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Activation of Toll like receptors (TLR) plays an important role in cardiovascular disease

development, progression and outcomes. Complex TLR mediated signaling affects

vascular and cardiac function including tissue remodeling and repair. Being central

components of both innate and adaptive arms of the immune system, TLRs interact

as pattern recognition receptors with a series of exogenous ligands and endogenous

molecules or so-called danger associated molecular patterns (DAMPs) that are released

upon tissue injury and cellular stress. Besides immune cells, a number of structural

cells within the cardiovascular system, including endothelial cells, smooth muscle cells,

fibroblasts and cardiac myocytes express TLRs and are able to release or sense

DAMPs. Local activation of TLR-mediated signaling cascade induces cardiovascular

tissue repair but in a presence of constant stimuli can overshoot and cause chronic

inflammation and tissue damage. TLR accessory molecules are essential in guiding

and dampening these responses toward an adequate reaction. Furthermore, accessory

molecules assure specific and exclusive TLR-mediated signal transduction for distinct

cells and pathways involved in the pathogenesis of cardiovascular diseases. Although

much has been learned about TLRs activation in cardiovascular remodeling, the exact

role of TLR accessory molecules is not entirely understood. Deeper understanding of

the role of TLR accessory molecules in cardiovascular system may open therapeutic

avenues aiming at manipulation of inflammatory response in cardiovascular disease. The

present review outlines accessory molecules for membrane TLRs that are involved in

cardiovascular disease progression. We first summarize the up-to-date knowledge on

TLR signaling focusing on membrane TLRs and their ligands that play a key role in

cardiovascular system. We then survey the current evidence of the contribution of TLRs

accessory molecules in vascular and cardiac remodeling including myocardial infarction,

heart failure, stroke, atherosclerosis, vein graft disease and arterio-venous fistula failure.
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PATTERN RECOGNITION RECEPTORS IN
CARDIOVASCULAR DISEASE

Upon cardiovascular tissue injury a number of self-derived
immunomodulatory molecules are released into the systemic
circulation and the interstitial space where they act as damage
associated molecular patterns (DAMPs) also called alarmins.
Together with exogenous pathogen-associated molecular
patterns (PAMPs), DAMPs are recognized by highly specific
germline encoded pattern recognition receptors (PRRs) to
activate various immune signaling cascades (1).

Depending on cell localization PRRs can be divided into
two major groups, the transmembrane protein families—Toll-
like receptors (TLRs) and C-type lectin receptors (CLRs),
and the cytoplasmic protein families—nucleotide-binding
oligomerization domain (NOD-like) receptors (NLRs), retinoic
acid-inducible gene-I-like receptors (RLRs) and absent in
melanoma-2 (AIM2)-like receptors (ALRs) (2). There are several
classes of PRRs known to accelerate the inflammatory response
in cardiovascular disease (CVD) particularly when the heart
or vessel wall respond to ischemia or mechanical stress (3–6).
The classic PRRs, TLRs and the more recently discovered NLRs,
interact with each other to facilitate progression of several CVDs
(e.g., atherosclerosis and heart failure) (4, 7).

Although mainly expressed on immune cells, PRRs are
present on cardiovascular cells including endothelial cells,
cardiomyocytes, smooth muscle cells (SMCs) and fibroblasts
where they trigger a wide array of immune responses against cell
damage (8, 9).

TLRs are the first discovered and most essential PRR (10).
Initially it was described as a receptor with similarity to the
Drosophila Toll protein, which was originally identified in
fly embryonic development. Toll was shown to be critical for
Drosophila immune defense against pathogens via induction
of pathways homologous to those activating the transcription
factor Nuclear Factor kappa-light-chain-enhancer of activated
B cells (NF-κB) (11). TLRs can also recognize non-microbial
endogenous molecules that are released upon cell death
or present in the extracellular matrix (12, 13). TLR-ligand
interaction leads to the activation of both innate and adaptive

Abbreviations: AAA, abdominal aortic aneurism; AF, atrial fibrillation; AGEs,
advanced glycation end products; ALRs, Absent in melanoma-2 (AIM2)-like
receptors; AngII, angiotensin II; CAD, coronary artery disease; CLRs, C-type lectin
receptors; CVD, Cardiovascular disease; DAMPs, Damage associated molecular
patterns; DCM, dilated cardiomyopathy; ECM, Extracellular matrix; EndMT,
endothelial-to-mesenchymal transition; ER, Endoplasmic reticulum; FFA, free
fatty acids; HMGB-1, High Mobility Group Box-1; HSPs, Heat Shock Proteins;
IFN-I, Type I interferon; IRFs, Interferon regulatory factors; IRI, Ischemia
reperfusion injury; LBP, LPS-binding protein; LDL, low density lipoprotein; LPS,
Lipopolysaccharide; LRRs, Leucine-rich repeats; MD1, Myeloid differentiation
factor 1; MD2, Myeloid differentiation factor 2; MI, Myocardial infarction;
MIRI, myocardial ischemia-reperfusion injury; MyD88, Myeloid differentiation
primary response protein 88; NLRs, Nucleotide-binding oligomerization domain-
like receptors; NT-proBNP, N-terminal pro b-type natriuretic peptide; PAMPs,
Pathogen-associated molecular patterns; PBMC, peripheral blood mononuclear
cells; RLRs, Retinoic acid-inducible gene-I-like receptors; ROS, reactive oxygen
species; RP105, Radioprotective protein 105; PRRs, Pattern recognition receptors;
SMCs, Smooth muscle cells; TIR, Toll/interleukin-1 receptor-like; TLRs, Toll-like
receptors; TRIL, TLR4 interactor with leucine-rich repeats.

immune responses, culminating in activation of transcription
factors and subsequent production of pro-inflammatory
cytokines and type I interferons. These downstream pathways
include positive feedback loops which can culminate in a
strong response that can induce repair of tissue damage but can
overshoot and with that cause acute and chronic inflammation
such as atherosclerosis. Especially, accessory molecules can guide
and dampen these responses toward an adequate response.

NLRs are intracellular sensors of DAMPs that can be divided
into 4 subfamilies depending on the configuration of N-terminal
domain. They orchestrate a number of pathways including
NF-κB signaling, retinoic acid–inducible gene-I–like receptor
signaling, autophagy, major histocompatibility complex gene
regulation, reproduction, and development. NLRP3 and NOD1
gathered specific attention in the field of CVDs due to their
association with inflammasomes (14, 15). NLRP3 and NOD1
inflammasomes play an essential role in atherogenesis (16–
19), aortic aneurysm formation (20), cardiac inflammation and
fibrosis (21–24). Recently, AIM2 inflammasome was shown to
recognize cytoplasmic self-double-stranded DNA which might
point toward a role in sterile inflammation (25).

CLRs are increasingly recognized as PRRs that are not
only important in host defense against pathogens but also can
recognize number of DAMPs in the progression of cancer, CVD
and autoimmune diseases (26, 27). It is a large family of more
than 1,000 proteins that have been placed into 17 groups based on
their structure and/or function. One of the subgroups of CLRs is
Dectin-1 cluster that is comprised of seven receptors and draw
particular attention to its role in CVD. For instance, LOX-1
has been extensively studied in atherosclerosis progression and
associated hypertension and stroke (28, 29). For the scope of this
review it is important to mention that CLR signaling pathways
in some cases can synergize with TLR signaling pathways to
upregulate cytokine and chemokine production.

