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Objective: To compare the performance, clinical feasibility, and reliability of statistical

and machine learning (ML) models in predicting heart failure (HF) events.

Background: Although ML models have been proposed to revolutionize

medicine, their promise in predicting HF events has not been investigated

in detail.

Methods: A systematic search was performed on Medline, Web of Science, and IEEE

Xplore for studies published between January 1, 2011 to July 14, 2021 that developed

or validated at least one statistical or ML model that could predict all-cause mortality

or all-cause readmission of HF patients. Prediction Model Risk of Bias Assessment Tool

was used to assess the risk of bias, and random effect model was used to evaluate the

pooled c-statistics of included models.

Result: Two-hundred and two statistical model studies and 78ML model studies

were included from the retrieved papers. The pooled c-index of statistical models in

predicting all-cause mortality, ML models in predicting all-cause mortality, statistical

models in predicting all-cause readmission, ML models in predicting all-cause

readmission were 0.733 (95% confidence interval 0.724–0.742), 0.777 (0.752–

0.803), 0.678 (0.651–0.706), and 0.660 (0.633–0.686), respectively, indicating that

ML models did not show consistent superiority compared to statistical models.

The head-to-head comparison revealed similar results. Meanwhile, the immoderate

use of predictors limited the feasibility of ML models. The risk of bias analysis

indicated that ML models’ technical pitfalls were more serious than statistical

models’. Furthermore, the efficacy of ML models among different HF subgroups is

still unclear.

Conclusions: ML models did not achieve a significant advantage in predicting events,

and their clinical feasibility and reliability were worse.
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INTRODUCTION

Heart failure (HF), as a complex cardiovascular syndrome,
causes severe healthcare burdens, and its prevalence continues
to increase with the global aging tendency (1). Despite recent
improvements in diagnosis and management, HF prognosis
remains poor (1, 2), partly because estimating patient risk is
difficult (3, 4). Due to this challenge, prediction models are
considered a potential tool to help clinicians make informed
decisions about treatment initiation and survival estimation to
prevent adverse HF events (5).

In recent years, machine learning (ML) models have
been suggested to be a revolutionary innovation with the
potential to transform the whole healthcare system (6) and
have been gradually leveraged to create prognostic prediction
models. Concerning this changing trend, existing HF prediction
models can be coarsely divided into two categories based on
methodologies: statistical and ML models. Although ML models
are typically described to have theoretical superiority over
statistical models for their ability to fit complex data patterns
(7), previous studies arrived at controversial conclusions. Some
studies claimed that ML-based methods were indeed better than
statistical models (8–10), while others held opposite views (11–
13). The conflicting opinions on the superiority of ML models
motivated us to review HF prediction models with respect to
their methodologies comprehensively to answer two questions.
(1) Does ML models obtained better performance in predicting
HF events? (2) What are the weaknesses of current ML models?

Of note, previous reviews on HF prediction models generally
only focused on their discrimination ability (14–19), while the
other factors that may affect model application were usually
ignored. In this review, we analyzed two representative
prognostic events in HF, all-cause death and all-cause
readmission. We compared the c-index of the two types of
models and investigated their reliability and clinical feasibility,
which may clarify the current position of ML models in the
two HF events prediction research and identify directions for
future work.

METHODS

We conducted this analysis according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA)
statement (20) and the Checklist for Critical Appraisal and
Data Extraction for Systematic Reviews of Prediction Modeling
Studies (CHARMS) (21).

Of note, there is no clear demarcation between the two types
of models (7). In this review, statistical models refer to linear
models developed by logistic regression or Cox regression or
those presented as risk scoring systems. ML models refer to
emerging models developed by ML methods only.

Literature Search
We designed a broad literature search strategy to include all
articles published in English between 2010 and 2021 by applying
a search string to their title, abstract, or keyword sections.
Earlier studies were not included due to possible discrepancies

in population characteristics and therapy. The search string
was “(predict∗ OR progn∗ OR “risk assessment” OR “risk
calculation”) AND “heart failure” AND (model OR algorithmOR
score).” ZJS searched Medline, Web of Science, and IEEE Xplore
on July 14, 2021, and included 13,301 papers for further analysis.

