& frontiers | Frontiers in Cardiovascular Medicine

ORIGINAL RESEARCH
published: 17 May 2022
doi: 10.3389/fcvm.2022.818585

OPEN ACCESS

Edited by:
A. Phillip Owens Il
University of Cincinnati, United States

Reviewed by:

Frank Davis,

University of Michigan, United States
Zhensen Chen,

Fudan University, China

*Correspondence:
Jianyan Wen
jianyanwen@sina.com
Peng Liu
liupeng5417@163.com

Specialty section:

This article was submitted to
Atherosclerosis and Vascular
Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 19 November 2021
Accepted: 11 March 2022
Published: 17 May 2022

Citation:

Lv X, Wang F, Sun M, Sun C, Fan X,
Ma B, Yang Y, Ye Z, Liu P and Wen J
(2022) Differential Gene Expression
and Immune Cell Infiltration in Carotid
Intraplaque Hemorrhage Identified
Using Integrated Bioinformatics
Analysis.

Front. Cardiovasc. Med. 9:818585.
doi: 10.3389/fcvm.2022.818585

Check for
updates

Differential Gene Expression and
Immune Cell Infiltration in Carotid
Intraplaque Hemorrhage Identified
Using Integrated Bioinformatics
Analysis

Xiaoshuo Lv'2, Feng Wang "2, Mingsheng Sun '3, Congrui Sun '3, Xueqiang Fan', Bo Ma’,
Yuguang Yang', Zhidong Ye', Peng Liu'"?* and Jianyan Wen"?*

! Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijjing, China, 2 Graduate School of Peking Union
Medical College, Beijing, China, ° Peking University China-Japan Friendship School of Clinical Medicine, Beijjing, China

Background: Intraplague hemorrhage (IPH) is an important feature of unstable plaques
and an independent risk factor for cardiovascular events. However, the molecular
mechanisms contributing to IPH are incompletely characterized. We aimed to identify
novel biomarkers and interventional targets for IPH and to characterize the role of immune
cells in IPH pathogenesis.

Methods: The microarray dataset GSE163154 which contain IPH and non-IPH plaque
samples was obtained from the Gene Expression Omnibus (GEO). R software was
adopted for identifying differentially expressed genes (DEGs) and conducting functional
investigation. The hub genes were carried by protein-protein interaction (PPI) network
and were validated by the GSE120521 dataset. CIBERSORT deconvolution was used
to determine differential immune cell infiltration and the relationship of immune cells
and hub genes. We confirmed expression of proteins encoded by the hub genes by
immunohistochemistry and western blotting in 8 human carotid endarterectomy samples
with IPH and 8 samples without IPH (non-IPH).

Results: We detected a total of 438 differentially expressed genes (DEGs), of which
248 were upregulated and 190 were downregulated. DEGs were mainly involved in
inflammatory related pathways, including neutrophil activation, neutrophil degranulation,
neutrophil-mediated immunity, leukocyte chemotaxis, and lysosomes. The hub genes
found through the method of degree in the PPI network showed that ITGB2 and ITGAM
might play an important role in IPH. Receiver operating characteristic (ROC) results also
showed a good performance of these two genes in the test and validation dataset.
We found that the proportions of infiltrating immune cells in IPH and non-IPH samples
differed, especially in terms of MO and M2 macrophages. Immunohistochemistry and
western blotting analysis showed that expression levels of [TGB2 and ITGAM increased
significantly in carotid atherosclerotic plaques with IPH.
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Conclusion: /TGB2 and ITGAM are key hub genes of IPH and may play an important role
in the biological process of IPH. Our findings advance our understanding of the underlying
mechanisms of IPH pathogenesis and provide valuable information and directions for
future research into novel targets for IPH diagnosis and immunotherapy.

