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Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome
proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes
adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-
atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene
(PPARG) contains thousands of polymorphic loci, among them two polymorphisms
(rs10865710 and rs7649970) in the promoter region and two polymorphisms
(rs1801282 and rs3856806) in the exonic region were widely reported to be significantly
associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms
lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein,
causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia,
and thereby increasing susceptibility to CAD.

Keywords: peroxisome proliferator-activated receptor gamma, PPARγ, PPARG, polymorphism, coronary artery
disease

INTRODUCTION

Coronary artery disease (CAD) is the most common type of cardiovascular disease globally,
and is often caused by stenosis of coronary arteries due to atherosclerosis (1, 2). Under the
action of various cardiovascular risk factors, atherosclerotic plaques gradually form, enlarge and
ultimately block blood-vessel cavity, resulting in myocardial ischemia, hypoxia, and necrosis
(3). According to the summary of the 2018 Report on Cardiovascular Diseases in China,
cardiovascular disease is currently ranked as the first cause of death in China, and the morbidity
and mortality are still on the rise (4). As a complex disease with multiple risk factors and
being closely related to glucose and lipid metabolism, genetic variations in metabolism-related
genes play an essential role in the pathogenesis of CAD (5). In recent decades, more and
more genetic susceptibility genes and polymorphic loci for cardiovascular disease were explored
and identified (6). Peroxisome proliferator-activated receptors (PPARs) are ligand-inducible
transcription factors, belonging to the nuclear receptor superfamily (7). PPARs have multiple
and complex physiological functions, involving lipid and glucose metabolism, (8, 9) inflammatory
response, (10, 11) oxidative stress, (11, 12) cell differentiation and apoptosis, (13, 14) and even
cognitive function (15). PPARs have been implicated in the pathogenesis of a number of major
human diseases, such as cardiovascular and cerebrovascular diseases, (16, 17) malignant tumors,
(18, 19) diabetes mellitus, (20, 21) metabolic syndrome, (22) and neurodegenerative disorders
(23). PPARs have three subtypes: PPARα, PPARβ/δ, and PPARγ. Among them, PPARγ has the
most in-depth exploration. According to NCBI’s reference sequence (RefSeq) database1, eight

1http://www.ncbi.nlm.nih.gov/RefSeq/
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PPARγ isoforms have been identified in humans. Being activated
by endogenous and exogenous ligands, PPARγ works in concert
with retinoid X receptor (RXR) and is able to increase the
insulin sensitivity, (24) promote adipocyte differentiation, (25)
and stimulate adipogenesis, (26) and has the properties of
anti-atherosclerosis, (27, 28) anti-inflammation, (27, 28) and
anti-oxidation (29). This review focuses on recent progress in
the association studies between polymorphisms in PPARγ gene
(PPARG) and CAD, as well as the underlying mechanisms.

PPARγ GENE AND ITS
POLYMORPHISMS

Human PPARG is located on the chromosome 3p25.3 and
composed of nine exons: exon A1, exon A2, exon B, and exons
1–6 (Figure 1). There is alternative splicing in the maturation
process of PPARG mRNA (30). According to the NCBI’s RefSeq
database, sixteen PPARG mRNA splice variants have been
identified so far in humans due to differential promoter usage and
alternative splicing. PPARG is highly polymorphic (31). A large
number of PPARG genetic variants have been recorded in the
NCBI’s dbSNP database,2 and most of which are distributed in
the intronic region. These loci can be divided into promoter
region polymorphisms (e.g., rs10865710 and rs7649970), (32, 33)
exonic region polymorphisms (e.g., rs1801282 and rs3856806),
(32, 33) and intronic region polymorphisms (e.g., rs1152002 and
rs709158) (33, 34) according to their distribution in the gene.

PROGRESS IN THE ASSOCIATION
STUDIES BETWEEN PPARγ GENE
POLYMORPHISMS AND CORONARY
ARTERY DISEASE

A large body of evidence indicated that some polymorphisms
in PPARG are associated with CAD (34–63). Among them,
rs1801282 (35, 41–51) and rs3856806 (52–63) in the
exonic region were extensively reported to be significantly
associated with CAD.

Polymorphisms in the Promoter Region
of PPARγ Gene and Coronary Artery
Disease
Two promoter polymorphisms rs10865710 (35–37) and
rs7649970 (38, 39) have been indicated to be correlated with
CAD. Some other promoter variants such as c.93640T > C,
c.93673T > C, and c.93695C > T have been investigated as well,
and among them c.93695C > T was detected to be significantly
associated with CAD (40).