In further sections of this review, we will discuss key
characteristics of TLRs, with a particular focus of the role of
TLRs and their accessory molecules in the development of
cardiovascular-related pathologies.

TLR FAMILY AND PATHWAY SIGNALING

The TLR family is a key component of the innate immune system
that constitutes of 13 different receptors that are evolutionarily
conserved between species. Humans express 10 functional TLRs
(TLR1 to TLR10) whereas mice express 12 (TLR1–TLR9, 11,
12, and 13). Except for speculative ligands for TLR10, most of
other TLRs-ligand pairs are known. Ligands recognized by TLRs
include lipids, lipoproteins, proteins and nucleic acids derived
from a wide range of exogenous and endogenous sources.

TLRs are type I transmembrane receptors that contain a N-
terminal ligand recognition ectodomain with signature leucine-
rich repeats (LRRs), a single transmembrane helix, and a
Toll/interleukin-1 receptor-like (TIR) signaling domain. For a
proper signal transduction TLRs form homo- or heterodimers.
Subsequently, they can interact with various adaptor proteins,
including myeloid differentiation primary response protein

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 February 2022 | Volume 9 | Article 820962

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Bezhaeva et al. TLRs Accessory Molecules in Cardiovascular Disease

FIGURE 1 | Membrane TLRs and their accessory molecules. Cell surface TLR1, TLR2, TLR4, and TLR6 are essential for the recognition of exogenous and

endogenous ligands. TLR1/2, TLR2/6 heterodimers and TLR4/TLR4 homodimer utilize MyD88-dependent pathway to control inflammatory responses via activation of

NF-κB and AP-1 transcription factors, endosomal TLR4 activates TRAM/TRIF-dependent pathway resulting in type I IFN responses. CD36 induces the assembly of

the TLR4/6 and TLR2/6 heterodimers. CD14 can be secreted as a soluble molecule (sCD14) or a membrane bound protein (mCD14) and is involved in ligand delivery

to several TLRs. LPS-binding protein (LBP) binds to lipopolysaccharide (LPS) and presents it to CD14. MD2 is necessary for TLR4 to bind to LPS and homodimerize.

RP105-MD1 complex has a structural similarity to TLR4-MD2 and exerts dual regulatory activity on TLR4 and TLR2 -regulated inflammatory response. Dectin-1

facilitates TLR2 signaling whereas TRIL interacts with ligands to activate TLR4 signaling. Vitronectin enhances TLR2 and TLR4-mediated responses. Created with

BioRender.com.

88 (MyD88) and TIR domain containing adaptor protein-
inducing interferon IFN-β (TRIF), which leads to downstream
activation of MAPKs and activation of transcription factors
such as NF-κB, activator protein-1 (AP-1) and interferon
regulatory factors (IRFs) (Figure 1). After translocation to the
nucleus the transcription factors can induce transcription of
proinflammatory genes and interferons.

Depending on the cellular localization and respective ligands
TLRs are divided into two subclasses:

(i) Cell surface TLRs (TLR1, TLR2, TLR4, TLR5, TLR6,
and TLR11) that recognize exogenous microbial membrane
components such as lipids, lipoproteins and proteins and number
of endogenous molecules amongst others cell-derived proteins,
components and degradation products of the extracellular matrix
(ECM), lipoproteins and free fatty acids.

(ii) Intracellular TLRs (TLR3, TLR7, TLR8 and TLR9) that are
expressed within the endoplasmic reticulum (ER), endosomes,
lysosomes and endolysosomes, and recognize components of
nucleic acids (Table 1).

Upon internalization the cell surface TLR4 can also localize
intracellularly into endosomes. Accessorymolecule CD14 assures
its proper internalization and switch in signaling pathway toward

activation of TRIF-dependent signaling and type-I interferons
production (30).

There is a wide variety of ligands recognized by TLRs. But
how TLRs are able to discriminate between ligands, self-vs. non-
self and orchestrate proper cellular response? The LRRs within
ectodomain that are composed of just 20 to 30 amino acids (AA)
determine structural confirmation of TLRs for a specific ligand
interaction, yet variations in AA sequences are limited (31). TLR
accessory molecules serve as another important mechanism to
ensure proper detection of DAMPs by specific TLRs.

The classical example of the importance of accessory
molecules is TLR4 mediated response to bacterial
lipopolysaccharide (LPS). There are a number of key-
accessory molecules [LPS-binding protein (LBP), CD14,
Myeloid differentiation factor 2 (MD2)] that are required for
successful propagation of TLR4 signaling. In the presence
of bacterial infection first, soluble plasma protein LBP
binds to LPS whereupon it is recognized by CD14—a
glycosylphosphatidylinositol-linked, LRRs-containing protein
that delivers LBP-LPS complex to the cell surface. On the cell
surface TLR4 forms a complex with MD2 that serves as the
main LPS-binding site. The resultant formation of a receptor
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TABLE 1 | TLRs and their ligands.

TLR Exogenous Ligands Endogenous Ligands

Localization: Cell surface

TLR1 Cooperates with TLR2 to

recognize bacterial lipopeptides

Cooperates with TLR2 to recognize

amyloids

TLR2 Bacterial lipoproteins,

peptidoglycans, lipoteichoic

acid, yeast mannans

HSP60, 70, 96; biglycan; HMGB1;

hyaluronic acid fragments; human

β-defensins; acute serum amyloid

A; histones; ECM; serum amyloid A,

snapin A; endoplasmin;

monosodium urate crystals

TLR4 Bacterial LPS, plant taxol, viral

fusian protein

HSP20, 60, 70, 72, 96; biglycan,

HMGB1, hyaluronic acid fragments;

oxidized LDL; mmLDL, fetuin-A;

Ang II; serum amyloid A; histones;

S100 proteins; fibronectin;

fibrinogen; heparan sulfate;

syndecan-1; resistin; β-defensin;

surfactant protein A

TLR5 Bacterial flagellin Flagellin from gut microbiota

TLR6 Cooperates with TLR2 to

recognize bacterial lipopeptides,

fungal zymozan, modulin

Cooperates with TLR2 and TLR4 to

recognize HMGB1; HSPs; ECM;

HSP60, −70, −96

TLR10 NA NA

Localization: Intracellular

TLR3 Viral dsRNA,

polyinosine-polycytidylic acid

mRNA

TLR7 Viral ssRNA Self-ssRNA

TLR8 Viral ssRNA Self-ssRNA

TLR9 Bacterial and viral DNA Self-dsDNA; histones;

mitochondrial DNA; chromatin

immune complexes

multimer, composed of two copies of the TLR4-MD2-LPS
complex, initiates signal transduction by recruiting intracellular
adaptor molecules.