Keywords: intraplaque hemorrhage, immune cell infiltration, bioinformatics, GEO, atherosclerosis

INTRODUCTION

Carotid atherosclerotic disease is a key risk factor for ischemic
stroke, which remains an important cause of mortality and
disability worldwide (1). Improvement of atherosclerotic imaging
capabilities revealed important new insights, suggesting that the
vulnerability of atherosclerotic plaques depends more on their
composition than on their size or degree of lumen narrowing
(2). Intraplaque hemorrhage (IPH), lipid-rich necrotic cores,
thin fibrous caps, and inflammation are considered important
features of high-risk atherosclerotic lesions (3). In particular,
there is a well-established relationship between IPH and adverse
cardiovascular outcomes. Recent studies confirmed that IPH is an
independent risk factor for stroke and coronary heart disease, and
that the risk of ipsilateral ischemic events in existing IPH patients
is increased 4 to 12 times (4-6).

IPH is thought to originate from new, immature vessels
that respond to hypoxia or inflammatory stimuli (7, 8). During
plaque advancement, intraplaque angiogenesis provides oxygen
and nourishment to maintain plaque growth. However, these
neovessels are usually immature, characterized by increased
permeability caused by a discontinuous basement membrane,
underdeveloped interendothelial connections and poor pericyte
coverage (9-11). Leaky neovessels tend to rupture and permit
extravasation of blood components such as erythrocytes,
inflammatory cells, lipoproteins, and plasma, resulting in IPH
(9). IPH rapidly enlarges the volume of the necrotic core of
the plaque and promotes deposition of free cholesterol by
accumulating cholesterol-rich erythrocyte membranes. These
processes trigger an inflammatory response and initiate a vicious
cycle that destabilizes atherosclerotic plaques (12, 13). Further,
accumulated erythrocytes can attract inflammatory cells to
exudate from neovessels and release a large amount of cytokines,
growth factors, and matrix metalloproteinases (MMPs),
thus creating a highly immune-responsive environment and
further triggering the formation of new immature intraplaque
microvessels (14, 15).

While histopathological ~and  experimental studies
improved our understanding of the pathogenesis of
IPH, the molecular mechanisms remain unclear. Toward

filling this gap, recent advances in gene chip technology
have helped identify new and important genes related to
disease mechanisms. However, although bioinformatics
studies have described gene expression and immune cell
infiltration  patterns during atherosclerosis occurrence
and progression, there are few studies comparing
atherosclerotic plaques in tissues with and without IPH
(non-IPH) (16-18).

As the flowchart showed in Figurel, we downloaded
array dataset GSE163154 from the Gene Expression Omnibus
(GEO) to study differentially expressed genes (DEGs) and
pathways between IPH and non-IPH carotid plaques by
bioinformatics methods including DEG screening, functional
enrichment analysis, protein-protein interaction (PPI) analysis
and identification of hub genes. The GSE120521 dataset was used
to validate the hub genes and CIBERSORT was used to further
analyze immune cell infiltration in these two types of plaques.
Finally, the protein expression associated with the important
hub genes was verified in carotid endarterectomy specimens
by immunochemical staining and western blotting. Our
results contribute to understanding the molecular mechanisms
underlying IPH development and highlight the importance of
immune cells in the pathogenesis of IPH.

MATERIALS AND METHODS

Microarray Data

mRNA expression profiles of GSE163154, which were assayed
on the GPL6104 platform (Illumina humanRef-8 v2.0 expression
beadchip), were obtained from the GEO database. The
dataset contains 43 carotid atherosclerotic plaques, including
16 non-IPH plaque samples and 27 IPH plaque samples,
which were collected from symptomatic patients undergoing
carotid endarterectomy (CEA) surgery. Meanwhile the dataset
GSE120521 obtained from the GEO was used as an external
validation dataset, including 4 stable plaques (macroscopically
normal) and 4 unstable plaques (plaque rupture with IPH).

Test for Correlation and Variation of

Samples

Pearson’s correlation analysis and principal component analysis
(PCA) were performed for the mRNA expression profile in
GSE163154 dataset to examine the correlation and variation
of the samples. All statistical computing and graphics were
performed using R software. Pearson’s correlation test was used
to evaluate the correlation among all samples, and a correlation
heatmap was drawn to visualize correlations between samples
using the pheatmap package of R (version 4.1.0, https://www.
r-project.org/). PCA was used to visualize the variation and
clustering of samples. If the samples within the group can be
clustered or have high correlation, the data was considered to
have good quality and reliability for bioinformatics analysis.

