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Intracranial aneurysm (IA) is a frequent and generally asymptomatic cerebrovascular

abnormality characterized as a localized dilation and wall thinning of intracranial arteries

that preferentially arises at the arterial bifurcations of the circle of Willis. The devastating

complication of IA is its rupture, which results in subarachnoid hemorrhage that can

lead to severe disability and death. IA affects about 3% of the general population with

an average age for detection of rupture around 50 years. IAs, whether ruptured or

unruptured, are more common in women than in men by about 60% overall, and more

especially after the menopause where the risk is double-compared to men. Although

these data support a protective role of estrogen, differences in the location and number

of IAs observed in women and men under the age of 50 suggest that other underlying

mechanisms participate to the greater IA prevalence in women. The aim of this review

is to provide a comprehensive overview of the current data from both clinical and basic

research and a synthesis of the proposed mechanisms that may explain why women are

more prone to develop IA.

Keywords: intracranial aneurysm, cerebral artery, circle of Willis, sex difference, gender, endothelium, estrogens

INTRODUCTION

Intracranial aneurysm (IA) is defined as a localized dilation of cerebral arteries which preferentially
forms at arterial bifurcation of the circle of Willis. IAs are thought to result from an abnormal
thickening of the artery wall at sites where hemodynamic stress is high (1). Unruptured IAs are
generally silent but become symptomatic when they rupture, causing subarachnoid hemorrhage,
with mortality rates of about 30–40% and severe neurological dysfunction and disability in a great
part of subarachnoid hemorrhage survivors (2–4).

Cellular and molecular mechanisms leading to IA formation and rupture are not fully
elucidated, but risk factors such as familial history of IA, high blood pressure, cigarette smoking,
alcohol consumption, and female sex have been clearly identified. Indeed, in contrast to most
neurocardiovascular diseases, the incidence of IA is higher in women than in men, whereas
most of the risk factors that include cigarette smoking, hypertension, atherosclerosis, and alcohol
consumption are all more common among men (5–13).

Women are found to suffer two times as often from unruptured IAs as men. Whereas, the
overall prevalence of unruptured IAs in study population is reported about 3%−4%, it reaches 6%
in women, with a woman-to-man prevalence ratio of 1.57 (14). This woman-to-man prevalence
ratio changes with age, from 1.1 in populations with mean age of 50 years to 2.2 for populations
over the age of 50 years (14). In addition, the follow-up of a cohort of patients diagnosed with
either ruptured or unruptured IAs showed that female gender is an independent risk factors for the
formation of new IAs (7).
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Despite these clinical data, studies that are specifically
designed to explain and understand the reasons for this female
predisposition to IA remain few. Clinical analyses primarily
addressed the role of sex hormones, and preclinical studies
performed in rodent models of IA have mainly focused on
the effects of ovariectomy and/or estrogen treatments, and
in vitro on hormone actions in vascular cell models. The
synthesis of published data supports a possible role of sex-specific
hormonal mechanisms in the pathogenesis of IA. Nevertheless,
the particular features of IA in women suggest that the greater
predisposition of women to IA relies on complex and probably
multiple mechanisms, including a role for hemodynamic forces.

GENDER DIFFERENCE IN IA FEATURES

IA Number and Localization
There is no statistical difference between men and women
regarding the size and the laterality of unruptured IAs (15–17).
However, together with a higher susceptibility to IA formation
compared to men, women are more likely to develop multiple
IAs (17–22). Also, women exhibit about two times the rate of
bilateral IAs than men (16, 17). In addition, the number of
IAs rises in women of increasing age (19). Both female sex and
postmenopausal state are found as independent risk factors for
the formation of multiple IAs (19).

In women, unruptured IA aspect has been shown to change
with age: women of premenopausal age have a higher numbers
of aneurysm lobes, whereas those in women of postmenopausal
have larger size (23).

A gender difference in the anatomical distribution of IA is
also clearly demonstrated. In women, unruptured IA localizes
preferentially on the internal carotid artery (ICA; 54% vs. 38%
in men), whereas in men, IA affects more frequently the anterior
cerebral artery (ACA; 29% vs. 15% in women) and anterior
communicating artery (Figure 1) (15). No difference according
to the gender has been observed in the frequency of IA in
the middle cerebral artery and posterior circulation (posterior
cerebral, basilar and vertebral, artery) (15).