FROM TLR LIGAND RECOGNITION TO
SIGNAL TRANSDUCTION IN CVD

TLRs and their accessory molecules are present on most of
the cells of cardiovascular system including endothelial cells,
smooth muscle cells, cardiomyocytes, fibroblasts and resident
tissue macrophages (32). A number of DAMPs that are released
upon cardiovascular tissue injury serve as TLR ligands to
induce nuclear translocation of various transcription factors (e.g.,
NF-κB) and promote pro-inflammatory cytokine release. TLR-
DAMP interactions may exhibit both protective and detrimental
effects. A short-term TLR mediated inflammatory response is
required for a proper cardiovascular adaptation to stress, and is
essential for tissue repair and regeneration, whereas long term
or excessive TLR activation induces a chronic inflammatory state
resulting in adverse cardiac and vascular remodeling. Thorough
data supports the importance of TLRs in the pathogenesis of
atherosclerosis (33–35), vein graft disease (9, 36), myocardial
infarction (MI) (37, 38), ischemia reperfusion injury (IRI) (39),
and cardiac allograft rejection (40).

TLR LIGANDS

Amongst the TLRs, membrane bound TLR1, TLR2, TLR4,
and TLR6 can be activated by numerous intracellular proteins
that are released upon cell damage and cell death [e.g., Heat
Shock Proteins (HSPs), High Mobility Group Box-1 (HMGB-
1), ATP, mtDNA, RNA and histones]. The intracellular TLR3,
TLR7, TLR8, and TLR9 on the other hand are activated
by endogenous nucleic acids in endosomes. The role of cell
surface TLR5 that recognizes bacterial flagellin was recently
depicted in obesity and metabolic syndrome, as it can sense
components from gut microbiota to drive systemic inflammation
(41, 42). Unlike other TLRs, TLR10 is the unique receptor
with anti-inflammatory properties, yet its ligands and functions
are not well-defined (43, 44). Besides intracellular proteins,
TLRs recognize a number of ECM components [e.g., biglycan,
hyaluronic acid, versican, extradomain A of fibronectin (EDA),
fibrinogen fragments and surfactant protein A, amyloid-b] and
other fragments amongst others including oxidized low density
lipoprotein (LDL), free fatty acids (FFA), angiotensin II (AngII),
mtDNA, circular RNA, extracellular ATPs and immune complex-
containing self-antigens.

A number of DAMPs contribute to cardiovascular remodeling
and have been extensively studied in both experimental models
and in humans. Following ischemia-reperfusion injury 3 weeks
after left coronary artery ligation in rats, administration of
HMGB-1 resulted in modulation of inflammation via reduction
in dendritic cells, attenuated fibrosis and overall improvement of
cardiac function (45). In a similar model, inhibition of HMGB-
1 by neutralizing antibodies resulted in enlarged infarct size,
increase the plasma troponin-T and norepinephrine content
in the heart as compared to untreated animals (46). HMGB-
1 also plays a pivotal role in ischemic stroke (47). High
levels of systemic HGMB-1 were measured in serums of
patients with cerebral ischemia (48). In another study in
338 patients, plasma levels of HMGB-1 was an independent
predictor of 1-year clinical outcomes of ischemic stroke (49).
A role of HSP60-induced apoptosis via TLR4 in myocyte loss
in heart failure was demonstrated on rat primary isolated
cardiomyocytes in vitro (50). In a prospective study with
251 patients admitted for ST-segment elevation myocardial
infarction (STEMI) increase in HSP70 levels were associated
with larger infarcts, increased LV dilation and worse clinical
outcome postMI (51). Levels of extracellular matrix components,
fibronectin, hyaluronic acid and proteoglycans associate with
adverse cardiac remodeling post MI. Permanent ligation of
the left anterior coronary artery in fibronectin-EDA deficient
mice was characterized by reduced inflammation, fibrosis and
MMP-2,−9 activity as compared to the WT animals. Together
with the reduced recruitment of monocytes and decrease in
monocytic TLR2 and CD49 mRNA expression levels after
infarction, fibronectin-EDA plays a critical role in adverse cardiac
remodeling (52). Another component of ECM—hyaluronan—
serves as a promising biomarker for myocardial damage among
patients with acute myocardial infarction (AMI). In 56 patients
plasma levels of hyaluronan were significantly elevated 30
day after AMI (53). Both fibronectin and hyaluronan were
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linked to cardiac allograft rejection as demonstrated in heart
allografts in rats. Fibronectin protein levels were upregulated
in the vessels exhibiting cardiac allograft vasculopathy and in
fibrotic areas whereas increased accumulation of hyaluronan
was evident in the edematous interstitial tissue in the heart
that was infiltrated with lymphocytes (54, 55). During vascular
remodeling in vein graft disease events of distension injury
lead to endothelial and smooth muscle cell damage, and
degradation of ECM in the media and adventitia. Furthermore,
the ischemia-reperfusion injury during and after surgery
will also result in the production of DAMPs. Release of
hyaluronic acid, proteoglycans and fibronectin that act as
endogenous TLRs ligands prime proinflammatory responses
which further damage vascular cells (56, 57). Another well-
described set of DAMPs – lipoproteins and FFA are well-
known factors contributing to atherogenesis and are widely
used in clinic as prognostic biomarkers for coronary artery
disease (CAD). Levels of oxidized low-density lipoprotein were
strongly associated with CAD in a cohort of 504 patients
whereas in a prospective cohort of 3,315 participants levels
of FFA independently predicted all-cause mortality (58, 59).
Mitochondrial DNA and circulating extracellular RNA that are
released as a consequence of cell death during myocardial IRI can
act as DAMPs to induce pro-coagulation and pro-inflammatory
responses (60).

Targeting the DAMP/TLR mediated inflammatory response
was proven to be successful in small and large animal models, yet
clinical translation remains to be very challenging, since the most
investigated systemic therapies can give detrimental side effects.
In this light fine-tuning of TLR signaling via accessory molecules
might provide better therapeutic outcomes.

TLR SIGNALING

Despite the wide range of DAMPs recognized by TLRs, their
structural organization with extracellular and ligand-binding
domains is very similar. Following ligand recognition TLRs will
form dimers to trigger recruitment of adaptor proteins MyD88
and TRIF to initiate intracellular signaling. TLR2 will form
heterodimers with either TLR1 or TLR6, TLR4 will interact
with its accessory molecule MD2 to form homo or heterodimers
with TLR6, whereas TLR3 forms homodimers upon dsRNA
binding (61).

Activation of the downstream MAPKs and IκB kinase (IKK),
resulting in activation of the transcription factors AP-1 and NF-
κB, respectively culminates in inflammatory cytokine release. In
addition, TRIF recruits another cellular kinase, TANK binding
kinase 1 (TBK1), to activate the IRF3 and IFN-I production (62)
(Figure 1).

Although the ligand-induced dimerization of TLRs has many
common features, the nature of the interactions of the TLR
extracellular domains with their ligands varies markedly between
TLR paralogs. Accessory molecules play essential role not only in
assuring proper TLR/ligand interaction but governing complex
TLR signaling.

CELL SURFACE ACCESSORY
MOLECULES IN CARDIOVASCULAR
DISEASE PROGRESSION

As discussed earlier in this review, accessory molecules provide
mechanisms that can support complexity and diversity of TLR
ligand composition. They contribute not only to TLRs signal
propagation but facilitate the crosstalk between different TLRs
and serve as cofactors.