Identification of DEGs

The limma package in R was used to normalize and screen
DEGs between non-IPH samples and IPH samples. DEGs with
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FIGURE 1 | The flowchart of the study.
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v

an adjusted false discovery rate (FDR) p < 0.05 and [log2 fold
change (FC)| >1 were considered significant. A heatmap was
drawn using the pheatmap package for visualizing DEGs.

Enrichment Analysis

Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
for DEGs using the clusterProfiler package, and the p-value cutoff
and g-value cutoff were set to 0.05.

Construction of the PPI Network and

Identification of Hub Genes

The online Search Tool for the Retrieval of Interacting Genes
(STRING, https://www.string-db.org/) database was used to
construct the DEG PPI network, with a PPI score threshold
(medium confidence) >0.4. The Cytohub plugin in Cytoscape
(version 3.8.2, https://cytoscape.org/) was used to identify hub
genes using the degree method (Top 10 genes). Moreover, we
verified the expression of the crucial genes and evaluated the
accuracy of crucial genes using receiver operating characteristic
(ROC) curves in internal dataset GSE163154 and external
dataset GSE120521.

CIBERSORT Analysis of Immune Cell
Infiltration

The CIBERSORT (https://cibersortx.stanford.edu/)
deconvolution algorithm was used to evaluate differential
immune cell infiltration between IPH and non-IPH samples.

CIBERSORT is an analysis tool that uses gene expression data
to estimate the abundances of member cell types in a mixed cell
population. The LM22 gene file provided by CIBERSORT was
used to define and infer the relative proportions of 22 types of
infiltrating immune cells in the IPH and non-IPH plaque gene
expression data.

The default signature matrix of 100 permutations was
used in this algorithm. To ensure confidence in the results,
CIRBERSORT wuses Monte Carlo sampling to derive the
deconvolution p-value for each sample, and only data with p-
values <0.05 were retained. After data processing and filtering,
14 cases of non-IPH data and 27 cases of IPH data were
included in the subsequent analysis. The results obtained by
CIBERSORT were visualized using the corplot, vioplot, and
ggplot2 packages in R. We then performed correlation analysis
between the 22 immune cells and the key genes using Spearman’s
rank correlation test.

Sample Collection and Classification

From December 2020 to September 2021, we collected 37 carotid
plaques during CEA surgery in China-Japan Friendship Hospital.
Through preliminary macroscopic observation, we intentionally
selected 8 IPH plaques and 8 non-IPH plaques for analyze
and retrospectively collected clinical characteristic information
of patients. The collected specimens were cut into 5-8-mm-
thick parallel sections, and each alternate section was quickly
frozen in liquid nitrogen and stored at —80°C for subsequent
protein extraction, while the rest of the sections were fixed in
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4% polyoxymethylene for 24 h, and then embedded in paraffin.
Histological examination was performed on 5-mm-thick serial
sections. Sections from different segments of each sample were
taken for hematoxylin-eosin (H&E) and Perls staining (Solarbio,
G1424) to reconfirm the presence of IPH. This study was
approved by the Medical Ethics Committee of the China-
Japan Friendship Hospital of Beijing, China (2019-25-1), and we
received informed consent from all patients.

Immunohistochemistry

Sections were deparaffinated, blocked, and incubated with the
primary anti-ITGB2 antibody (Proteintech, 10554-1-AP) or anti-
ITGAM antibody (Proteintech, 21851-1-AP) at 4°C overnight.
Image-Pro Plus 6.0 software (IPP 6.0, Media Cybernetics,
United States) was utilized to measure the total tissue area
and integrated optic density (IOD) of the target gene, which
was stained yellow-brown. The intensity of gene expression was
presented as IOD per unit area.