IA Growth and Rupture
As for IA formation, women are at increased risk for IA
growth (7, 24). More particularly, female sex is shown to be
an independent risk factor for the growth of unruptured IA in
elderly patients (age ≥ 70 years) (25). However, the growth rate
of an IA itself does not differ by sex (7).

Once an IA is formed, female sex does not represent a risk
factor for its subsequent rupture (7). As a whole, no difference
in the size of ruptured aneurysms between women and men
has been detected (15, 20, 22, 26). However, some differences
exist between ruptured IA in men and women. IA rupture and
aneurysmal subarachnoid hemorrhage more frequently affect
women than men but the gender distribution varied with
age (15, 18, 27–29). Indeed, in young people, incidence of
aneurysmal subarachnoid hemorrhage is slightly higher in men,
and the increased risk of aneurysmal subarachnoid hemorrhage
in women only appears after the fourth and fifth decades (28, 30–
32). Accordingly, among patients with ruptured IAs, the mean

age of women is higher (60–70 years) than that of men (50–60
years) (15, 16, 20, 26).

The location of aneurysmal subarachnoid hemorrhage also
differs between women and men. According to the preferential
location of IA on internal carotid artery in women, the posterior
communicating artery is also themost common site of IA rupture
in women, whereas anterior communicating artery aneurysm
ruptures are overrepresented in men (16, 18, 20, 26, 33–35). This
is in agreement with the majority of anterior communicating
artery aneurysms in men and their higher risk of rupture than
IAs at other locations (18, 36). Regarding this specific IA location,
women exhibit a lower rate of ruptured anterior communicating
artery aneurysms thanmen in whom these IAs are larger (16, 33).
This greater IA size may thus participate to the higher proportion
of men with ruptured anterior communicating artery.

For both women and men, outcomes varied according to
the location of aneurysmal subarachnoid hemorrhage but the
overall outcomes after IA rupture are similar in women and men
(16, 20, 26, 33).

POSSIBLE CAUSES OF THE GENDER
DIFFERENCE IN IA FORMATION AND
RUPTURE

Anatomical and Hemodynamic Parameters
Both IA formation and rupture did not occur on same arteries
in women and men. ICA and ACA have been identified as the
main sites of IA formation and rupture in women and men,
respectively. Indeed, there is a female preponderance of IA in
all intracranial arteries except the ACA. It is well admitted that
hemodynamic stress, such as high blood pressure or strong wall
shear stress, may participate to IA formation and growth (37),
which may suggest that gender difference in the arterial geometry
and consequent arterial wall shear stress could participate in the
different preferential location of IA in women and men.

Analysis of the anatomical variations in the circle of Willis
in more than one hundred of patients with IA by magnetic
resonance angiography suggested a correlation between the sex-
linked difference in IA distribution (preferential ICA aneurysm
in women) and a sex-linked difference in anatomical variations
of the circle of Willis (38). Beyond these anatomical variations,
measurement of the diameter of arteries of the circle of Willis
revealed that ICA, ACA, posterior cerebral artery and basilar
artery were significantly smaller in women than in men, with
the greatest difference found for ICA (39, 40). In contrast, the
diameter of posterior communicating artery has been found to
be either larger or similar in women compared to men. Since a
smaller arterial diameter results in higher blood flow velocity and
shear stress, arteries in women are expected to be submitted to
stronger wall shear stress and tension than in men. Examination
of the dimension and geometry of the terminal bifurcation of the
ICA confirmed that the diameter of the parent artery and the
branches is smaller in women than in men, but the bifurcation
angle is the same in both sexes (41). Modeling of bifurcations and
computational fluid dynamic simulations allowed to demonstrate
that the maximum wall shear stress in the ICA bifurcation in the
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FIGURE 1 | Major localization of IA in the circle of Willis of men and women. In men, IA affects more frequently the anterior cerebral artery (ACA) and anterior

communicating artery (AComA; left). In women, IA localizes preferentially on the internal carotid artery (ICA), in particular at the bifurcation with the posterior

communicating artery (PComA; right) (MCA, middle cerebral artery; BA, basilar artery; PCA, posterior cerebral artery).

female was 50% higher than in men (41). In addition, the area
of increased wall shear stress at the ICA bifurcation is larger in
women compared to men (Figure 2). Such differences between
men and women, although less pronounced, were also found at
the bifurcation of the MCA into two main branches (41).