Delivery of DAMPs by accessory molecules to specific TLRs
will assure its proper dimerization, folding, cell localization,
and protein processing, all of which guarantee that TLR/ligand
interaction will initiate signaling cascades.

Depending on cellular localization, properties and functions
TLRs accessory molecules form different groups.

1. TLR accessory molecules that act as cofactors required for
cell surface ligand recognition and delivery (LBP, MD2, CD36,
CD14, TRIL)

2. TLR accessory molecules that are required for endosomal
ligand recognition and delivery (Granulin, HMGB1, LL37)

3. TLR accessory molecules that act as chaperones (Gp96,
PRAT4A), trafficking proteins (UNC93B1, AP3) and
processing factors (cathepsins, AEP)

4. Adaptor proteins that are required for TLR signaling (MYD88,
TRIF, MAL, TRAM)

5. Cross-talk molecules that facilitate inflammatory signal
transduction (NOD1, NOD2, NALPs)

6. Proteins with both TLR crosstalk and cofactor function
(RP105-MD1, Dectin-1, Vimentin)

7. Receptors that interact with TLRs and passively modulate TLR
functions: B cell receptor, RAGE

To restrict the focus of this review, in this review we will only
discuss accessory molecules that are required for TLR ligand
recognition and delivery on cell surface or involved in crosstalk of
signaling pathways (Figure 1). Factors that serve as scaffolding or
adaptor proteins required for signaling are excellently reviewed
elsewhere (10).

The contribution of inflammation in vascular remodeling is
well-accepted although a number of questions on what initiates
and maintains inflammatory state remains not completely
understood. Here, we summarize the current knowledge on
the contribution of TLR accessory molecules and downstream
signaling in the course of cardiovascular remodeling.

TLR ACCESSORY MOLECULES THAT ACT
AS COFACTORS REQUIRED FOR CELL
SURFACE LIGAND RECOGNITION AND
DELIVERY

Myeloid Differentiation Factor 2—MD2
Myeloid differentiation factor 2 (MD2 also known as Ly96 or
ESOP-1) is a small 18–25-kDa protein that binds to ectodomain
of TLR4 and can also be secreted as a soluble molecule. TLR4-
MD2 interactions are extremely important for proper signaling
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as no physiological role of TLR4 has been demonstrated in
the absence of MD2. MD2 is responsible for LPS binding,
TLR4 glycosylation and cell trafficking (63). LPS interacts with a
hydrophobic residue in MD2 and directly bridges the two copies
of the TLR4-MD2multimer. The crystal structure of TLR4-MD2-
LPS complex demonstrates how five of the six lipid chains of
LPS embedded inside the MD2 pocket whereas the remaining
chain is exposed to the surface of MD2. Formation of MD2-LPS
complexes are essential for bridging the two TLR4 molecules and
propagation of intracellular signaling (64).

Even though MD2 is known to be an important modulator
of innate immune system, our knowledge on its role in
cardiovascular remodeling is still limited.

Number of studies investigated the role of MD2 as biomarker
for several CVDs. The clinical study by Riad et al. assessed
the predictive value of MD2 in dilated cardiomyopathy (DCM)
(65). DCM is characterized by ventricular chamber enlargement
and systolic dysfunction, with most cases being idiopathic.
Furthermore, a limited number of studies suggests that DCM
associated with a chronic inflammatory state (66). MD2 is
highly expressed within the myocardium of DCM patients as
well as in murine cardiac tissue suggesting that MD2 can have
local cardiac regulation of inflammatory responses. In vitro
stimulation of cardiomyocytes withMD2 showed dose-depended
negative ionotropic effect as demonstrated by cardiomyocyte cell
shortening. In 174 patients diagnosed with DCM elevated MD2
blood levels served as additional biomarker to the gold-standard
NT-pro-BNP for mortality risk prediction (67, 68).

Genome-wide association study in 304 individuals
undergoing coronary artery bypass graft surgery identified
potential positive association between MD2 and postoperative
atrial fibrillation (AF). The same study identified genetic
polymorphisms in the MD2 gene that were associated with
decreased risk for postoperative AF (69). Further randomized
trials should confirm the role of MD2 as a useful diagnostic
and/or therapeutic target in DCM and postoperative AF.

Interesting data on the role of MD2 in atherosclerosis-driven
cardiovascular diseases comes from a recent study by Chen et al.
Here, the authors investigated to what extend MD2 participates
in ox-LDL-induced TLR4 activation during atherogenesis. MD2
was highly present in atherosclerotic lesions from ApoE−/− mice
and in peripheral bloodmononuclear cells (PBMC) from patients
with coronary artery disease. In monocytes and macrophages
MD2 is essential for ox-LDL-induced TLR4 dimerization,
downstream activation of NF-kB and subsequent production
of proinflammatory cytokines. Deficiency of MD2 reduced
atherosclerotic plaques through reduced lesional macrophage
content and expression of inflammatory cytokines (70).

Besides circulating immune cells, MD2 has local expression
within vasculature including SMCs and endothelial cells, where
it may regulate cell phenotypic switching (71, 72).

In an angiotensin II (Ang II) induced pathological model
of aneurism formation, deficiency of MD2 resulted in the
phenotypic switch of SMCs toward a proliferative phenotype and
increased fibrosis (71).

Besides its well-known effect on arterial blood pressure, Ang
II can directly induce cardiac remodeling through induction

of TLR4 mediated cardiac inflammation (73). Han et al.
demonstrated that MD2 mediates Ang II induced cardiac
remodeling by direct binding to Ang II and the subsequent
activation of the TLR4/MyD88/NF-kB signaling cascade (72).
Moreover, in Ang II induced aortic remodeling MD2 was
identified as a critical point in the Ang II induced endothelial-to-
mesenchymal transition (EndMT) – an important mechanism of
pathological vascular and cardiac remodeling. Pharmacological
inhibition of MD2 reduced Ang II-induced EndMT changes,
including increased levels of endothelial marker VE-cadherin,
and reduction of mesenchymal markers alpha smooth muscle
actin (α-SMA) and vimentin.

In obesity induced cardiac remodeling, both pharmacological
inhibition and genetic deletion of MD2 resulted in attenuated
cardiac inflammation and fibrosis via reduction of JNK, ERK
and NF-kB signaling and reduced expression of cell adhesion
molecules ICAM-1, VCAM-1, and CD68 (74).

Within the cardiovascular system MD2 was shown to interact
with number of endogenous molecules that are released in
response to stress, including free fatty acids (75, 76). In diabetic
cardiomyopathy, advanced glycation end products (AGEs) bind
to MD2 resulting in TLR4 activation and myocardial injury (77).
Interestingly Huang et al. demonstrated the role of MD2 in
vascular oxidative stress via SIRT1/MAPKs and reactive oxygen
species (ROS) generation.