The rs10865710 Polymorphism and Coronary Artery
Disease
The rs10865710 polymorphism (also known as c.-681C > G)
is located in the upstream promoter region of PPARγ3 gene

2http://www.ncbi.nlm.nih.gov/SNP/

and formed by a transversion from cytosine (C) to guanine
(G) (35–37) (Figure 1). According to the NCBI’s dbSNP and
VannoPortal3 databases, G is the minor allele of the rs10865710
polymorphism with frequencies ranging from 0.23 to 0.33 among
Caucasian populations, 0.25 to 0.36 among Asian populations,
and 0.21 to 0.24 among African populations. The results of two
case–control studies (35, 36) in Chinese populations suggested
that G allele of the rs10865710 polymorphism was associated
with an increased risk of CAD. Zhang et al. (35) found that
G allele carriers of the rs10865710 polymorphism had a higher
risk of CAD than non-carriers in a Chinese population (odds
ratio [OR], 1.47; 95% CI, 1.15–1.92; p < 0.001). Ding et al.
(36) confirmed this finding in another Chinese population, and
demonstrated that G allele of the rs10865710 polymorphism
was associated with a higher risk of CAD (OR, 1.31; 95% CI,
1.16–1.95; p < 0.01). Our research team recently conducted
a case–control study to assess the association between the
rs10865710 polymorphism and CAD severity among Chinese
patients, and observed that G allele carriers had higher Gensini
scores (an indicator of CAD severity) (p < 0.05) and more
diseased coronary branches than patients with CC genotype
(p < 0.05) (37). However, several case–control studies carried
out in Caucasians did not detect any significant association
between the rs10865710 polymorphism and CAD risk (40, 60,
64). Hence, the impact of the rs10865710 polymorphism on
susceptibility to CAD remains undetermined, and it may be
modulated by ethnicity, living region, and/or eating habits. More
studies are needed to elucidate the relationship of the rs10865710
polymorphism to CAD.

The rs7649970 Polymorphism and Coronary Artery
Disease
The rs7649970 polymorphism (also known as c.-689C/T) is
located in the upstream promoter region of PPARγ2 gene
and formed by a transition from C to thymine (T) (38, 39)
(Figure 1). According to the NCBI’s dbSNP and VannoPortal
databases, T is the minor allele of the rs7649970 polymorphism
with frequencies ranging from 0.11 to 0.17 among Caucasian
populations, 0.03 to 0.06 among Asian populations, and 0.17 to
0.19 among African populations. A couple of case–control studies
demonstrated that T allele of the rs7649970 polymorphism is
associated with a higher risk of CAD (38, 39). Li et al. (38)
examined the relationship between the rs7649970 polymorphism
and CAD in a non-diabetic Chinese Han population, and the
results showed that T allele is an independent risk factor for
CAD after adjustment for conventional risk factors such as
smoking, hypertension, and dyslipidemia (OR, 1.67; 95% CI,
1.03–2.71; p = 0.04). In another Chinese population, T allele of
the rs7649970 polymorphism was found to be an independent
risk factor for myocardial infarction (MI) after adjustment for
traditional risk factors (OR, 2.13; 95% CI, 1.21–3.74; p < 0.01)
(39). Dallongeville et al. (60) observed that TT genotype of
the rs7649970 polymorphism was correlated with a marginally
insignificantly higher risk of CAD in a large group of middle-aged
men recruited from Lille, Strasbourg, and Toulouse in France

3http://www.mulinlab.org/vportal

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 March 2022 | Volume 9 | Article 808929

http://www.ncbi.nlm.nih.gov/SNP/
http://www.mulinlab.org/vportal
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-808929 March 17, 2022 Time: 14:29 # 3

Song et al. PPARγ Gene Polymorphisms and CAD

FIGURE 1 | The genomic landscape of single-nucleotide polymorphisms (SNPs) in peroxisome proliferator-activated receptor gamma gene (PPARG). SNPs,
single-nucleotide polymorphisms; PPARG, peroxisome proliferator-activated receptor gamma gene.

and Belfast in Northern Ireland (OR, 3.34; 95% CI, 0.98–11.45;
p = 0.05).