Regarding the wall tension generated by pressure, blood flow
modeling of circle of Willis circulation has demonstrated that
peak pressure is higher when artery diameter is smaller and the
angle of the bifurcations is asymmetric (42).

All these observations thus support the idea that the gender
difference in the diameter and geometry of bifurcations of arteries
of the circle of Willis results in higher shear stress and peak
pressure in women that may induce more severe endothelial
damage and favors IA formation in women, particularly at ICA
bifurcation and ICA posterior communicating artery junction.
Moreover, it has been described that the larger the diameter of
an IA relative to the native artery diameter, the higher the risk
of rupture (43). With smaller diameter intracranial arteries in
women, it can be thus considered that at equal IA size, the risk
of rupture will be higher in women than in men.

Hormones
Hormones are a fundamental part of sex differences and
hormonal changes in the course of female life participate in sex
differences in neurocardiovascular disease prevalence. Although
the female preponderance of both unruptured and ruptured IAs
in the general population is clear, and even more pronounced in
familial forms of IA (44, 45), an important additional factor to
be considered is the age. The change in the preponderance of
IAs between men and women starts after the first two decades
of life and became significant after the age of 55, with the peak in

female prevalence of IA in the sixth decade (5, 14, 20, 28, 30–
32). These changes are contemporary with the fall in estrogen
levels occurring during and after menopause, which suggests
the possible protective effect of estrogens on IA formation and
rupture. This hypothesis is further supported by the greater
risk of IA in association with earlier age at menopause (46). In
contrast, women who used oral contraceptive pills and hormone
replacement therapy are less likely to have cerebral aneurysms
(47). The decline in estrogen concentration in peri- and post-
menopause periods can thus be responsible of changes in cerebral
artery structure and functions that favor the formation and/or the
rupture of IAs.

Animal models of aneurysm provided a useful way to address
the sex difference in IAs, in particular to understand the role
of estrogens thanks to the use of ovariectomized females and/or
estrogen supplementation. Estrogen effects are mediated by the
activation of two nuclear estrogen receptors, ERα and ERβ,
acting as transcription factors which control gene expression,
and through a more recently described membrane G protein-
coupled estrogen receptor (GPER) (48). Several studies have
demonstrated the presence of functional ERα and ERβ in
human and animal vascular smooth muscle and endothelial
cells. However, vascular effects of estrogens are predominantly
mediated by ERα (48).

In rodent models of IA, the incidence of IA is higher in
female animals than in males and was further significantly
increased in ovariectomized females, despite similar or even
lower systolic blood pressure in females (6, 49–51). Surgically or
pharmacologically induced-estrogen deficiency also aggravated
IA lesions and significantly increased rupture of IAs (49, 52).
In ovariectomized hypertensive rats, the increased incidence of
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FIGURE 2 | Wall shear stress intensity in ICA bifurcation in men (left) and women (right). According to computational fluid dynamics simulations, area of high WSS is

larger and of stronger intensity in women than in men [adapted from Lindekleiv et al. (41)].

carotid ligation-induced IA can be reversed by bazedoxifene, a
selective estrogen receptor modulator, without change in blood
pressure. This effect is associated with a restoration of ERα and
ERβ expression in cerebral arteries that were downregulated by
ovariectomy (53).

Estrogen treatment and specific estrogen ERβ agonist, but
not ERα agonist, reversed the increased incidence of IA in
ovariectomized female mice, which suggests that the protective
effect of estrogens on IA was mediated by ERβ activation (50, 54).
This role of ERβ was further confirmed by showing that the
effect of the ERβ agonist was not observed in ERβ knockout
mice and that non-ovariectomized ERβ knockout mice displayed
an increased incidence of IA compared to non-ovariectomized
control mice (50). With a protective effect of estrogens on IA
mostly attributed to ERβ, the cerebral circulation stands out from
the rest of the arteries in which the protective effect of estrogens
is mediated by ERα.