Selection Procedure
We analyzed two representative prognostic events in HF, all-
cause death and all-cause readmission. Articles that reported
the development or validation of at least one statistical or ML
model for predicting these events with appropriate performance
evaluation were included. Models that predicted other outcomes
or composite endpoints were excluded. Appropriate performance
evaluation indicated that each model should report the c-index
in the validation phase. Studies that only reported the c-index of
models on the training dataset were excluded. Studies also need
to report the 95% confidence interval (CI) of the c-index as well
[or sample size and event number such that the 95% CI of the
c-index could be calculated approximately (22)]. We excluded
models that were not originally designed to predict HF events
(e.g., CHA2DS2-VASC) (23). These models may be transferred to
predict HF events to highlight associations between other disease
processes and HF prognosis.

We conducted a three-phase selection in practice as we
have more than 10 thousand papers to review. First, we only
reviewed papers via their titles, and the papers whose topic
is not predicting the two representative prognostic HF events
will be excluded. Then, we reviewed papers according to their
abstracts, and the papers which did not report any quantitative
metrics will be excluded. Finally, we conducted the full-text
review, and only the papers that meet all requirements described
above will be reserved. If we cannot identify whether a paper
should be included via its title/abstract, we will reserve the
paper into the next phase for a more detailed investigation. ZS,
HS independently conducted the selection procedure, and the
discrepancy was reviewed by HM.

Data Extraction
Three researchers (ZH,WD, and HM) performed data extraction
by following recommendations in the CHARMS statement.
From all eligible articles, two researchers (ZS, HS) extracted
(as applicable) the first author, title, digital object identifier,
journal, geographical location, year of publication, study type,
model name, data collection manner, patient selection criteria,
predictor selection method, missing data processing method,
numerical feature processing method, age, gender ratio, sample
size, number of events, predicted outcome, follow-up time, c-
index, 95% CI of c-index, type of algorithm, and performance
validation method. HF subtype was also extracted to take HF
heterogeneity into consideration. We also collected the list of
predictors to investigate their usage.

Statistical Analysis
We summarized the basic characteristics of the studies with
respect to the type of methods and prediction tasks. The
summarized characteristics included algorithm, geographical
location, admission type (chronic or acute HF), HF type (HF with
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reduced ejection fraction, HFrEF, or HF with preserved ejection
fraction, HFpEF), publication year, and study type (model
development study or validation study). The performances of
statistical and ML models were compared from two perspectives:
(1) We conducted random effects model based meta-analysis
to compare the pooled c-index of the two methodologies
for all included studies. The meta-analysis was conducted
via MedCalc (24), and I-square is used to evaluate the
heterogeneity of meta-analysis. (2) We conducted a “head-to-
head” performance comparison for studies that developed both
ML models and statistical models, which helped us to explore
the performance gain of utilizing ML methods under the same
experimental settings.

Risk of Bias Assessment
Three researchers (ZH, WD, and ZH) adopted the Prediction
Model Risk of Bias Assessment Tool (PROBAST) to appraise
reliability (25). PROBAST evaluates the risk of bias (ROB)
of models in four domains: participants, predictors, outcome,
and statistical analysis. Each domain contained several ROB
signal questions answered with “yes,” “probably yes,” “no,”
“probably no,” or “no information,” and the domains were ranked
independently. If answers to all questions in all four domains
were “yes” or “probably yes,” the model was regarded as “low
ROB”; if “yes” to all questions in the four domains, the model was
with “high ROB.” If a domain contained at least one question that
signaled “no information,” and no question was answered “no” or
“probably no,” the domain was graded “unclear ROB.” If at least
one domain was regarded as unclear and none as high, the model
was also graded “unclear ROB.”

RESULTS

Characteristics of Models
After screening (Figure 1), 280 models from 116
articles were selected, the details of which are shown in
Supplementary Table 1, Supplementary Data Sheet. Table 1

describes the basic characteristics of the included models, the
excluded articles and corresponding reasons were included in
the Supplementary Material as well. Among all 280 model
studies, 68% of the statistical model studies and 95% of the ML
model studies were conducted in the last 5 years (2016–2021).
The included studies were mainly from North America (41%),
Europe (31%), and East Asia (22%). Concerning the outcomes,
205 (73%) models predicted all-cause mortality, and 75 (27%)
predicted all-cause readmission. Among the 202 statistical model
studies, 101 (50%) studies were model development studies,
and 101 (50%) were validation studies of 31 different statistical
models, while all ML model studies were model development
studies. ML models were grouped into seven types according to
the algorithm, where boosting, random forest, and decision tree
were the most used methods.