Other Polymorphisms in the Promoter Region and
Coronary Artery Disease
Relationships of several rare variants in PPARG such as
c.25924C > T and c.26233T > A in PPARγ3 promoter, and
c.93640T > C, c.93673T > C, and c.93695C > T in PPARγ4
promoter to CAD were explored in an Italian population, and
the explorers found that the c.93695C > T polymorphism was
significantly correlated with acute coronary syndrome (ACS); T
allele conferred a protective effect against ACS at both univariate
(OR, 0.45; 95% CI, 0.29–0.69; p < 0.001) and multivariate (OR,
0.44; 95% CI, 0.25–0.76; p< 0.01) analyses (40).

Polymorphisms in the Exonic Region of
PPARγ Gene and Coronary Artery
Disease
The association studies between polymorphisms in the exonic
region of PPARG and CAD were heavily focused on the
rs1801282 (35, 41–51, 60, 65–78) and rs3856806 (52–64, 79–
86) polymorphisms. Other PPARG exonic polymorphisms in
the association studies with CAD were scarcely investigated and
rarely reported in the literature.

The rs1801282 Polymorphism and Coronary Artery
Disease
The rs1801282 polymorphism (also known as p.Pro12Ala) is
located in exon B of PPARG and is a missense variant in
PPARγ2 resulting in a proline-to-alanine substitution (41–51)
(Figure 1). This polymorphism is formed by a single-nucleotide
change from C to G. G is the minor allele of the rs1801282
polymorphism with frequencies ranging from 0.11 to 0.17 among

Caucasian populations, 0.02 to 0.06 among Asian populations,
and 0.01 to 0.02 among African populations according to
the NCBI’s dbSNP and VannoPortal databases. Researchers
from various laboratories around the world have suggested
that G allele of the rs1801282 polymorphism was associated
with a higher risk of CAD (35, 41–46). Zhang et al. (35)
evaluated the association between the rs1801282 polymorphism
and CAD risk in a hospital-based study in Beijing, China,
and observed that G allele carriers had a higher risk of CAD
than non-carriers (OR, 1.69; 95% CI, 1.27–2.09; p < 0.001).
In a case–control study carried out in Inner Mongolia, China,
the investigators concluded that G allele of the rs1801282
polymorphism was an independent risk factor for MI after
adjustment for conventional risk factors (OR, 2.68; 95% CI,
1.04–6.95; p = 0.04) (42). Hasan et al. (43) demonstrated that
G allele carriers of the rs1801282 polymorphism were three
times more likely to have CAD than non-carriers (OR, 3.0; 95%
CI, 1.5–6.0; p = 0.001) among Egyptian patients with type 2
diabetes mellitus (T2DM). Maciejewska-Skrendo et al. (44) found
that patients with unstable angina had a higher frequency of
G allele of the rs1801282 polymorphism than healthy controls
among European Caucasians (17.28 vs. 9.26%; p < 0.001). The
association between the rs1801282 polymorphism and CAD
appeared to be gender-dependent. Vogel et al. (45) demonstrated
that GG genotype of the rs1801282 polymorphism was associated
with a higher risk of ACS among Danish men (hazard ratio
[HR], 2.12; 95% CI, 1.00–4.48; p = 0.05), but not among
women. Similarly, Schneider et al. (46) observed that G allele
of the rs1801282 polymorphism was significantly associated
with CAD severity among German male patients (β, 0.32;
p = 0.001). In a prospective cohort study involving middle-aged
French men, the subjects with GG genotype of the rs1801282
polymorphism had a marginally insignificantly higher risk of
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CAD than those with CC genotype (OR, 3.32; 95% CI, 0.97–11.39;
p = 0.06) (60).

Somehow, several case–control and prospective cohort studies
have come to an opposite conclusion, demonstrating that G
allele of the rs1801282 polymorphism was significantly associated
with a reduced risk of CAD (47–51). Ho et al. (47) conducted
a prospective case–control study among Hong Kong Chinese
patients with T2DM and found that patients with CC genotype
of the rs1801282 polymorphism had a higher risk of CAD than
G allele carriers (HR, 4.38; 95% CI, 1.03–18.57; p = 0.05). A few
studies involving American and European Caucasians confirmed
that G allele of the rs1801282 polymorphism was associated
with a lower risk of CAD (48–50). In an African population,
Youssef and teammates (51) demonstrated that ACS patients had
a lower frequency of G allele than control subjects (12.3 vs. 19.3%;
p < 0.01), and the ACS patients carrying one or two G alleles
had lower Gensini scores (p< 0.001) and less number of diseased
coronary arteries (p< 0.001) than those with CC genotype.