Protein Extraction and Western Blotting

Analysis

Plaque samples were washed twice with cold phosphate-buffered
saline and lysed with RIPA buffer (Beyotime Technology;
Cat: P0013C) containing proteinase inhibitors. Total protein
concentrations were measured using a BCA Protein Assay
Kit (Invitrogen; Cat: 23227). Equal amounts of protein were
separated by SDS-PAGE and transferred to a PVDF membrane.
Blot membranes were blocked with 5% non-fat milk, and
incubated with primary antibodies (ITGAM, 1:2000, Proteintech;

ITGB2, 1:1000, Proteintech) followed by suitable peroxidase-
conjugated secondary antibody. Immunoreactive bands were
detected with Pierce ECL Western Blotting Substrate (Thermo
Scientific; Cat: 32209). -actin was used as an internal control and
blots were quantified by Image J.

Statistical Analysis

R version 4.1.0 was used to perform bioinformatics analyses and
a p-value or adjusted p-value < 0.05 was considered statistically
significant. SPSS version 26 and GraphPad Prism 6.0 software
were used to analyze clinical and experimental data. Unpaired
Student’s ¢-test was used to compare the two sets of data. P < 0.05
was considered statistically significant.

RESULTS

Dataset Validation

Pearson’s correlation test and PCA were used to validate the
dataset. The correlation heatmap of the GSE163154 dataset
showed that there were strong correlations among samples
within the IPH group and also between samples within the non-
IPH group (Figure2A). PCA of GSE163154 showed that the
43 samples in the two groups could be distinguished, as the
distances between the samples in the IPH group were close in the
dimensions of PC1 and PC2 and the distance between samples in
the non-IPH group were also close (Figure 2B).
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FIGURE 2 | Validation of the dataset GSE163154 by Pearson’s correlation analysis and PCA. (A) Pearson’s correlation analysis of samples from the GSE163154
dataset. The correlation coefficient is reflected by the colors in the heatmap. (B) PCA of samples from the GSE163154 dataset. PC1 and PC2 are represented on the
x-axis and y-axis, respectively. PCA, principal component analysis; PC1, principal component 1; PC2, principal component 2.
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Identification of DEGs

A total of 438 DEGs were screened, with an adjusted p-value
of <0.05 and | log2 (fold-change) | >1 as thresholds. A total of
248 upregulated and 190 downregulated DEGs were identified
in IPH samples when compared to non-IPH samples, as shown
by volcano plot (Figure 3A) and heatmap (Figure 3B), while a
detailed summary was listed in Supplementary Table S1.

Functional and Pathway Enrichment

Analysis

GO analysis classified DEGs into three categories: biological
process (BP), molecular function (MF), and cellular component
(CC). DEGs linked with BP were significantly enriched in
neutrophil activation, neutrophil degranulation, and neutrophil
activation involved in immune response. DEGs linked with CC
were significantly enriched in collagen-containing extracellular
matrix, secretory granule membrane, and cell-substrate
junction. DEGs linked with MF were significantly enriched
in actin binding, collagen binding, and cargo receptor activity
(Figure 4A). KEGG pathway enrichment analysis revealed that
DEGs were mainly enriched in lysosome, pertussis, cholesterol
metabolism, and phagosome pathways (Figure4B). The
detatiled results were listed in Supplementary Table S2.

Construction of the PPl Network and

Screening of Hub Genes

The top ten genes ITGB2, ITGAM, TYROBP, SPI1, CSFIR,
MMPY, CXCLS, IL1B, CYBB, and CD53 obtained by PPI analysis
and Cytoscape were regarded as hub genes, of which ITGB2 and
ITGAM were in the most critical positions and became the focus
of subsequent analyses (Figure 5).