MOLECULAR MECHANISMS OF
ESTROGEN PROTECTION TO IA
FORMATION

Although the exact pathogenesis of IA formation, growth,
and rupture remains to be established, current knowledge
suggests that endothelial dysfunction induced by hemodynamic
injury at bifurcation of intracranial artery could be the
initial step of IA formation (55–58). This first event then

triggers a vascular inflammation process, with neutrophil and
macrophage infiltration, oxidative stress, fragmentation of the
internal elastic lamina, and degradation of the extracellular
matrix by metalloproteinase, endothelial, and smooth muscle
cell apoptosis (56, 59). All these interconnected processes lead
to the structural degradation and remodeling of the arterial
wall responsible for the weakening and fragility of the arterial
wall. Protecting effects of estrogens can thus result from
an inhibitory action on one or more components involved
in IA formation.

Estrogen Effect on Endothelial NO
Synthase and Cerebral Artery
Vasoreactivity
Endothelial dysfunction, with abnormal endothelial cell
morphology and a loss of endothelial nitric oxide synthase
(eNOS) expression, is a key early step of IA formation (Figure 3).
In a rat model of IA, ovariectomy significantly decreased eNOS
mRNA and protein expression, especially in the cerebral vascular
wall of animals with saccular aneurysms (51). In contrast,
estradiol treatment has been shown to increase the expression of
eNOS in endothelial cells in vitro (51). Thus, estrogen deficiency
promotes endothelial dysfunction whereas conversely, estrogen
would protect against endothelial damage in the early phase of
IA formation.

The in vitro effect of estrogen on eNOS expression in
endothelial cell culture is mediated by ERα (51). ERα has
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FIGURE 3 | Identified pathways involved in the protective effect of estrogens against IA formation and rupture leading to decrease inflammation and oxidative stress in

the arterial wall of cerebral arteries. Endothelial cells (pink), monocytes/macrophages (blue), and smooth muscle cells (light brow).

been also shown to induce eNOS phosphorylation through
phosphoinositide-3 (PI-3) kinase/Akt cascade leading to a rapid
NO production in intact cerebral arteries from ovariectomized
rats ex vivo and causing a long-term increase inNOproduction in
the cerebral circulation of ovariectomized rats chronically treated
with estrogen in vivo (60). This effect of ERα therefore seems
to contradict the causal link established between the rise in NO
production mediated by ERβ and the beneficial effect of estrogen
on IA (50). Indeed, the protective effect of ERβ agonist on IA
incidence in ovariectomized mice is completely abolished by the
inhibition of eNOS by L-NAME treatment, which supports the
fact that ERβ-induced NO production by eNOS mediates the
beneficial effect of estrogens against IA formation (50). The in
vivo role of ERα thus remains to be clarified but it has been shown
that ovariectomy induces a loss of ERα expression in the vascular
wall of mouse cerebral arteries with in contrast, an increase in
ERβ expression (51), which may contribute to the discrepancy in
the respective role of these two receptors in estrogen effects on
NO production.

With regard to vasoreactivity, ex vivo, 17β-estradiol and
agonists of ERα relax pressurized rat middle cerebral arteries
from both male and female animals through a direct effect on
smooth muscle cells (61). A relaxing effect of ERβ agonists was
observed only in female rat arteries and was also due to an action
on smooth muscle cells. ERβ agonists also induce relaxation
of human cerebral artery in a NO-independent manner likely
through an action on smooth muscle, whereas ERα receptor
agonists have only a minimal effect (61).

In agreement with this relaxing effect of estrogens,
ovariectomy enhanced the contractile response of rat cerebral
arteries to vasoconstrictors, in association with an alteration
of NO-dependent relaxing effect (62, 63). Tamoxifen or 17β-
estradiol treatment, presumably through ERα, normalized
cerebral artery reactivity to phenylephrine in ovariectomized rats
(62, 63).

In summary, estrogens preserve normal endothelial function
and have a limiting action on cerebral artery contraction
and cerebrovascular tone through both endothelial-mediated
NO dependent-relaxing effect and a direct relaxing action
on smooth muscle, which participate to their protective
effect on IA. Whereas, studies in ovariectomized rodent
models of IA support a major role of ERβ, the observed
changes in ERα and ERβ expression in cerebral artery wall
of ovariectomized animals support a differential role of
these receptors in the modulation of eNOS expression and
activity, with a major of ERα before menopause and of
ERβ after menopause.