Table 1 also indicates the efficacy of statistical HF models
was widely investigated for different patient subgroups, as 33%
of statistical models were developed or validated for acute HF
patients, 16% for chronic HF patients, 31% for HFrEF patients,
6% for HFpEF patients, 63% for hospitalized patients, and

18% for ambulatory patients. In comparison, most ML models
did not consider the heterogeneity of HF. ML models were
typically developed using a “general” HF population dataset that
identified HF patients by primary diagnoses or international
classification of disease (ICD) codes without other inclusion
or exclusion criteria. For example, these studies did not take
symptoms, left ventricular ejection fraction (LVEF), admission
type, and comorbidities into consideration to select a specific HF
patient group.

Concerning the predictor usage characteristic, statistical
models used significantly fewer predictors than ML models
(Supplementary Figure 1). Specifically, 93 out of 101 (92%)
statistical model development studies reported the number of
predictors with the median was 11 (interquartile range, IQR: 6–
18), and 76% of studies used less than 20 predictors. All ML
model development studies reported the number of predictors;
the median was 62 (IQR: 16–516), and 72% of studies used more
than 20 predictors. Sixty-six (67%) statistical models reported
a detailed list of predictors, while only 36 (46%) ML model
development studies reported a detailed list of predictors. The
predictor usage details can be found in Supplementary Figure 2.

Performance Comparison
Figure 2 describes the performance comparison result of
the models. As shown in Figure 2A, the pooled c-index
of statistical models in predicting all-cause mortality, ML
models in predicting all-cause mortality, statistical models in
predicting all-cause readmission, ML models in predicting all-
cause readmission were 0.733 (95% CI 0.724–0.742), 0.777
(0.752–0.803), 0.678 (0.651–0.706), and 0.660 (0.633–0.686),
respectively. The meta-analysis indicated that the ML model
only outperformed the statistical model in predicting all-cause
mortality. In contrast, their performance in predicting all-cause
readmission was worse than the statistical model. Of note,
the predictive ability across all studies exhibited substantial
heterogeneity. Even when these characteristics were incorporated
in the meta-regressionmodel or multi-level meta-analysis model,
heterogeneity remained high and essentially unchanged. Since
the substantial heterogeneity of the included models did not
permit reliable comparison of performance by meta-analysis, the
result of meta-analysis can only be interpreted carefully within
the context.

Figures 2B,C describe the result of the head-to-head
comparison, which compares the performance differences of ML
models and statistical models trained by same dataset. We found
60 valid comparison pairs, of which ML models achieved better
performance in 39 (65%) pairs, and the superiority reached
statistical significance in 22 (37%) pairs. In the task-specific
comparison, we observed that ML models had a substantial
advantage in predicting all-cause mortality, which accords to
the result of the meta-analysis. ML models obtained better
performance in two-thirds of the pairs, and the advantage was
statistically significant in half of the pairs. ML models achieved
similar performance compared to statistical models in predicting
all-cause readmission. In the method-specific comparison, deep
neural networks, boosting, multi-layer perceptron, support
vector machine (SVM), and random forest (RF) were more likely
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FIGURE 1 | Literature selection procedure.

to achieve better performance than statistical models, while
decision tree and other ML algorithms achieved comparable or
even worse performance.

Risk of Bias Assessment
Figure 3 describes the ROB of both statistical and ML models.
Among 202 statistical models and 78ML models, only 19
statistical and 2MLmodels were graded as low ROB, 18 statistical
models were graded as unclear ROB, while all remaining models
were graded as high ROB, indicating that most prediction models
have technical pitfalls. The measured ROB was mainly from
the participant and analysis domains. In PROBAST, models
derived from retrospective data were treated as high participants
ROB, and 103 (51%) statistical and 55 (70%) ML models were
developed or validated with a retrospective dataset. One hundred
and sixty-five (82%) statistical and 76 (97%) ML model studies
did not conduct appropriate statistical analysis or reported
incomplete statistical analysis information. Specifically, 22 (11%)
statistical and 54 (69%) ML models were developed or validated
from an insufficient number of participants. Thirty-seven (36%)
statistical and 21 (27%) ML models categorized continuous
predictors, which caused unnecessary loss of information (25).

