
circulating inflammatory mediators associated with severe aortic
stenosis have been observed to reverse with valve replacement;
with significant reductions in circulating intermediate phenotype
monocytes noted at 3 months post-TAVR and 6 months post-
SAVR (199).

Study of monocyte functional properties before and after
TAVR has shown increased levels of monocyte activation,
increased monocyte-endothelial cell adhesion and increased
activation of the Mac-1 complement receptor in blood monocytes
collected prior to TAVR (52). A similar activation state was
shown to be induced in vitro by exposing monocytes to a
microfluidic model of aortic stenosis, directly implicating the
high shear rate endured by circulating blood cells in patients with
severe aortic stenosis in the perpetuation of chronic inflammation
and establishing TAVR as anti-inflammatory therapy. Most
interestingly, the mechanoreceptor Piezo1 has been identified as
a mediator of this shear-dependent activation of monocytes (52).
This identifies a potential therapeutic target, the inhibition of
which might interrupt the vicious cycle of shear-stress induced
inflammatory acceleration of aortic valve stenosis.

Exposing naive VICs to patient serum collected prior to and
1 month following TAVR implantation has shown that serum
from patients post-TAVR have increased concentrations of IL-1β

and TNFα and induced quiescence in VICs, previously activated
to a myofibroblastic phenotype by pre-TAVR serum (200).
Interestingly, this effect was blunted when VICs were cultured on
stiffer substrates, reinforcing the importance of both reduction in
shear stress and removal of the pro-inflammatory substrate in the
de-escalation of chronic inflammation following TAVR.

WORKING TOWARD UNCOUPLING THE
VICIOUS CYCLE OF INFLAMMATION IN
CALCIFIC AORTIC VALVE DISEASE

As treatment options and clinical outcomes continue to improve
in coronary artery disease and heart failure, the search for
therapeutic targets in valvular heart disease and CAVD must
become a leading priority in cardiovascular research. Fortunately,
novel techniques and approaches are breaking new ground in the
effort to understand the pathophysiology of CAVD.

High-throughput sequencing technology allows for large scale
evaluation of genetic variants, gene expression and quantification
of protein and small molecules within a tissue sample, yielding
vast amounts of data (201). The application of this multi-
omics approach has implicated many novel pathways in the
development of CAVD (202). High throughput omics strategies
also have the ability to reveal mechanisms behind previously
observed observations in CAVD. Traditional focussed research
methods for example have identified lipoprotein (a) as a
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significant risk factor for the development of calcific AS
(203, 204). Genome-wide association study (GWAS), however,
have revealed a single nucleotide polymorphism with a strong
independent predictive association with the development of AS;
and multi-omics study has identified potential effector proteins
and expressed genes linking Lp(a) to valvular calcification (205,
206). Wang et al. utilised multi-omic screening of explanted
human aortic valve specimens to identify dual-specificity
phosphatase 26 (DUSP26) as an upregulated gene promoting
aortic valve calcification in CAVD, subsequently using in vivo
mouse and in vitro human VIC studies to confirm that DUSP26
promotes CAVD via upregulation of dipeptidyl peptidase 4
(DPP4) (207). Moving forward, multi-omics studies have great
potential to identify genes, proteins and small molecules that may
be targetted in medical treatment for CAVD.

Accurate delineation of pathophysiological heterogeneity
remains a major gap in our understanding of the pathophysiology
of CAVD and AS. While clinical practice currently only
distinguishes between trileaflet and bileaflet aortic valve disease,
AS is a clinical syndrome that likely represents the end result of
varying pathophysiological processes. Studying different points
in the temporal development of CAVD is crucial to improving
our understanding of the varying initiating pathways of early
CAVD as well as the common pathways of established CAVD that
lead to clinically significant aortic stenosis.

In addition to identifying new molecular targets, existing
therapeutic agents may be repurposed in the treatment of CAVD
(208). As mechanistic studies identify new mediators of CAVD,
existing drugs such as DPP4 inhibitors currently used in the
treatment of diabetes may become candidates for the treatment
of CAVD (207). Similarly, proprotein convertase subtilisin/kexin
type 9 (PCSK9) inhibitors have shown efficacy in the treatment
of coronary artery disease, and upregulation of PCSK9 has been
identified in human CAVD and promotes VIC calcification
in vitro (209). A randomised trial is currently underway to
examine the effect of PCSK9 inhibition on the progression of
CAVD (EPISODE trial, NCT04968509).

Finally, innovative approaches to disease modelling are
required for mechanistic and therapeutic research in CAVD.
Given the complex relationships between VICs, substrate stiffness
and shear stress conditions, complex in vitro models are
required to accurately simulate the effect of interventions on
VIC differentiation and calcification. The use of 3D hydrogels
and bioreactors has allowed for simulation of the conditions
experienced by aortic valve leaflets in vivo (210, 211). Existing
animal models too are limited in their applicability to human
CAVD given the reliance on hyperlipidaemic models, which may
not represent the same disease process as human CAVD (212).

CONCLUSION

Calcific aortic valve disease remains a common condition
associated with high mortality and morbidity. Aortic stenosis can
be readily diagnosed with a stethoscope and echocardiography
and has a long-dormant phase, followed by a rapid acceleration
of disease. This rapid progression of the severity of aortic stenosis
is driven by escalating chronic inflammation of the valve tissue
and thus far, no medical therapy has been established to prevent
this progression.

Mechanosensitive pathways link mechanical stresses to the
progression of CAVD via activation of circulating monocytes
and platelets, triggering of endothelial-mesenchymal transition,
upregulation of proinflammatory pathways and promotion of
VIC differentiation. These observations suggest a feedback
mechanism by which the increased leaflet stiffness and
altered shear stress conditions of early CAVD perpetuate and
accelerate inflammation and progression of valvular sclerosis
and calcification. Identification and in vivo quantification of
mechanosensing pathway activity in CAVD may show utility
in prognostication and identification of patients at risk of rapid
disease progression.

Finally, inhibition of mechanosensing feedback loops holds
promise as a novel therapeutic target for the prevention and
treatment of clinically significant aortic stenosis. It is imperative
that further research is conducted to better delineate the
mechanisms responsible for initiation and perpetuation of
inflammation in CAVD and the mechanosensitive feedback
pathways responsible which may offer diagnostic and
therapeutic targets.
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67. Afşin A, Kavalcı V, Ulutaş Z, Kaya H, Aktürk E. The impact of transcatheter
aortic valve implantation on neutrophil to lymphocyte ratio: a retrospective
study. Int J Clin Cardiol. (2019) 6:153.

68. Passos LSA, Lupieri A, Becker-Greene D, Aikawa E. Innate and adaptive
immunity in cardiovascular calcification. Atherosclerosis. (2020) 306:59–67.
doi: 10.1016/j.atherosclerosis.2020.02.016
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