Many well-designed studies have failed to detect a significant
association between the rs1801282 polymorphism and CAD
(65–76). Three case–control studies, respectively, conducted in
Zhejiang University, (65) Shanghai Jiao Tong University, (66)
and Chinese Medical University in China (67) could not find
any significant association between the rs1801282 polymorphism
and CAD. Furthermore, no significant association was detected
between the rs1801282 polymorphism and CAD in various
populations such as British, (68) Germans, (69) Canadians, (70)
Koreans, (71) Turks, (72, 73) Dutch, (74) Indians, (75) and
Thais (76).

The inconsistencies and contradictions among the association
studies between the rs1801282 polymorphism and CAD may
be due to the interaction of PPARG polymorphisms with
environmental factors on cardiovascular risk factors, i.e., different
alleles have different impacts on the expression patterns of
PPARG under different environmental conditions. Abaj et al. (87)
examined the interaction of the rs1801282 polymorphism with
diet indices such as Dietary Quality Index-International, dietary
phytochemical index, and healthy eating index on cardiovascular
risk factors in T2DM patients, and found that these diet patterns
did have a significant impact on cardiovascular risk factors in
patients with different rs1801282 genotypes. In addition, small
sample size, racial differences, and population heterogeneity may
also be responsible for the inconsistencies and contradictions
among studies. A meta-analysis combines data of the same type
of studies to reduce the impact of confounding factors such as
sample size and ethnicity on research results; so conclusions from
meta-analyses are relatively more reliable. Wu and teammates
(77) performed a meta-analysis with 22 studies and 23,375
subjects enrolled, and found that GG genotype of the rs1801282
polymorphism conferred a higher risk of CAD than CC genotype
in the total population (OR, 1.30; 95% CI, 1.01–1.68; p = 0.04)
and in Caucasians (OR, 1.44; 95% CI, 1.07–1.93; p = 0.02), but not
in Asians. However, the results from several other meta-analyses
did not support this finding and concluded that the rs1801282
polymorphism was not associated with CAD in overall and
subgroup analyses (60, 61, 78). Therefore, it is difficult to reach
a consistent conclusion referring to the relationship between

the rs1801282 polymorphism and CAD based on the existing
research data. Further studies are needed to clarify this issue.

The rs3856806 Polymorphism and Coronary Artery
Disease
The rs3856806 polymorphism (also known as c.1431C > T,
c.161C > T, or p.His477His) is located in exon 6 of PPARG and
is a synonymous variant in PPARγ2 (52–64) (Figure 1). The
c.1431C> T is named according to the position of this variant in
PPARγ2 cDNA, as this variant is located at 1431 bp downstream
of the start codon (ATG). This c.161C> T is defined based on the
position of this variant in exon 6 of PPARG gene since it is located
at 161 bp downstream of the first nucleotide of exon 6 of PPARG.
The rs3856806 polymorphism is formed by a single-nucleotide
substitution from C to T. T is the minor allele of the rs3856806
polymorphism with frequencies ranging from 0.10 to 0.22 among
Caucasian populations, 0.18 to 0.28 among Asian populations,
and 0.05 to 0.07 among African populations according to the
NCBI’s dbSNP and VannoPortal databases. A number of case–
control and cross-sectional studies have shown that T allele of
the rs3856806 polymorphism was associated with a reduced risk
of CAD and was a protective allele for CAD (52–59). In a
hospital-based case–control study of Chinese patients with CAD
and chest pain syndrome, Liu et al. (52) found that the T allele
carriers of the rs3856806 polymorphism had a reduced CAD risk
compared with CC homozygotes (OR, 0.55; 95% CI, 0.33–0.83;
p = 0.01). Zhou and the other two teammates (53) made a similar
finding in the Chinese Han population that the T allele carriers
of the rs3856806 polymorphism had a 39% decreased risk of
CAD relative to CC homozygotes (OR, 0.61; 95% CI, 0.49–0.76;
p < 0.001). The protective effect of T allele on CAD was also
reported by other explorers in Chinese populations (54–59). It
seems that the correlation between the rs3856806 polymorphism
and CAD is stronger in the presence of T2DM as Wan et al.
(58) observed that the T allele was significantly correlated with
a lower degree of coronary stenosis (<75%) among CAD patients
combined with T2DM (p = 0.02), but not among patients free of
T2DM (p = 0.70).