While 52 (26%) statistical and 24 (31%) ML models used high-
risk imputation methods, 65 (32%) statistical and 35 (45%)
ML models did not report data imputation in detail. To select
predictors, 31 (31%) statistical and 9 (12%) ML models used
univariate analysis. Although the univariate analysis is a widely
adopted method, its use has been discouraged recently (26).
One hundred and three (51%) statistical and 62 (80%) ML
models did not conduct (or conducted inappropriate) calibration
evaluation. Thirty-five (35%) statistical and 34 (44%) ML models
used random split or non-random split, rather than more reliable
bootstrap and cross-validation, to evaluate the discrimination
ability of models.

DISCUSSION

Discrimination Ability
Different from the conclusion of previous reviews (17), our
analysis indicated that the performance of ML models is not
consistently better than statistical models in predicting HF
prognostic events. The superiority of ML models significantly
relies on specific experimental environments, i.e., prediction
events, population characteristics, and selected algorithms. The
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TABLE 1 | Model characteristics.

Overall Statistical model Machine learning model

280 models Overall 202

models

Mortality 158

models

Readmission

44 models

Overall 78

models

Mortality 47

models

Readmission

31 models

HF type

Acute HF 73 (26%) 66 (33%) 62 (39%) 4 (9%) 7 (9%) 6 (13%) 1 (3%)

Chronic HF 32 (11%) 32 (16%) 25 (16%) 7 (16%) 0 (0%) 0 (0%) 0 (0%)

Not specified 175 (62%) 104 (51%) 71 (44%) 33 (75%) 71 (91%) 41 (87%) 30 (97%)

LVEF

HFrEF 65 (23%) 62 (31%) 55 (35%) 7 (16%) 3 (4%) 3 (6%) 0 (0%)

HFpEF 23 (8%) 13 (6%) 11 (7%) 2 (5%) 10 (13%) 10 (21%) 0 (0%)

Not specified 192 (69%) 127 (63%) 92 (58%) 35 (80%) 65 (83%) 34 (72%) 31 (100%)

Admission type

Inpatient 172 (61%) 127 (63) 98 (62%) 29 (66%) 45 (58%) 25 (53%) 20 (65%)

Outpatient 45 (16%) 37 (18%) 32 (20%) 5 (11%) 8 (10%) 8 (17%) 0 (0%)

Other * 63 (22%) 38 (19%) 28 (18%) 10 (23%) 25 (32%) 14 (30%) 11 (35%)

Region

North America 116 (41%) 72 (36%) 47 (30%) 25 (57%) 44 (56%) 27 (57%) 17 (55%)

Europe 88 (31%) 78 (39%) 67 (42%) 11 (25%) 10 (13%) 2 (4%) 8 (26%)

East Asia 61 (22%) 40 (20%) 35 (22%) 5 (11%) 21 (27%) 18 (38%) 3 (10%)

Others 15 (5%) 12 (6%) 9 (6%) 3 (7%) 3 (4%) 0 (0%) 3 (10%)

Algorithm

Cox regression 64 (23%) 64 (32%) 58 (37%) 6 (14%) / / /

LR 61 (22%) 61 (30%) 31 (20%) 30 (68%) / / /

Score 77 (28%) 77 (38%) 69 (44%) 8 (18%) / / /

RF 11 (4%) / / / 11 (14%) 7 (15%) 4 (13%)

Boosting 17 (6%) / / / 17 (22%) 11 (23%) 6 (19%)

SVM 7 (3%) / / / 7 (9%) 5 (11%) 2 (6%)

Neural network ** / / /

Multi-layer perceptron 7 (3%) / / / 7 (9%) 5 (11%) 2 (6%)

Deep learning 8 (3%) / / / 8 (10%) 2 (4%) 6 (19%)

Decision tree 10 (4%) / / / 10 (13%) 8 (17%) 2 (6%)

Others 18 (6%) / / / 18 (23%) 9 (19%) 9 (29%)

Year of publication

2010–2015 69 (25%) 65 (32%) 50 (32%) 15 (34%) 4 (5%) 2 (4%) 2 (6%)

2016–2021 211 (75%) 137 (68%) 108 (68%) 29 (66%) 74 (95%) 45 (96%) 29 (94%)

Study type

Model development 179 (64%) 101 (50%) 71 (45%) 30 (68%) 78 (100%) 47 (100%) 31 (100%)

Model validation 101 (36%) 101 (50%) 87 (55%) 14 (32%) 0 (0%) 0 (0%) 0 (0%)

Values are presented as numbers.