Estrogen Effect on Cerebral Artery
Inflammation
The mechanisms linking high wall shear stress to the activation
of proinflammatory signaling pathway at arterial bifurcation are
not fully elucidated, but the transcription factor nuclear factor
kappa B (NF-κB) is shown to play a critical role in IA formation
and rupture (Figure 3). Its activation leads to an increase in
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the expression of vascular cell adhesion molecule-1 (VCAM-
1), intercellular adhesion molecule-1 (ICAM-1), and monocyte
chemoattractant protein-1 (MCP-1), which are responsible for
the recruitment and adhesion of inflammatory cells to the
endothelium where they produce proinflammatory cytokines
such as tumor necrotizing factor alpha (TNFα), interleukin
(IL)-1β, and IL-6 (56, 64–67). These cytokines then perpetuate
local inflammation and neutrophil and macrophage infiltration
in the cerebral artery wall, which produced damaging matrix
metalloproteinases (MMP-2/9), and reactive oxygen species
(ROS) (55). Whereas, the general vasculo-protector effects of
estrogens are quite well documented, only a limited number
of studies specifically addressed the anti-inflammatory action of
estrogens on cerebral arteries and on IA.

Estrogens have been shown to limit proinflammatory
cytokine expression and effects in cerebral arteries (Figure 3).
Ovariectomy in female animals increased expression of TNFα
and accumulation of neutrophils and macrophages in the
arterial wall (49). Estrogen deficiency was also shown to
upregulate IL-17A, which in turn downregulates E-cadherin
and favors macrophage infiltration in the IA wall (52).
Bazedoxifene decreases IL-1β mRNA expression in cerebral
arteries which was upregulated by ovariectomy (53). Recently, a
bioactive phytoestrogen daidzein, which reverses the increased
IA incidence in ovariectomized mice via ERβ, was shown to
decrease IL-6 mRNA level in cerebral arteries and, to a lesser
extent, IL-1β and TNFα mRNAs (68). IL-6 level in the serum
is increased and involved in the formation and rupture of IA in
estrogen-deficient mice but not in control mice, which suggests
that estrogen-induced repression of IL-6 expression participates
to the beneficial effect of estrogen on IA (67).

Estrogen not only reduces IL-1β expression, but
also suppresses exogenous IL-1β-mediated induction of
cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway
in cerebral blood vessels of ovariectomized rats (69). IL-1β
induces COX-2 expression through the activation of NF-κB, and
the observed inhibitory effect of estrogen has been ascribed to
an inhibition of NF-κB activity (70). This result is particularly
interesting as it has been proposed that COX-2/PGE2/NF-κB
pathway in cerebral artery endothelium is responsible for high
wall shear stress-induced endothelial cell damage and may be the
link between hemodynamic stress and IA formation (71). The
inflammatory PGE2 formation is catalyzed from arachidonic
acid by the sequential action of COX-2 and prostaglandin E
synthase-1 (PGES-1). COX-2 and prostaglandin E receptor 2
(EP2) mRNA expression was induced in vitro in endothelial
cell cultures exposed to shear stress. In a mouse model of IA
induced by elevated hemodynamic stress, expression of COX2
and EP2 is increased in the endothelial cell layer at early stage of
IA formation. Inhibition or knockout of COX-2 or EP2 resulted
in decreased NF-κB expression and a reduction of incidence
of IA formation (71, 72). The induction of COX-2/PGE2/EP2
signaling activates NF-κB, thus creating a self-amplified feedback
loop that prevents the resolution of this initial process and
contributes to generate the chronic inflammation in the cerebral
arterial wall enabling for IA formation and progression. The
observed inhibitory action of estrogen on NF-κB (69) might thus

limit the shear stress-induced amplification loop of the COX-
2/PGE2/NF-κB pathway and the perpetuation of inflammation
in cerebral artery wall.

Estrogen Effect on Cerebral Artery
Oxidative Stress
Vascular oxidative stress and increased production of reactive
oxygen species (ROS) are considered as the common
mechanisms of vascular dysfunction and arterial disease,
including IA (73) (Figure 3). Oxidative stress is mainly caused
by an imbalance of ROS production by prooxidative enzymes
(nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, xanthine oxidase or the mitochondrial respiratory
chain) and antioxidant mechanisms (superoxide dismutase,
glutathione peroxidase, heme oxygenase, catalase, and so on.).
The resulting rise in ROS concentration reduces bioactive
endothelial NO and inhibits eNOs, which favors monocyte
and macrophage recruitment creating a proinflammatory
environment which leads to the activation of MMPs, phenotypic
conversion of vascular smooth muscle cells and apoptosis, and
finally a harmful arterial wall remodeling.