Like the rs1801282 polymorphism, there was also
a contradiction in the relation between the rs3856806
polymorphism and CAD. Several studies suggested that the
T allele of the rs3856806 polymorphism was associated with an
increased risk of CAD (40, 60–63). Chao et al. (62) demonstrated
that the TT genotype conferred a higher risk of MI as compared
to CC genotype in a Taiwanese population (OR, 2.7; 95%
CI, 1.1–6.5). A significant association between T allele of the
rs3856806 polymorphism and higher risk of ACS was detected
among Chinese mainland residents (OR, 1.63; 95% CI, 1.00–2.65;
p = 0.05) (61) and Italians (p = 0.03) (40). In a French male
population, TT homozygotes had a higher risk of CAD than
CC homozygotes (OR, 5.93; 95% CI, 1.19–29.45; p = 0.03), (60)
and in an Iranian population, T allele carriers had a higher risk
of CAD than CC homozygotes (OR, 2.28; 95% CI, 1.20–4.35;
p = 0.01) (63). Recent experimental results from our laboratory
showed that the T allele of the rs3856806 polymorphism was
correlated with an increased risk of T2DM complicated with
CAD (p = 0.03) (37).
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Some researchers failed to detect any significant association
of the rs3856806 polymorphism with CAD (64, 65, 79–82).
Results from three independent studies conducted in China
consistently indicated that the rs3856806 polymorphism was not
correlated with CAD (65, 79, 80). Neither Yilmaz-Aydogan (81)
nor Yongsakulchai (82) did in a Turkish population and in a
Thai population, respectively. We did not find any significant
association of the rs3856806 polymorphism with CAD or CAD
severity as well (37).

A couple of meta-analyses have been carried out in order to
clarify the relationship between the rs3856806 polymorphism and
CAD, but still no consistent results were obtained to date. Qian
et al. (61) did a meta-analysis with 9 studies and a total of 3,878
subjects enrolled, and the result suggested that T allele carriers
of the rs3856806 polymorphism had a lower CAD risk than CC
homozygotes (OR, 0.69; 95% CI, 0.59–0.82; p < 0.001). Gonzlez-
Castro et al. (83) expanded the sample size to 21 studies and
15,980 subjects, and arrived at a similar conclusion (OR, 0.33;
95% CI, 0.20–0.52). However, Ding et al. (78) demonstrated that
T allele carriers of the rs3856806 polymorphism had a higher risk
of CAD than non-carriers by meta-analysis (OR, 1.18; 95% CI,
1.02–1.34; p < 0.01). In addition, the results from several other
meta-analyses indicated that the rs3856806 polymorphism was
not correlated with CAD at all (84–86). Hence, the relationship
between the rs3856806 polymorphism and CAD is not possible
to be determined based on the existing research data, and it needs
to be further explored.

Polymorphisms in the Intronic Region of
PPARγ Gene and Coronary Artery
Disease
A few studies have been carried out to explore the associations
between PPARG intronic polymorphisms and CAD. The
rs1152002 polymorphism is located in intron 5 of PPARG and
formed by a transition from G to adenine (A). Tian et al.
(34) reported that A allele of the rs1152002 polymorphism
was associated with a higher risk of CAD in a Chinese
population (OR, 2.92; 95% CI, 1.44–5.94; p< 0.01). The rs709158
polymorphism is located in intron 5 of PPARG and formed by
a transition from A to G. Gallicchio et al. (88) prospectively
examined the association of the rs709158 polymorphism with
cardiovascular morbidity and mortality in a community-based
cohort study, and demonstrated that there was no statistically
significant association between them.

MECHANISMS UNDERLYING THE
ASSOCIATIONS BETWEEN PPARγ GENE
POLYMORPHISMS AND CORONARY
ARTERY DISEASE

In terms of mechanisms of action by which PPARG
polymorphisms influence on the susceptibility to CAD, the
first thing that comes to mind is that polymorphisms in PPARG
lead to abnormal expression of this gene and/or dysfunction

of PPARγ protein, resulting in aberrant expressions of PPARγ-
targeted genes, metabolic disorders, and arteriosclerotic
cardiovascular disease (Figure 2).