*“Others” indicates that studies did not specify the origin of patients, or patients have mixed origins.

**The deep learning model refers to recently proposed neural network-based models (e.g., recurrent neural nets and autoencoder) apart from simple multi-layer perceptron.

HF, heart failure; HFpEF, heart failure with preserved ejection fraction;HFrEF, heart failure with reduced ejection fraction; LVEF. left ventricular ejection fraction.

meta-analysis result indicated ML models obtained better
performance in predicting all-cause mortality, while their
performance was worse in predicting all-cause readmission.
The head-to-head analysis indicated that ML models achieved
similar or worse performance in about one-third of pairwise
cases even in exactly the same experimental settings. For the
cases where ML models achieved better performance, their
superiority is probably not statistically significant. We also
found not all ML algorithms were superior to statistical models.
Specifically, ensemble learning-based models (boosting and RF)

and neural network-based models (multi-layer perceptron and
deep learning) achieved better performance, while decision
tree and support vector machines generally achieved worse
performance than statistical models. This finding is in accordance
with the consensus in the computer science community (27, 28).

According to these results, we argue that the expectation
of leveraging ML has not yet been fulfilled. ML models were
suggested to transfer their computer vision and natural language
processing success, thereby transforming medicine (6). Although
we cannot precisely summarize the performance of statistical

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 April 2022 | Volume 9 | Article 812276

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Sun et al. Comapre HF Models

FIGURE 2 | Performance distribution of statistical and ML models. (A) Pooled C-index of meta-analysis with respect to tasks and model types. (B) Task specific

comparison result. (C) Model specific comparison result. In subplots (B,C), the inner pie indicates the number of pairwise comparisons between ML models and

statistical models. The middle pie indicates the number of pairs in which the ML model achieved better performance, while the outer pie indicates the number of pairs

in which the superiority of ML models reached statistical significance. ML, Machined Learning; DL, Deep Learning; DT, Decision Tree; SVM, Support Vector Machine;

MLP, Multi-Layer Perceptron; RF, Random Forest.

and ML models in event prediction due to their heterogeneity,
ML models clearly achieved at most moderately better or
comparable performance compared to statistical models. This
degree of improvement is unlikely to trigger a revolution in HF
event prediction.

However, the potential of ML models still warrants further
investigation for two reasons. First, current ML studies did
not take full advantage of the data being analyzed. ML models
typically require a large training dataset to become efficient
and avoid overfitting. However, our ROB analysis showed
about three-quarters of ML models were developed using
insufficient numbers of participants, as their event per variable
rate was less than 10 (29). ML models were also more likely
to be trained by low-quality electronic health record datasets,

which also negatively affected their performance. Meanwhile,
as HF is a chronic syndrome, longitudinal clinical patient data
usually accumulate, including treatment, laboratory tests, and
image information generated over the entire HF management
process. It is worth investigating how to extract information
from longitudinal sequential datasets to achieve better event
prediction performance, and only ML algorithms are capable
of handling this task (30). Second, the performance of ML
models was not sufficiently validated. Notably, about half of
the statistical model studies were validation studies, whereas no
ML models were externally validated. As model performance
typically degenerates upon validation, the performance of current
ML models is probably overestimated, but to what degree
is unclear.
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FIGURE 3 | Result of risk of bias analysis.

Model Reliability
This review revealed two reliability issues of ML models, the
first being neglect of HF heterogeneity. As a complex syndrome,
HF prognosis varies widely among different patient subgroups
(19). We observed statistical model studies generally identified
this situation and applied a detailed sample inclusion procedure
to select the target population before developing or validating a
model. Therefore, the efficacy of statistical models in each HF
subgroup, e.g., HFrEF, HFpEF, acute HF, and chronic HF, has
already been investigated. On the contrary, ML models were
typically developed using a “general” HF patient group without
clear inclusion criteria and only reported overall performance
metrics. The subgroup-specific performance of ML models is
currently unclear, which undoubtedly influenced the reliability of
ML models in our study. The efficacy of ML models in different
HF patient subgroups needs to be investigated in future studies.