Different Immune Cell Infiltrative Patterns

Between IPH and Non-IPH Samples

GO and KEGG analysis identified multiple pathways related to
the immune process. Therefore, we used CIBERSORT software
to reveal the pattern of immune cell infiltration in carotid
atherosclerotic plaques with hemorrhage. After data processing
and screening, 14 cases of non-IPH data and 27 cases of IPH data
were included in the subsequent analysis, and a heatmap was used
to show the proportion of 22 immune cells in these two groups of
samples (Figure 6A). M2 macrophages, M0 macrophages, resting
mast cells, gamma delta T cells, and monocytes represented the
top five highest infiltrating fractions in both groups of plaques.
Compared with the non-IPH group, the proportion of MO
macrophages was higher in the IPH group, while the proportion
of M2 macrophages was lower (Figure 6B). Furthermore, we
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downregulated genes, respectively. DEGs, differentially expressed genes; ITGB2, integrin subunit beta 2; ITGAM, integrin subunit alpha M; TYROBP, transmembrane
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performed a correlation analysis of infiltrated immune cells in
the plaques, with scores representing the degree of correlation
(Figure 6C). The correlation heatmap indicated that activated
dendritic cells and neutrophils showed the most synergistic effect,
while M0 macrophages and M2 macrophages showed the most
competitive effect.

Analysis Between Crucial Genes and

Immune Cells

As indicated from the correlation analysis, ITGAM displayed a
significant positive correlation with MO macrophages (r = 0.678,
p < 0.001), and a significant negative correlation with resting
mast cells (r = —0.423, p = 0.006), M2 macrophages (r = —0.410,

p = 0.008), and resting mast cells (r = —0.423, p = 0.006)
(Figure 7A). ITGB2 displayed a significant positive correlation
with MO macrophages (r = 0.576, p < 0.001), and a significant
negative correlation with resting mast cells (r = —0.419, p =
0.006), neutrophils (r = —0.424, p = 0.006), as well as CD4
memory resting T cells (r = —0.487, p = 0.001) (Figure 7B). A
detailed summary was listed in Supplementary Table S3.

Internal and External Validation of Key

Genes

We validated expression of the two key genes and performed
ROC analysis on internal dataset GSE163154 and external dataset
GSE120521. Results revealed that ITGAM and ITGB2 were
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FIGURE 6 | Immune cell infiltration patterns in IPH samples and non-IPH samples. (A) Histogram of the proportions of 22 immune cell subpopulations in each IPH
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significantly upregulated in IPH or advanced atheroma plaques
(Figures 7C,D,G,H). The ROC curves revealed the probability
of ITGAM and ITGB?2 as valuable biological markers with AUCs
of 0.935 and 0.926 (Figures 7E,F); the ROC analysis of external
data sets also showed good diagnostic effects of ITGAM and
ITGB2, with AUCs of 0.820 and 0.825, respectively (Figures 7LJ).
Differences in expression levels of the remaining 8 hub genes
(TYROBP, SPI1, CSF1R, MMP9, CXCL8, IL1B, CYBB, and
CD53) and their correlation with immune cells were detected in
dataset GSE163154 (Supplementary Figure S1).

Demographic Data of the Patients and the

Expression of ITGB2 and ITGAM

The plaques were divided into IPH plaques and non-IPH plaques
by macroscopic examination (Figure8A), H&E and Perls
staining of tissue sections. Perls staining showed hemosiderin in
hemorrhagic plaques in blue color and revealed the accumulation
of erythrocytes in the hemorrhagic area within a plaque
(Figure 8B). After screening and pathologic confirmation, 8 IPH
plaques and 8 non-IPH plaques were intentionally selected for
subsequent analysis. Patients’ clinical characteristics including

Frontiers in Cardiovascular Medicine | www.frontiersin.org

May 2022 | Volume 9 | Article 818585


https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles

Lvetal Bioinformatics Analysis of IPH

A non-IPH

T

7
r
[ ]

B
£
S
17
] D
[0}
L
0.6 - okk
0.5
e 5 ‘ '
= 0.4
© 0.3
] .
s < 0.2
6 8 0.1
|_ .
= 0 on-IPH_IPH
0.6 Kk
g 0.5- .
= ‘
& =
Q 3
< o
= a
Q .l
non-IPH IPH
E F
non-IPH IPH 3.07] Jedekek 3.0 dekdek
N % % > N % % 2.57]
) & & 2 % 2 3 28 E _ ! N
2.0
ITGAM — 8 120 kDa o g
- = — 157
ITGB2 [N M e e S A . S 5 Da ]
1.0

B-ACHN [w s s - — - - - 12 kDa

“non-IPH_ IPH

95 non-IPH IPH
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higher than that in the non-IPH group. ***p < 0.001, ****p < 0.0001.