PPARγ Gene Polymorphisms and Gene
Expression Efficiency
Being activated by endogenous and exogenous ligands,
PPARγ mainly up-regulates gene expressions of enzymes
and transporters that play key roles in lipid and glucose
metabolic pathways such as reverse cholesterol transport, (89,
90) cholesterol transformation, (89, 90) lipogenesis, (91, 92)
fatty acid oxidation, (93, 94) and gluconeogenesis (95). By
using luciferase reporter and electrophoretic mobility shift
assays, Lu et al. (96) observed that G allele of the rs10865710
polymorphism significantly inhibited the DNA-binding activity
of transcription factor cAMP-response element-binding
protein 2 (CREB2) to PPARγ3 promoter. The rs948820149
polymorphism (c.-807A > C) is located in PPARγ2 promoter
and C allele was found to significantly down-regulate PPARγ2
expression by affecting the DNA-binding activity of transcription
factor glucocorticoid receptor β (GRβ) to PPARγ2 promoter
(97). Another two PPARG promoter polymorphisms c.-
1633C > T and c.-1572G > A were verified to modulate
the expression efficiency of PPARG in Erhualian pigs as
well (98). Pihlajamäki et al. (99) compared PPARγ2 mRNA
expression as well as its two target genes (lipid phosphate
phosphohydrolase 1 [LPIN1] and sterol-regulatory-element-
binding protein 1c [SREBP-1c]) between PPARG rs1801282
genotypes in human adipose tissues, and observed that Ala12Ala
genotype was associated with a significantly higher mRNA
expression compared to Pro12Pro genotype. By using a
computational analysis of SNPs in PPARG, researchers found
that mutations in PPARG impaired functions of PPARγ, leading
to serious complications such as obesity, diabetes, and cancer in
humans (31).

It is easy to understand that PPARG polymorphisms in
the promoter region, as well as missense polymorphisms in
the exonic region, may cause metabolic disorders such as
hypercholesterolemia, hypertriglyceridemia, and hyperglycemia,
which subsequently increase the risk of CAD. However,
it is difficult to explain how intronic and synonymous
polymorphisms are responsible for susceptibility to CAD.
So far, there is no direct evidence that PPARG intronic
and synonymous polymorphisms modulate PPARG gene
expression efficiency. Little is known about the molecular
mechanisms underlying the regulatory function of intronic
and synonymous polymorphisms in PPARG on its gene
expression, but several possible explanations can be put forward
for intronic polymorphisms. Firstly, there are functional
elements in intronic regions to regulate gene expression,
such as intronic enhancer/repressor (100, 101). Secondly,
intronic polymorphisms may affect the pre-mRNA splicing
process (102). Thirdly, some non-coding RNAs with a wide
range of regulatory effects are encoded by introns (103,
104). Regarding synonymous polymorphisms, they may
alter the secondary structure of pre-mRNA, and thereby
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FIGURE 2 | The pathophysiological role of PPARG SNPs in coronary artery disease (CAD). PPARG, peroxisome proliferator-activated receptor gamma gene; PPARγ,
peroxisome proliferator-activated receptor gamma; LXRα, liver X receptor alpha; ABCA1, ATP-binding cassette transporter A1; CYP7A1, cytochrome P450 family 7
subfamily A member 1; CYP8B1, cytochrome P450 family 8 subfamily B member 1; CYP27A1, cytochrome P450 family 27 subfamily A member 1; ME1, malic
enzyme 1; SCD1, stearoyl-coenzyme A desaturase 1; CPT1/2, carnitine palmitoyltransferase 1/2; ACO, acyl-coenzyme A oxidase; MCAD, medium-chain
acyl-coenzyme A dehydrogenase; LCAD, long-chain acyl-coenzyme A dehydrogenase; SNPs, single-nucleotide polymorphisms; CAD, coronary artery disease.

influencing mRNA splicing efficiency and protein translation
(105–107).

PPARγ Gene Polymorphisms and Plasma
Lipid Levels
Dyslipidemia is a major risk factor for CAD, accounting for 50%
of the population attributable risk (108). Increases in the levels
of triglycerides, total cholesterol and low-density lipoprotein
cholesterol (LDL-C), and/or decreases in HDL-C levels confer a
high risk of CAD. There is accumulating evidence indicating that
PPARG exonic polymorphisms rs1801282 (41–43, 64–66, 109–
112) and rs3856806 (37, 53, 62, 64, 79, 112) are significantly
associated with abnormal levels of plasma lipids. The PPARG
promoter polymorphisms rs10865710 and rs7649970 have been
reported to be significantly correlated with plasma lipid levels as

well, (37–39) although there were few studies conducted in the
scientific community.