Taken together MD2-mediated chronic inflammation occurs
in diverse cells and MD2 deficiency and pharmacological
inhibition may alter a number of parallel pathways in vascular
tissues (78). Promising results on the therapeutic benefits of MD2
inhibition comes from a recent study by Fang et al. Treatment
with a small peptide Tat-CIRP which can pass through the
blood brain barrier and competitively bind to MD2 was shown
to induce long-lasting neuroprotection against ischemic and
hemorrhagic stroke in rodents and non-human primates (79).

LPS-BINDING PROTEIN—LBP

LPS-binding protein (LBP) is a 53 kDa protein that facilitates
delivery of LPS to membrane bound and soluble CD14 to
induce TLR4 signal transduction (80). Even though the crystal
structure of LBP has not been reported, emerging state-of-the-
art computer tools that utilize artificial intelligence allow to
predict protein’s 3D structure from its amino acid sequence that
would help to foster our understanding of molecular interactions
between LBP-LPS in the near future1.

Besides LPS, LBP can bind other PAMPs derived from
gram-negative and gram-positive bacteria including lipopeptides
and peptidoglycans. In addition to TLR4, upon ligand binding
LPB can also activate other TLRs, including TLR1, TLR2, and
TLR6 (81).

Recent attention to the contribution of microbiome in CVD
supports the notion of endogenous PAMPs act as drivers of
systemic CVD. A state of dysbiosis triggers production of
endogenous PAMPs by the gut microbiota which in turn activates
LBP-dependent low grade systemic inflammation. In this light

1Available online at: https://alphafold.ebi.ac.uk/.
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proinflammatory action of LBP might contribute to vascular
remodeling and development of cardiovascular complications
suggesting its role as potential biomarker (82).

In two consecutive studies the LBP concentration was
significantly elevated in patients with coronary artery disease
and was associated with all cause and cardiovascular mortality
(83, 84). In type 2 diabetes, increased levels of LBP correlated to
diabetic retinopathy and arterial stiffness suggesting its role in the
activation of local inflammatory response within the vasculature
(85, 86).

In an exploratory study on 72 individuals LBP was reversely
associated with CVD risk in older adults (87). Potentially
counterintuitive, higher levels of cholesterol in elderly coupled
with higher LBP may promote faster clearance of bacterial
toxins from the circulation resulting in reduction of systemic
inflammation (88).

Traditionally, LBP promotes TLR4 signaling shuttling to
CD14 to interact with LPS. An elegant study by Han et al.
explored the opposite effect of LBP on TLR4 cascade in the
presence of intestine specific form of high density lipoprotein
(HDL)—HDL3 (89). LBP was required to inhibit LPS-TLR4
signaling on liver macrophages via interaction with HDL3
particles. In this way, HDL3 interacts with LBP to mask LPS
from detection by TLR4 signaling platform, resulting in an anti-
inflammatory and anti-fibrotic mode of action. This finding
might be relevant in cardiovascular disease as HDL3 levels
correlate with better health outcomes (90).

These studies clearly indicate that there is a link between the
accessory molecule LBP and CVD, however, more studies are
needed to elucidate the role of LBP in various comorbidities and
risk statuses.

CLUSTER OF DIFFERENTIATION 36—CD36

CD36 is an 88 kDa membrane glycoprotein that belongs
to the class B family of scavenger receptors. It is expressed
on various cell types including monocytes/macrophages,
platelets, dendritic cells, microglia, cardiovascular cells and
adipocytes (91). Recent studies demonstrated that CD36 is
involved in inflammation, angiogenesis, lipid metabolism and
atherosclerosis progression. In CVD, CD36 is largely known as
the receptor for oxLDL that accounts for 60 to 70% of cholesterol
ester accumulation in macrophages. Solid number of literature
on the role of CD36 in lipid trafficking and atherogenesis
are available, see this excellent review (92), but will not be
discussed here.

CD36 can interact with number of exogenous and endogenous
ligands to facilitate downstream TLRs signaling. Recent studies
revealed that CD36 induces the assembly of the TLR4/6 and
TLR2/6 heterodimers underlining its role as TLR accessory
molecule (93). Mediation of TLR4-TLR6 heterodimerization
occurs from the C-terminus of CD36 within the cell. Point
mutation at tyrosine 463 of CD36 resulted in inability of
TLR4-TLR6 dimerization and NF-κB activation in response to
oxLDL. In addition, a functional study reported the importance
of CD36 interaction with Lyn kinase to assure TLR4 and/or

TLR6 phosphorylation, TLR4-TLR6 association and signal
transduction (93).

Interaction with microbial PAMPs mainly diacylglycerides
LTA and R-MALP2 enhances TLR2-TLR6 mediated immune
response (94) whereas binding to DAMPs including oxLDL,
amyloid-b fibrils and apoptotic cells mediate TLR4-TLR6
inflammatory responses (93, 95).

In a hyperlipidemic ApoE−/− model of atherosclerosis CD36
was shown to trigger TLR4-TLR6 dependent accumulation of
TRIF-dependent chemokine RANTES and an overall increase
in ROS production by macrophages. Such response amplifies
oxidative stress in the artery wall, DAMPs generation and chronic
macrophage activation (93).

Despite its apparent detrimental role in ischemic damage
through activation of inflammation and ROS, CD36 may
also exert a beneficial role during post-stroke and post-MI
resolution phase of inflammation by mediating phagocytosis
(96, 97). Interestingly, in the absence of elevated circulating
lipids cardiomyocyte-specific deletion of CD36 accelerated the
progression of pressure overload-induced cardiac hypertrophy
to cardiac dysfunction (98). Contrary, CD36 can promote
neovascularization and scar formation worsening post-stroke
recovery (99, 100).

Clearly, CD36 is a multifunctional receptor that may
play different roles in the CVD pathogenesis/repair.
Further mechanistical studies on the role of CD36 as TLR
accessory molecule will help to determine its potential as a
therapeutic target.

CLUSTER OF DIFFERENTIATION
CD14—CD14

CD14 is a pattern recognition receptor that has long been
known as co-receptor for several TLRs. It is a 375 amino
acid LRR-containing glycoprotein that can be secreted into
the serum as a soluble molecule (sCD14) or expressed as
a glycosylphosphatidylinositol (GPI)-linked membrane bound
protein on the surface of cells (mCD14) (101). mCD14 is
highly expressed on myeloid cells, whereas sCD14 is present in
different body fluids to transduce LPS-responsiveness to cells
not expressing CD14 (102, 103). Before the discovery of TLR
in 1997 (104), CD14 was known as a cell differentiation marker
for human monocytes and classical dendritic cells (105, 106).
The crystal structure demonstrates CD14 to form a dimer with
hydrophobic pocket located at its N-terminus that is essential
for recognition of LPS and other microbial peptides. Formation
of CD14-LPS complex is important to enhance the detection of
LPS by the TLR4–MD2 complex by monomerizing LPS before its
presentation to TLR4–MD2 (107).