FIGURE 8 | show the quantitative results of immunohistochemical staining. ITGAM and ITGB2 expression were significantly increased in the IPH group. (E) Western
blotting was used to determine the protein expression levels. Quantitative results (F) show that the expression of [TGB2 and ITGAM in the IPH group was significantly

TABLE 1 | Patient demographic data.

Total Non-IPH IPH p-Value

Patients 16 8 8 -
Male (n [%]) 11 (68.7%) 5 (62.5%) 6 (75%) 1
Age (years) 65.31 + 8.42 65.00 £ 8.452 65.63 £ 8.975 0.888
BMI (kg/m?) 27.31 +£1.968 27.977 + 1.966 26.655 + 1.854 0.188
Hypertension Yes 13 (81.2%) 7 (87.5%) 6 (75%) 1
Diabetes mellitus Yes 7 (43.7%) 2 (25%) 5 (62.5%) 0.315
CHD Yes 3(18.7%) 0 (0%) 3 (37.5%) 0.2
TC (mmol/L) 3.48 +£0.43 3.332 £ 0.240 3.63 £ 0.537 0.181
Smoker Yes 10 (62.5%) 4 (50%) 6 (75%) 0.608

Values are shown as mean + SD or n (%). IPH, intraplaque hemorrhage; BMI, body mass index; CHD, coronary heart disease; TC, serum total cholesterol (TC).

age, gender, body mass index (BMI), hypertension, diabetes
mellitus, coronary heart disease (CHD), serum total cholesterol
(TC), and smoking were retrospectively collected and compared
between groups. None of the clinical characteristics differed
significantly between the two groups (Table 1).

Immunohistochemistry was used to assess ITGB2 and ITGAM
expression and tissue distribution. ITGB2 and ITGAM expression
was significantly higher in IPH samples, especially in the
hemorrhagic area (Figure 8C). Quantitative analysis by IPP
software showed that the mean DOI of the tissue area (DOI/Area)
of IPH samples was significantly higher than that of non-IPH
samples (Figure 8D). Western blotting was used to evaluate the
protein expression levels of ITGB2 and ITGAM in 8 samples from
each group, and band densities were quantified using Image J
software. The expression levels of the two molecular proteins
in the IPH group were significantly higher than those in the
non-IPH group (Figures 8E,F).

DISCUSSION

Increasing evidence indicates that IPH is associated with high
risk of atherosclerotic plaques. In fact, IPH is not only a
marker of unstable plaques, but also a trigger of plaque
instability (13). IPH leads to a series of subsequent pathological
processes, such as accumulation of cholesterol-rich erythrocyte
membranes (19), expansion of necrotic cores, promotion of
oxidant and proteolytic activity, infiltration of leukocytes, and a
highly inflammatory plaque environment (8, 20, 21). Therefore,
preventing the occurrence and progression of IPH is of great
significance for increasing plaque stability and preventing stroke.
However, IPH is a complex multifactorial disease with unclear
pathologic mechanisms, and valuable biomarkers are needed to
predict and prevent IPH-related stroke.

The key hub genes identified in this study, ITGB2 (also known
as CDI8) and ITGAM (also known as CDI11b), belong to the
integrin family, which is an important transmembrane protein