Excessive production of ROS has been demonstrated in
aneurysmal walls in rodent models of IA, in association with an
increased expression of heme oxygenase-1 and NADPH oxidase
subunits (NOX4, p22phox, p47phox), mainly in macrophages
and smooth muscle cells, whereas superoxide dismutase 1 was
downregulated (51, 74). Free radical scavenger treatment or
p47phox deletion markedly reduced IA formation and inhibited
enlargement and medial degradation of IA (74). Estrogen
deficiency in a rat model of IA increased the expression of NOX4
and p22phox in IA walls, and in contrast, 17β-estradiol inhibited
NOX4 and p22phox expression in cerebral endothelial cell
culture, suggesting that NADPH oxidase regulation by estrogen
might participate to the gender difference in IA prevalence (51).

Additional indirect evidence supporting a role of ROS in the
sex difference in IA has been provided by the differential effect of
cigarette smoking on IA in men and women. Smoking is a well-
known risk factor of IA formation and rupture, which mainly
acts by inducing ROS accumulation (75). However, cigarette
smoking has a more severe impact on IA, particularly on IA
rupture, in smoking women than in men (76, 77). A recent study
showed that relatively young women (between 30 and 60 years)
with a positive smoking history have a four-fold increased risk
for having an incidental unruptured IA (78). These results are
consistent with an antiestrogenic effect of cigarette smoking (20),
which should become even more apparent after the menopause
when endogenous estrogen production is decreased and thus
have a greater impact on the risk of postmenopausal IA.

Estrogen Effect on Cerebral Artery Matrix
and Elastic Mechanical Properties
Vascular remodeling is an important process in the pathogenesis
of IA characterized by the degradation of the internal elastic
lamina of aneurysmal walls and dynamic modification of
extracellular matrix components such as elastin, collagens, and
proteoglycan leading to weakening of the arterial wall (79, 80).
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Arterial wall undergoes postmenopausal extracellular matrix
changes similar to those occurring in the skin and bones,
including a decrease in collagen and water content that leads
to thinning and loss of elasticity offering a favorable ground
to IA (81, 82). These changes particularly affect the media,
which is the layer richest in collagen and elastin of the arterial
wall. In contrast, thanks to the positive effect of estrogens on
connective tissue and its turnover, hormone replacement has
morphological effect on the carotid arteries in postmenopausal
women, preserving the thickness of the arterial media layer (83).

In rats with IA, an imbalance between MMP-9 and MMP-
2 and their inhibitors TIMP-1 and TIMP-2 is responsible for
extracellular matrix degradation in the arterial walls leading to
the progression and rupture of IA (84, 85)(Figure 3). In the same
experimental model, the reduction in the incidence of IA rupture
produced by treatment with the ER modulator bazedoxifene is
associated with a significant decrease of MMP-9 expression that,
on the contrary, was upregulated by ovariectomy (53). Estradiol
administration has been also shown to inhibit the formation of
lipid peroxidation products and restore middle cerebral arterial
viscoelasticity and compliance in aged female rats (86, 87).
In a rabbit model of IA induced by carotid ligation, estrogen
deficiency, in combination with hypertension, increases vessel
length and tortuosity in the circle of Willis, probably by lowering
the tolerance of vascular tissue to hemodynamic stresses caused
by carotid ligation, making it more vulnerable to flow-induced
aneurysmal remodeling (88).