CD14 has a wide range of exogenous and endogenous ligands,
including bacterial PAMPs, heat shock proteins, phospholipids
and amyloid. CD14 is involved in ligand delivery and functions
as an adaptor and coreceptor of TLRs to increase ligand affinity to
TLR and augment signal transduction (108–110). CD14, together
with TLR4 and MD-2, forms the multi-receptor complex that
recognizes LPS on the cell membrane resulting in activation
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of MyD88-dependent signaling (111). Upon low doses of LPS
CD14 allows the activation of the intracellular TLR4-TRAM-
TRIF pathway resulting in TLR4 internalization and endocytosis
(112). As a coreceptor CD14 is necessary for the TLR7- and
TLR9-dependent induction of proinflammatory cytokines in
vitro and for TLR9-dependent innate immune responses in mice
(113, 114).

Uncontrolled inflammation with TLR overactivation on
CD14+ monocytes has long been recognized as a driving
mechanism for atherosclerotic disease (115, 116). Population
of intermediate monocytes with increased mCD14 and CD16
can independently predict cardiovascular events in patients with
coronary artery disease (117, 118). CD14 is also known to
regulate function of endothelial and smooth muscle cells. The
interaction of LPS with CD14 on the surface of endothelial
cells results in expression of proinflammatory cytokines and
adhesion molecules (119). Local expression of CD14 by human
coronary artery smooth muscle cells can potentially increase
tissue sensitivity to pro-atherogenic risk factors (120).

Upregulation of CD14 in adventitial macrophages in a murine
model of abdominal aortic aneurism (AAA) and both locally
and systemically in human AAA underscore its role in the
pathogenesis of AAA (121).

In the central nervous system CD14 deficiency causes
attenuated monocyte influx to the brain and aggravation of tissue
injury after ischemic stroke (122).

sCD14 has gained interest as a risk factor for different CVD.
Important to mention are racial difference in sCD14 levels.
Elevated plasma sCD14 was an independent risk factor for heart
failure, coronary heart disease and stroke in cohorts of African
Americans whereas was not linked to increase incidence of
CVD in Caucasians (123–125). Activation of endothelial cells
through sCD14 results in upregulation of adhesion molecules
and procoagulant activity (108).

A number of recent studies unraveled the contribution
of disturbed intestinal barrier toward chronic low-grade
endotoxemia. Bacterial LPS binds and stimulates systemic
secretion of CD14 which is required for propagation of TLR
signaling. CD14-LPS complex is implicated in LPS-induced
myocardial dysfunction (126).

In summary, as mCD14 but also as sCD14, CD14 exerts
significant impacts in the pathogenesis of cardiovascular diseases.
It can both promote and diminish TLR signaling which makes it
an important regulator of the inflammatory response.

TLR4 INTERACTOR WITH LEUCINE-RICH
REPEATS – TRIL

TRIL (TLR4 interactor with leucine-rich repeats) is a 811 amino
acid leucine-rich repeat protein that plays an important role in
TLR3 and TLR4 signaling. TRIL is primarily expressed in the
brain where it interacts with LPS or poly(I:C) ligands to activate
TLR4 and TLR3 signaling, respectively (127, 128).

TRIL induction helps to prolong LPS signaling and is
structurally similar to CD14 whichmakes it a functional homolog
of CD14. As LRR- containing protein without signaling domain

TRIL could also have a role similar to RP105 positively or
negatively regulating TLR4 signaling in a cell-type-dependent
manner. Whether it can bind to MD1 and/or MD2 as well as its
role beyond the brain is not defined yet.

Some preliminary data indicates that TRIL might be required
to control lipid-based ligands for TLR2 signaling.

Recently Jia et al. were the first to demonstrate a role of
TRIL-TLR4 signaling in the progression of spinal cord ischemia
reperfusion injury (129). Due to its localized expression to the
brain contribution of TRIL to systemic CVD remains obscure.

NON-CLASSICAL ACCESSORY
MOLECULES WITH TLR SIGNALING AND
CROSSTALK FUNCTION

Radioprotective 105—RP105
RP105 (radioprotective 105, CD180) is a TLR-like accessory
molecule that has a striking structural similarity to TLR4 with
LLR domain and association with MD1, an MD2 homolog.
Unlike the TLRs, however, RP105 lacks an intracellular signaling
TIR domain. The crystal structure of RP105-MD1 bound
to LPS shares a similar overall architecture to its homolog
TLR4–MD2. Interestingly, assembly of RP105-MD1 homodimer
occurs in a head-to-head orientation with N-termini interacting
in the middle which is different from TLR4-MD2 complex
with the tail-to-tail configuration of C-terminal cytoplasmic
signaling domain. Such unique mode of assembly in RP105–
MD1 suggesting a potential molecular mechanism for regulating
LPS responses and regulation of TLR4-MD2 signaling complex
(130). Depending on the cell type RP105-MD1 exerts dual
regulatory activity on TLR-regulated inflammatory response.
On B-cells, where it was originally discovered, it stimulates
cell proliferation and antibody production (131, 132). On
myeloid cells, including monocytes, macrophages and dendritic
cells RP105-MD1 complex acts mainly as TLR4 antagonist.
Importantly, RP105-MD1 is also expressed locally within cells of
the CV system, including arterial and venous SMCs, endothelial
cells and cardiomyocytes (133). A number of studies indicate a
role for RP105 in several CVD pathologies as both physiological
inhibitor and agonist of TLR4 signaling.

RP105 was shown to play an important role in IRI. In
a model of hind limb ischemia RP105 deficiency resulted in
an uncontrolled inflammatory response, impaired blood flow
recovery and reduced arteriogenesis. These outcomes were
linked with premature systemic activation of pro-inflammatory
monocytes (Ly6Chi) in RP105 knockout animals that resulted
in accumulation of Ly6Chi monocytes in the bone marrow and
spleen rather than in the ischemic tissues where the reparative
response was needed (134).

Several studies explored the role of RP105 in myocardial
infarction. In a model of a short-term myocardial ischemia-
reperfusion injury (MIRI) adenoviral delivery of RP105
protected myocardium against IRI via inhibition of TLR4/TLR2
inflammatory cascade and regulation of cardiomyocyte apoptosis
and autophagy via Bcl-2/ Beclin1 complex (135–137). In vitro,
overexpression of RP105 was effective to protect cardiac
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microvascular endothelial cells against hypoxia induced
reoxygenation injury (133). As expected, knockdown of RP105
resulted in increased myocardial infarction size during MIRI
that was associated with TLR2/4 activation and increase in
myocardial cell apoptosis (138).

Louwe et al. examined the effects of RP105 on cardiac function
post-MI using permanent ligation of the left anterior descending
coronary artery model that closely mimics MI in humans.
RP105 deficiency hampered repair processes and resulted in
the right shifted PV-loop similar to what is seen in dilated
cardiomyopathy. Interestingly, even though RP105 deficiency
resulted in enhanced inflammatory status and more pronounced
cardiac dilation, there was no difference in the infract size
between RP105−/− and WT animals (139).

RP105 was shown to contribute to vascular remodeling in vein
graft disease and failure of hemodialysis vascular access conduit.
Vein graft disease progression is linked to intimal hyperplasia,
inflammation and superimposed atherosclerosis development.
It is known that TLR4 signaling plays an important role in
vein graft disease progression (56). In a study by Wezel et al.
RP105 deletion exacerbated vein graft disease in the presence
of hypercholesterolemia. Increase in lesional CCL2 expression
resulted inmacrophage andmast cell accumulation accompanied
by lesion destabilization and intraplaque hemorrhage (140).