family that mediates cell-cell adhesion and cell-extracellular
matrix (ECM) adhesion (22). Previous studies have demonstrated
that ITGAM (integrin aM) and ITGB2 (integrin $2) can promote
leukocyte transendothelial migration and disrupt endothelial
barrier function through animal and cultured cells experiments
(23, 24), and some studies have reported that ITGB2 and
ITGAM may be involved in the progression of atherosclerosis
through bioinformatics analysis (25, 26). However, few studies
have directly reported the relationship between these two genes
and IPH. Different from the in vivo and in vitro experimental
methods in previous studies, and also different from the genomic
analysis of unclassified atherosclerotic plaques, this study directly
conducted bioinformatics analysis on high-throughput gene chip
data of human IPH plaques. Through differential gene screening,
PPI analysis and ROC verification, ITGAM and ITGB2 were
identified as key hub genes of IPH, and further histological
examination proved for the first time that ITGB2 and ITGAM
were highly expressed in IPH plaques. In addition, we revealed
for the first time the correlations between ITGB2/ITGAM and
various types of immune cells in atherosclerosis plaques by
immune cell infiltration analysis. These results provided a new
comprehensive perspective for understanding the pathogenesis
of IPH and provided valuable clues for finding potential
therapeutic targets for IPH and IPH-related stroke.

ITGB2 (also known as CDI8) and ITGAM (also known
as CDI11b) encode the integrin p2 subunit and aM subunit,
respectively. Integrins are heterodimers formed by specific non-
covalent binding of a and B subunits, and have traditionally been
considered important regulators of cell survival, proliferation,
adhesion, and migration (22, 27). ITGB2 encodes the integrin
B2 subunit, which is non-covalently coupled to different o
subunits to form the P2 integrin family (including olp2,
aMp2, aXp2, and aDB2) (28). B2 integrin is a major receptor
family on many leukocyte subsets and plays an important
adhesion function in the process of leukocyte recruitment,
antigen presentation, pathogen clearance and thrombosis (29).
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In addition, recent studies showed that P2 integrin controls
various cellular metabolic signals and pathways. Zhang et al.
reported that ITGB2 enhances the glycolysis activity of cancer-
associated fibroblasts through the PI3K/AKT/mTOR pathway,
thus playing a key role in promoting cancer cell proliferation (30).
Furthermore, Liu et al. found that ITGB2 expression of cancer
cells can be induced by YAP to promote cancer cell invasion of
cancer cells in a manner similar to that of leukocytes (31).

The integrin aM (CD11b) subunit encoded by ITGAM is
coupled with the p2 subunit (CD18) to form aMpP2 integrin,
also known as Mac-1 (CD11b/CD18). It is expressed mainly on
cells of the myeloid lineage, such as monocytes and neutrophils,
and certain lymphocyte subsets and is therefore often regarded
as a marker of circulating monocytes (32). Mac-1 is involved
in phagocytosis, adhesion, and trans-endothelial cell migration,
as well as other functions such as regulating apoptosis and
degranulation (23, 29). As a major member of the B2 integrin
family, CD11b contains an inserted domain that facilitates
binding of many ligands, including the adhesion ligands
intercellular adhesion molecule-1 and—2 (ICAM-1 and—2), the
blood coagulation protein fibrinogen, complement protein iC3b,
and the recently discovered MMP9 (33). During leukocyte
migration across endothelial cells, Mac-1 promotes adhesion of
leukocytes to the ligand ICAM-1 expressed on endothelial cells,
and mediates leukocyte crawling on the vascular wall (34, 35).
In addition, studies reported that when integrin on immune cells
binds to ligands on endothelial cells, it will activate downstream
signaling pathways and destroys the intercellular link molecule
VE-cadherin (14, 36, 37). This may be a key step in the occurrence
of IPH and immune cell infiltration in atherosclerotic lesions.

The results of this study are consistent with previous studies.
Meng et al. reported that ITGB2 and ITGAM are involved
in the progression of carotid atherosclerotic plaques (25). In
addition, high expression of ITGAM is associated with unstable
atherosclerotic plaques (26), and ITGAM knockout reduces
macrophage infiltration, MMP9 expression, and elastin and
collagen degradation in mouse abdominal aortic aneurysm
models (38). This suggests that ITGAM and ITGB2 may play an
important role in the occurrence of IPH, immune cell infiltration,
and the progression of atherosclerosis.

To further investigate the effect of immune cells in
atherosclerotic hemorrhagic  plaques, performed a
comprehensive analysis of immune cell infiltration. In this
analysis, M2 macrophages, M0 macrophages, resting mast cells,
gamma delta T cells, and monocytes represented the top five
highest infiltrating fractions in carotid atherosclerotic plaques,
which is consistent with previous studies using CIBERSORT
analysis and single cell sequencing (16, 39).