Secondly, the PROBAST analysis indicated both types of
models have technical flaws. The issues affectingMLmodels were
more serious and can be coarsely summarized to four points.
Insufficient information disclosure was the first flaw. PROBAST
analysis demonstrated that most statistical and ML models did
not report sufficient statistical analysis information, and no
ML models reported enough details for model reproduction.
Inappropriate statistical analysis was the second flaw. ML
models systematically did not perform calibration analysis, which
may lead to inaccurate evaluation of event risk. Meanwhile,
the training dataset of a large fraction of ML studies was
too small to optimize parameters satisfactorily. Third, it is
worth noting that adopting ML methods and proposing low
ROB models were sometimes controversial. For example, as
ML models usually require a large dataset for training, the
time cost of imputing missing data via multiple imputation
algorithms usually becomes intolerable. In fact, ML studies
typically use mean-value imputation or a separate category to

tackle the missing data problem, which inevitably brings ROB
to ML models and makes them untrustworthy. Lack of external
validation was the fourth flaw. More than half of statistical model
studies were validation studies, while noMLmodel was externally
validated by independent studies. ROB analyses indicated that
the lack of a practical guideline in ML model development and
validation is a big challenge. Such a guideline could help tackle
a series of tasks in ML model development (i.e., data collection,
pre-processing, performance evaluation, and model releasing),
and thereafter provide a feasible path for developing reliable ML
models, rather than just adopting a particular ML algorithm to fit
a clinical dataset.

Clinical Feasibility
Our analysis indicated that the clinical feasibility of ML models
was low due to immoderate usage of predictors and lack
of computer infrastructure, which may explain why no ML
model was externally validated. Current ML development studies
usually waived the predictor selection process, which is essential
to developing statistical models. As a result, ML models included
on average eight times the number of predictors used in statistical
models; some even used more than 1,000 predictors. Although
the inclusion of more information was regarded as an advantage
of ML-based models (31), it makes the model prone to overfit.
Furthermore, with more predictors to be evaluated, the inclusion
of a large number may limit the clinical utility of models. ML
models require a feature selection protocol to effectively utilize
more patient information in order to make a precise prediction
and determine clinical feasibility.

The complexity of the ML algorithm and the number of used
predictors indicated that it is impossible to calculate the model
manually. A comprehensive pipeline, including data collection,
pre-processing, model invocation, and results display needed to
execute a model in real-time. The development of the pipeline
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requires mass interdisciplinary collaboration, and the pipeline
needs to be elaborately integrated into the current clinical
decision support system. As the development and deployment of
such a pipeline are obviously beyond the ability of most hospitals,
ML models are difficult to be applied in clinical practice. An
updated medical decision-making system is required to facilitate
the deployment of ML models in the clinical workflow.

Strengths and Limitations of This Study
The major strength of this study was that we analyzed the clinical
feasibility and reliability of statistical and ML models, which
were not systematically investigated in the previous review (14–
19). The large number of studies used to compare different ML
and statistical models was another major strength. However, this
study also had several limitations. (1) The heterogeneity among
studies impeded us from conducting rigorous performance
comparisons of the two types of models. (2) We did not
conduct an analysis on the calibration of models, as most
studies did not report calibration information or conducted
inappropriate calibration. (3) We only analyzed for all-cause
mortality events, due to the lack of relevant studies examining
all-cause readmission. Findings in this review may not be
generalizable to other outcomes or settings.

CONCLUSION

In summary, our review indicated ML models did not show the
ability to revolutionize the process of predicting prognosis, and
due to lack of external validation, their performance is probably
overestimated. It seems the increased complexity of ML models
did not bring significantly better performance. However, we
argue it is still too early to claim that introducing ML technique
in heart failure event prediction task is as meaningless. Because
applying ML technique in medicine is an emerging research

area and pioneer studies may be immature. Substantial effort is
required in the future to explore how to utilize ML technology to
achieve precise event prediction and overcome the difficulties in
deploying ML models in clinical environments.
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