Similar to vein graft disease, arteriovenous fistula failure is
associated with increased inflammation and intimal hyperplasia.
Impaired outward remodeling is another important parameter
of successful vascular remodeling assuring sufficient blood flow
during dialysis treatment. RP105 deficiency resulted in an
impaired outward remodeling of murine arteriovenous fistula.
Interestingly, the importance of RP105 in the balance between
pro-inflammatory and regenerative response in macrophages
and SMCs was demonstrated (141). Specifically, accumulation of
anti-inflammatory macrophages in vascular lesions from RP105
deficient mice and decrease in proliferation and migration of in
vitro cultured venous and arterial SMCs, respectively.

Therapeutic delivery of soluble RP105 by electroporation
mediated gene transfer was shown to be an effective strategy to
dampen vascular remodeling and intimal hyperplasia in a mouse
model of post-interventional restenosis (142), but only when
solRP105 was co-expressed with MD1.

Contrary, in atherosclerosis RP105 appears to play the role
of a negative regulator. RNA levels of RP105 are upregulated
early during atherogenesis. Deletion of RP105 was linked to
decrease in plaque development and CCR2 dependent inhibition
of monocyte influx (143). Wezel et al. very elegantly showed
an altered migratory capacity of monocytes upon deletion of
RP105, and that in vitro stimulation of monocytes with LPS
induced a downregulation of CCR2, a chemokine receptor
crucially involved in monocyte influx to atherosclerotic lesions,
which was more pronounced in RP105−/− monocytes. In a
different model of atherosclerosis, bone marrow transplantation
from RP105−/− mice into hyperlipidemic LDLR−/− recipients
resulted in plaque size decrease. Such effect was explained by
reduction in activation and proliferation of proinflammatory
subset of B-cells and diminished production of immunoglobulin
IgG2c (144).

From the literature it is clear that RP105 is involved in
the complex regulation of vascular remodeling and control
of TLR4-mediated inflammatory response in different cardio-
vascular pathologies. To design a successful therapeutic strategy
targeting TLR4/RP105 axis cell specific targeting and time of the
application should be taken into consideration in view of these
complex pathophysiological roles.

Myeloid Differentiation 1—MD1
Myeloid differentiation 1 (MD1, also known as lymphocyte
antigen Ly86) is a secreted glycoprotein that interacts with RP105
to assure sufficient RP105 cell surface expression whereas MD1
acts as an MD2 homolog (145). MD1 has a similar structure
to MD2 with a hydrophobic cavity that accommodates LPS or
related microbial peptides (146). As we previously described, the
RP105-MD1 complex plays an important role in TLR4 signaling.
Expression of MD1 is not limited to the cells of the immune
system but is highly expressed within cardiac tissue2. A number
of studies elaborated on the role of MD1 in pressure induced
cardiac remodeling and post IRI myocardial adaptation amongst
others, hypertrophy, fibrosis, arrythmias and heart failure.

Cardiac hypertrophy is a compensatory mechanism in
response to biomechanical wall stress wall that is associated with
increases in cardiomyocyte size, increased extracellular matrix

synthesis and a higher organization of sarcomere (147). Even
though pathways that promote hypertrophic response are well-
defined, little is known on key molecular players underlying
these pathways that can serve as effective therapeutic targets.
Xiong et al. were the first to demonstrate the importance of
MD1 in pathological cardiac remodeling (148). Constitutive
cardiac overexpression of MD1 in mice had a prominent
effect against cardiac hypertrophy and fibrosis via inhibition
of TLR4 downstream signaling molecules MEK-ERK1/2 and
NF-κB, whereas loss of MD1 caused chronic pressure overload
induced cardiac remodeling. Hyperactivation of TLR4 signaling
in the absence of MD1 triggers Ca2+/calmodulin-dependent
protein kinase II (CAMKII) signaling, resulting in alteration of
Ca2+ handling and K+ and Na+ channels in stressed myocardial
tissues (149). Consistent with previous findings, in a model
of myocardial infarction MD1 depletion resulted in elevation
of MI-induced fibrosis, inflammation and electrical remodeling
via upregulation of TLR4/CaMKII signaling that was linked to
increased vulnerability to ventricular arrhythmias (150). The
link between inflammatory TLR4 signaling and regulation of
ion channels in LV structural and electrical remodeling further
support importance of accessory molecule MD1 as potential
therapeutic strategy in heart failure.

Interestingly, in a model of post-interventional vascular
remodeling overexpression of MD1 alone did not have any
effect on vascular remodeling whereas simultaneous expression
of soluble RP105 and MD1 resulted in a significant reduction
in intimal hyperplasia (134). In line, Divanovic et al. showed
that RP105 can only act as inhibitor for TLR4 signaling if MD1
is sufficiently present (151). Similar to MD2 dependent TLR4

2Available online at: https://www.proteinatlas.org/. (2003).
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surface expression, RP105 surface expression was shown to be
dependent on MD1 (145).

Expression of MD1 was reported to be decreased in
hearts from obese patients. Obesity is a known risk factor
in metabolic syndrome development that is associated with
cardiac remodeling and impairment of left ventricular function.
When mimicking obesity in a mouse model, deletion of
MD1 aggravated high-fat diet-fed induced maladaptive left
ventricular hypertrophy via TLR4/MyD88/CaMKII (152) and
TLR4/NF-kB signaling (153). The role of MD1 seems to be of
particular importance in obesity-related structural and electrical
remodeling as it triggers not only ventricular but also atrial
remodeling via the earlier described TLR4/MyD88/CaMKII
signaling pathway (154).

A recent study demonstrated the importance of MD1
in myocardial ischemia-reperfusion injury and IRI related
arrhythmia (155). Loss of MD1 led to a larger infarct size,
increase in pro-inflammatory TNF, IL1β, and IL6 plasma
levels, induction of myocardial apoptosis and accumulation of
neutrophils and macrophages. In a concomitant study MD1
overexpression protected myocardial function against high-fat
induced hypertrophic cardiomyopathy, further supporting the
importance of TLR4 inflammatory signaling in the mechanism
of myocardial injury and therapeutic potential of MD1 in cardiac
remodeling (156).

Dectin-1
Dectin-1 is a pattern recognition receptor that belongs to
the class of C-type lectin receptors and is mainly expressed
on activated myeloid cells (157). When bound to its ligand,
β-glucans, dectin-1 initiates recruitment and phosphorylation
of spleen tyrosine kinase (SYK), thereby activating the NF-
κB dependent inflammatory cascade. Traditionally, dectin-
1 has been associated with the recognition of fungi, but
recent discoveries underlined its role in non-infectious diseases
including those related to the cardiovascular system. Dectin-
1 aggravates cardiac remodeling after myocardial infarction
and worsens inflammatory response after ischemic stroke (158,
159). In patients, increase in circulating dectin-1+ monocytes
correlates with the severity of cardiac dysfunction (160).

One study indicates that there is a crosstalk between dectin-1
and TLR2 signaling in response to fungal pathogens suggesting
that dectin-1 is involved in crosstalk of TLR-dependent signaling
pathways. Contribution of dectin-1 and its therapeutic potential
in the context of TLRs mediated responses in the pathogenesis of
cardiovascular requires further investigation (161).