Immune cells, especially macrophages, play a critical role
in atherogenesis. A recent single-cell sequencing study found
that CD4+ T cells, CD8+ T cells, and macrophages dominate
the human carotid atherosclerotic plaque immune landscape,
while mass-cytometry analysis also revealed two macrophage
clusters corresponding to classically activated M1 and alternately
activated M2 phenotypes. Nevertheless, plaque macrophages
had higher resolution at the single-cell level of transcription,
suggesting that these cells have different functional heterogeneity

we

in plaques (39). In a mouse model, aortic atherosclerotic
lesions are mainly composed of macrophages, monocytes, and
T cells, while the adventitial tissue is dominated by B cells
(40). However, few studies have revealed the immune cell
landscape of hemorrhagic plaques, so we used CIBERSORT to
reveal the differences in infiltrating immune cells between IPH
and non-IPH samples. This novel analysis showed a higher
proportion of MO macrophages and a lower proportion of M2
macrophages in IPH samples compared with non-IPH samples.
IPH is regarded as a potentially important inflammatory stimulus
that promotes macrophage influx into atherosclerotic lesions
(41, 42), whereas the reduction of M2 macrophage expression
(considered an anti-inflammatory phenotype) in IPH plaques is
reasonable (38).

Previous evidence showed that erythrocyte lysis in the IPH
region releases free hemoglobin, which can be absorbed by
macrophages through CD163 receptors (43). On the other hand,
macrophages secrete MMPs and angiogenic factors, including
TGEF- B, VEGE and EGF, which undoubtedly further promote the
occurrence of new angiogenesis and IPH within plaques (44, 45).
This evidence and our results suggest that macrophages and
their specific differentiation phenotypes play an important role
in intraplaque hemorrhage. However, the specific mechanisms
involving macrophages in the process of IPH and the precise
signals that trigger macrophage differentiation remain unclear
and require further study. Interestingly, the results of this study
showed that ITGB2 and ITGAM have positive correlation with
MO0 macrophages and negative correlation with M2 macrophages.
In addition, M0 macrophages were significantly negatively
correlated with M2 macrophages, and activated dendritic cells
were significantly positively correlated with neutrocytes. These
results provide a new direction for future research on the role of
macrophages in IPH.

Immunohistochemistry and western blotting showed
that the protein expression levels associated with hub
genes ITGB2 and ITGAM were significantly higher in the
IPH group than in the non-IPH group. Since ITGAM
(CD11b) is also a marker of macrophages, we concluded
that there were more infiltrated macrophages in the IPH
group. Notably, immunohistochemistry showed that ITGB2
and ITGAM expression was mainly concentrated in the
IPH region or around neovessels (Figure8C), which
may be caused by IPH-induced inflammatory stimulation
or neovessel leakage.

These results provide valuable clues for further study on the
pathophysiological mechanism of IPH.

This study has several limitations. Firstly, because information
on specific clinical characteristics of samples in public datasets
could not be collected, we could not rule out the potential
impact of heterogeneity in patient populations and clinical
characteristics on the results of this study. Secondly, the sample
size used for analysis and validation was small, which may affect
the accuracy of the analysis results. Future studies need to expand
the sample size of IPH plaques prospectively and explore the
specific mechanisms of ITGB2 and ITGAM in the development
of IPH needs to be further studied through in vivo and in
vitro experiments.
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CONCLUSION

This study used in silico analysis to identify key genes
and pathways closely related to the occurrence of IPH.
In addition, we described the immune landscape in detail,
revealing the underlying immune infiltration patterns of carotid
atherosclerotic plaques in the absence or presence of IPH. We
validated the key genes ITGB2 and ITGAM experimentally,
confirming that the proteins encoded by these genes are
highly expressed in IPH plaques. Our findings advance
our understanding of the underlying mechanisms of IPH
pathogenesis and provide valuable information and directions
for future research into novel targets for IPH immunotherapy
and diagnosis.
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