The rs1801282 Polymorphism and Plasma Lipid
Levels
A number of observational studies suggested that G allele of the
rs1801282 polymorphism was associated with increased levels
of triglycerides, (110, 112) total cholesterol, (41–43, 64–66, 109)
and LDL-C, (43, 64, 65, 109) and decreased levels of HDL-C,
(42, 43) which is in line with the finding of several case–control
studies that G allele carriers had a significantly higher risk of
CAD than CC homozygotes (41–46). In a Chinese population,
Wang et al. (42) found that G allele carriers of the rs1801282
polymorphism had significantly higher levels of total cholesterol
and LDL-C than the subjects with CC genotype, and also that
G allele carriers were at a higher risk of MI. Similarly, Hasan
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et al. (43) demonstrated that G allele carriers of the rs1801282
polymorphism had significantly higher levels of total cholesterol
and LDL-C, and lower levels of HDL-C than CC homozygotes
in an Egyptian diabetic population, and the researchers also
observed that the risk of CAD was three times higher among G
allele carriers than among non-carriers.

Just as there were contradictions in the associations between
the rs1801282 polymorphism and CAD, some notable
inconsistencies were present in the relations between the
rs1801282 polymorphism and plasma lipid levels. In a Chinese
longevity population (age >90 years), the levels of total
cholesterol, LDL-C, and HDL-C were comparable between the
rs1801282 genotypes (CG + GG vs. CC), but G allele carriers
had significantly lower levels of triglycerides than the subjects
with CC genotype (p < 0.001) (110). Koohdani et al. (111)
also reported lower levels of triglycerides in G allele carriers of
the rs1801282 polymorphism than in CC homozygotes among
Iranian T2DM patients.

The rs3856806 Polymorphism and Plasma Lipid
Levels
Several studies demonstrated that the T allele of the rs3856806
polymorphism was correlated with decreased levels of
triglycerides, (64) total cholesterol, (112) and LDL-C, (112)
as well as elevated levels of HDL-C (53). This may explain the
phenomenon that the T allele was associated with a reduced risk
of CAD in several case–control studies (52–59). Zhou et al. (53)
observed that the T allele carriers of the rs3856806 polymorphism
had lower levels of triglycerides, total cholesterol, and LDL-C,
higher levels of HDL-C, and a 40% lower risk of CAD than
non-carriers in the Chinese Han population. In the Russian
population, the investigators reported that serum levels of
triglycerides in T allele carriers of the rs3856806 polymorphism
were significantly lower than in the subjects with CC genotype,
and simultaneously the frequency of T allele tended to decrease
in CAD patients compared to control subjects (64).

A few studies have produced conflicting results that the T allele
of the rs3856806 polymorphism was correlated with higher levels
of atherogenic lipids (37, 62, 79). Chao et al. (62) reported that
the T allele carriers had significantly higher levels of oxidized low-
density lipoprotein (an atherogenic lipoprotein) than the subjects
with CC genotype in a Taiwanese population, and accordantly TT
homozygotes were found to have a significantly higher risk of MI
than C carriers. In a group of Chinese patients with CAD, our
research team found that the T allele carriers of the rs3856806
polymorphism had significantly higher levels of total cholesterol,
LDL-C and apolipoprotein B than non-carriers (37). In addition,
triglycerides, very-low-density lipoprotein cholesterol (VLDL-C)
and lipoprotein (a) were found to be higher in T allele carriers of
the rs3856806 polymorphism than in non-carriers in a hospital-
based study (79).

The rs7649970 and rs10865710 Polymorphisms and
Plasma Lipid Levels
A couple of studies (38, 39) showed that the T allele of the
rs7649970 polymorphism was correlated with increased levels
of triglycerides and total cholesterol, and T allele frequency

was also higher in CAD patients than in control subjects. We
found that G allele carriers of the rs10865710 polymorphism
had significantly higher levels of atherogenic lipids such as total
cholesterol, lipoprotein (a) and apolipoprotein B, higher Gensini
scores, and more diseased coronary branches (37).