POTENTIAL ROLE OF
15-HYDROXYPROSTAGLANDIN
DEHYDROGENASE (15-PGDH)

The key role of COX-2/PGE2/NF-κB pathway in IA pathogenesis
and its participation in the sex difference of the disease was
further supported by the sex difference in the effect of aspirin
on IA and the potential role of the PGE2 degrading enzyme
15-PGDH. Interestingly, frequent use of aspirin decreased the
risk of IA rupture more significantly in men than in women
(89, 90). This difference in aspirin effect was reproduced in
male and female mice in an experimental model of IA (89).
The beneficial effect of aspirin in mice is associated with a
decreased expression of inflammatory molecules in cerebral
arteries, which has been ascribed to its inhibitory action
of COX-2 (89). In an attempt to identify the mechanisms
involved in the differential effect of aspirin on IA in male
and female, gene expression analysis in cerebral arteries has
revealed a lower expression of 15-PGDH and higher levels of
proinflammatory molecules (COX-2, CD-68, MMP-9, MCP-1,
and NF-κB) in treated females than in treated males. 15-PGDH
is the main enzyme of prostaglandin degradation that stops
the biological activity of PGE2 by converting it to 15-keto-
PGE2, an endogenous peroxisome proliferator-activated receptor
γ (PPARγ) agonist. Thus, even if the activity of COX-2 is reduced
by aspirin, the low level of 15-PGDH in female could contribute
to maintaining, at least in part the activity of the PGE2/NF-κB

pathway. Indeed, expression of COX-2, CD-68, MMP-9, MCP-
1, and NF-κB was higher in cerebral arteries of aspirin-treated
female mice than in treated males, and this difference and also
the increased risk of IA rupture between males and females were
completely equalized by treatment a 15-PGDH activator (89).
This observation further supports the essential role of 15-PGDH-
mediating PGE2 degradation in the protective effect of aspirin.
It also suggests that the low expression of 15-PGDH in cerebral
artery in female might favor high shear stress-induced COX-
2/PGE2/NF-κB pathway activation and the resulting maintained
inflammation in arterial wall, thus participating to the increased
propensity to IA rupture. Moreover, the low catalytic activity of
15-PGDH also limits the activation of PPARγ shown to decrease
IA formation and rupture (91, 92).

CONCLUSION

Experimental works driven over the past decades to understand
the well-known higher prevalence of IA women compared
with men have gathered knowledge that allows us to propose
different mechanisms that would be involved. One of them
lies in the anatomic difference of the circle of Willis between
men and women, with diameters and geometry of bifurcation
of the arteries leading to higher hemodynamic stresses in
women, driving more severe endothelial damage which favors
IA formation. In addition, cigarette smoking appears to have a
greater impact on IA in women than in men, an effect that could
be related to the low level of 15-PGDH described in cerebral
artery in female, and as a consequence, a stronger prooxidative
damaging action of smoking in women. However, although these
unmodifiable and modifiable risk factors predispose women to
IA, they are counteracted by the protective effects of estrogens,
acting on multiple steps of IA formation including, endothelial
dysfunction, inflammation, and oxidative stress. The loss of these
estrogen-mediated protecting mechanisms at menopause thus
plays a major role in the critical increase in IA prevalence in
women over the age of 50 years.

It is obvious that multiple combined mechanisms are
responsible for the gender differences of IA disease. As in any
disease, sex differences in IA may be linked to sex hormones but
also to nonhormonal factors dependent of the genes present in
the X and Y chromosomes. Currently, the vastmajority of studies,
in humans and animal models, have focused on the role of sex
hormones, more particularly of estrogens, and further research
is needed to determine the part of each of these mechanisms
in the female susceptibility to IA. Moreover, beside biological
sex influences on IA pathophysiology, the psycho-sociocultural
construct of gender can further participate to the difference
between men and women. Societal, cultural, behavioral, and
psychological factors may add to or modulate the biological
factors involved in men and women differences toward IA
formation and rupture.

Regarding IA patient care, despite the significant data
that demonstrate the negative impact of female sex on IA
incidence and rupture, this important variable is surprisingly
largely neglected in clinical practice. However, even if the
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mechanisms involved are not elucidated, the current data would
nevertheless make it possible to propose ways to improve
the management of women suspected or diagnosed with IA.
First, it would be relevant to consider women as a high-
risk group. Second, given the strong impact of hemodynamic
and oxidative stress on IA in women, the implementation
of intensive strategies to lower blood pressure and promote
cigarette smoking cessation seems to be strongly warranted
in women.

There is no doubt that our understanding of the mechanisms
underlying sex differences in IA will improve further in
the coming years and contribute to a better understanding
of the pathophysiology of IA. The challenge will then be
to transform this knowledge into means to improve the
prevention of IA formation, progression, and rupture, and
more globally for a better care of IA patients, both women
and men.
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