PPARγ Gene Polymorphisms and Blood
Pressure
Hypertension is a recognized risk factor for CAD. Ettehad
et al. (113) reported that the risk of CAD decreased by 17%
for every 10 mmHg reduction in systolic blood pressure. One
population-based study (110) and three meta-analyses (114–
116) collectively pointed out that G allele of the rs1801282
polymorphism was associated with significantly reduced blood
pressure. It is consistent with the finding that G allele of the
rs1801282 polymorphism was correlated with a reduced risk of
CAD in case–control studies (47–51). Lu et al. (110) reported
that G allele of the rs1801282 polymorphism appeared to have a
protective effect against hypertension. This finding was validated
by Regieli et al. in the Dutch population (50) and by three
meta-analyses (114–116). However, some other studies had a
completely different finding (41, 43). Li et al. (41) suggested that
G allele carriers of the rs1801282 polymorphism had significantly
higher systolic blood pressure than non-carriers in patients with
MI, and accordingly, the frequency of G allele was significantly
higher in MI patients than in healthy subjects. Hasan et al.
(43) demonstrated that G allele of the rs1801282 polymorphism
was significantly correlated with increased systolic and diastolic
blood pressure compared to C allele among Egyptian T2DM
patients, and as well G allele carriers had a significantly higher risk
of CAD. Regarding the rs3856806 polymorphism, our research
team found that T allele carriers had significantly higher systolic
and diastolic blood pressure than CC homozygotes among CAD
patients (37).

PPARγ Gene Polymorphisms and
Obesity Indexes
Body mass index (BMI), waist-to-hip ratio (WHR), and waist
circumference (WC) are common indicators of obesity and are
closely related to CAD (117–119). Several studies have shown
that G allele of the rs1801282 polymorphism was associated with
higher BMI, (43, 66, 111, 120) WC, (43, 111) and WHR, (66)
higher prevalence of central obesity and higher percentage of
body fat (121). This can explain from one aspect why G allele of
the rs1801282 polymorphism was correlated with increased risk
of CAD in several case–control studies (41–46). The association
between the rs1801282 polymorphism and BMI was validated
by two meta-analyses which concluded that G allele carriers
had significantly higher BMI and higher prevalence of obesity
than the subjects with CC genotype (122, 123). However, some
studies (124–126) have come to conflicting conclusions. da Silva
et al. (124) demonstrated that CC homozygotes had significantly
higher BMI and WHR compared to CG heterozygotes among
Brazilian adult men. A similar finding was observed in teenagers
from Northern Mexico, and the researchers noted that G allele
carriers of the rs1801282 polymorphism exhibited significantly
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lower overweight/obesity phenotype (BMI Z-score) frequency
than CC homozygotes (125). Zafar et al. (126) found that
BMI and WC were significantly lower in GG homozygotes
compared to CC homozygotes among patients with metabolic
syndrome. The rs3856806 polymorphism was also reported to be
significantly correlated with BMI in Chinese populations, and T
allele carriers had significantly higher BMI than the subjects with
CC genotype (37, 53).

PPARγ Gene Polymorphisms and Other
Cardiovascular Risk Factors
Atherosclerosis is actually an ongoing chronic inflammatory
disorder, not just a simple lipid deposition on the intima and
media walls of blood vessels (127, 128). A fundamental role of
low-grade inflammation has been established in mediating all
stages of atherosclerosis from the initiation to the formation
of atherosclerotic plaques and ultimately to thrombosis in
the blood vessels (129). Liu et al. (130) observed that T
allele carriers of the rs3856806 polymorphism had significantly
lower levels of C-reactive protein (CRP) than the subjects
with CC genotype in hemodialysis patients. An interaction
between the rs1801282 polymorphism and diet indices on
cardiovascular risk factors was evaluated among patients with
T2DM, and the highest IL-18 level was observed in G allele
carriers with the highest adherence to Diet Quality Index
(DQI) (76). Adiponectin has the properties of enhancing insulin
sensitivity, (131) inhibiting inflammation, (132) and attenuating
atherosclerosis (133). Campos-Perez et al. (134) reported that G
allele carriers of the rs1801282 polymorphism had significantly
higher levels of serum adiponectin than CC homozygotes
in a general population, whereas Baldani et al. (135) could
not find any significant correlation between the rs1801282

polymorphism and serum adiponectin levels among women with
polycystic ovary syndrome.

CONCLUSION AND PROSPECT

With the increase of morbidity and mortality in patients with
CAD in recent decades, researchers from all over the world have
carried out a large number of observational and experimental
studies on the associations between PPARG polymorphisms and
CAD. Two polymorphic loci (rs1801282 and rs3856806) in the
exonic region of PPARG were extensively explored in various
populations and were reported to be significantly associated with
CAD, but the risk alleles of these polymorphic loci are still elusive.
In the future, multi-center, multi-ethnic, and large-sample case–
control and cohort studies are needed to identify PPARG risk
alleles for CAD. In addition, great efforts are required to assess the
interactions between PPARG polymorphisms and environmental
factors on the expression patterns of PPARG, the function of
PPARγ, and the susceptibility to CAD.
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