Vitronectin
Vitronectin is a 75 kDa glycoprotein that is present in plasma,
ECM, and in alpha-granules of blood platelets. It has a major
impact on cell adhesion, migration and vascular remodeling
via interaction with integrin receptors. Similar to dectin-1, via
interaction with its receptor integrin beta3 vitronectin was shown
to enhance TLR2-mediated responses to microbial lipopeptides
(162). In addition, vitronectin was reported to enhance TLR4
mediated signaling by recruitment of the adaptor protein TIRAP
to the plasma membrane (163).

Vitronectin plays role in vascular remodeling via activation
of adhesion and migration of SMCs contributing to intimal
hyperplasia (164) and it is highly expressed in atherosclerotic
plaques (165). Several integrins expressed on vascular SMCs
and platelets, including vitronectin receptor αvβ3, recognize
the Arg-Gly-Asp (RGD) sequence present on many adhesion
molecules, to participate in the cell adhesion to vitronectin
and migration of the cells toward fibronectin, laminin, and
collagen types I and IV. Thus, SMCs adhesion to vitronectin
can be inhibited by RGD-containing peptides to prevent
formation of intimal hyperplasia (166). In a hamster model
of intimal hyperplasia induced by surgical damage of the
carotid arteries and continued administration of G4120, a cyclic
RGD-containing peptide, reduced the platelet activation and
the SMCs content, preventing intimal hyperplasia formation
as compared to untreated animals (167). In a rat model of
arterial injury caused by balloon angioplasty, administration
of abciximab—monoclonal antibodies involved in inhibition of
integrin signaling, prevented formation of intimal hyperplasia.
Abciximab interacts with αIIbβ3 (glycoprotein IIb/IIIa complex)
integrin on platelets that inhibits platelets adhesion in injured
vessels and it can also bind to αvβ3—vitronectin receptor present
of SMCs hindering cell migration and proliferation (168).

Vitronectin contributes to regulation of vascular homeostasis
at sites of vascular injury. It stabilizes PAI-1—a central
physiological inhibitor of plasminogen activation (169, 170) and
can bind to platelet glycoproteins mediating platelet adhesion
and aggregation (171).

Interestingly, elevated circulating levels of vitronectin
correlated with female specific increase in inflammation after
ischemic stroke in mice which points toward its prognostic value
for stroke outcomes in women (172).

Even though vitronectin was shown to contribute to vascular
remodeling, the mechanistic link between vitronectin and
TLR signaling is not yet well defined. Clearly, further studies
are required to elucidate the mechanism of vitronectin-TLR
mediated vascular remodeling.

SARS-COV-2 AND TLR SIGNALING

In light of the current pandemic of coronavirus disease 2019
(COVID-19) caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) for the scope of this review it is
important to mention vascular complications that are linked
to TLRs immune response (173). SARS-CoV-2 induces release
of proinflammatory cytokines and activation of procoagulant
factors that activate coagulation cascades leading to thrombosis,
rupture of atherosclerotic plaques and ischemic events (174,
175). Clinical studies demonstrated that hypercoagulability
and vascular complications are utmost important predictors
of disease outcomes (174, 176, 177). Recent work by Zheng
et al., demonstrated contribution of TLR signaling in response
to SARS-CoV-2 that results in proinflammatory cytokine
production and disturbed immune response as seen in patients
with severe form of COVID-19 (178). Interestingly, increase
in mRNA expression levels of adaptor protein Myd88 as
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well as various TLRs that signal through it were positively
correlated with disease severity. Further mechanistic study
in Myd88−/− mice infected with mouse hepatitis virus
(MHV), a laboratory analog for SARS-CoV-2 resulted in
reduction in TNF as compared to WT controls. Subsequent
in vitro experiments with SARS-CoV-2 infected peripheral
blood mononuclear cells (PBMCs) demonstrated that inhibition
of TLR2, but not TLR4, resulted in downregulation of
cytokine and chemokine production. This study elegantly
demonstrates importance of TLR2 and Myd88 in sensing SARS-
CoV-2 by triggering inflammatory response and release of
proinflammatory cytokines such as TNF and IFN-γ. Therapeutic
targeting of the immune response such as inhibition of TLR2
might be a promising therapeutic target for mitigating COVID-
19 severity. Besides induction of pro-inflammatory signaling,
TLRs are also programmed to activate negative feedback loops

to exert anti-inflammatory and tissue repair signals. COVID-
19 disease is highly associated with the development of the
cytokine storm due to uncontrolled TLR response – a devastating
inflammatory reaction leading to multi-organ failure and death.
It is not known how the TLR-induced negative regulatory
mechanisms fail to inhibit exaggerated activation of TLRs
and associated cytokine storm. Administration of MD2-TLR4
antagonist Eritoran has shown effective downregulation of TLR4
in animal model of sepsis (179), but did not proof to be effective
in patients (180). During acute influenza virus infection Eritoran
has successfully targeted the cytokine storm in experimental
studies (181). The protective action of Eritoran also involves
CD14 and TLR2. The Eritoran directly binds to the CD14
preventing the ligand binding to MD2 or lymphocyte antigen
96 (181). Hence, further studies on the role of TLR accessory
molecules are relevant to design effective therapeutics to target

FIGURE 2 | TLRs accessory molecules in cardiovascular disease. Graphical overview with supporting literature references underlying the role of accessory molecules

for membrane TLRs that are involved in cardiovascular disease progression. Created with BioRender.com.
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inflammatory diseases, including cytokine storm associated with
SARS-CoV2 infection-induced severe COVID-19.

CONCLUDING REMARKS AND
THERAPEUTIC PERSPECTIVES

Not even three decades have passed since the discovery
of TLR, nonetheless this field has rapidly evolved and its
importance was underscored by the Nobel Prize in Medicine
in 2011. TLR can recognize a broad repertoire of PAMPs
and DAMPs yet contain structurally conserved ectodomains.
Accessory molecules provide an important tool to ligand
discrimination and receptor signaling to assure proper TLR
specificity, signal transduction and tissue response. In CVD,
inflammation plays an important role in both disease progression
and resolution as has been showing elegantly the successes of
the CANTOS trial (17) and the COLCOT and LoDoCo2 trials
(182, 183). Single cell analysis of various cardiovascular diseases
further confirmed the involvement of downstream TLR signaling
inflammatory cytokines further illustrating the importance of
these pathways. In this review we reported on the complex
regulatory mechanisms that are involved in the regulation of the
TLR signaling pathways triggered by the broad range of ligands,
both exogenous and endogenous. As indicated the various
accessory molecules are key regulators in the disease specific or
cell type specific responses of TLR activation (Figure 2). This of
course suggests a new line of potential therapeutic approaches
based on manipulating TLRs and their downstream signaling as
has been described for the use of soluble coreceptors like soluble

RP105 (142). Overexpression of the soluble RP105 was shown to
dampen the TLR4 mediated inflammatory response in vascular
remodeling, by acting as a decoy receptor of the TLR4 binding
DAMPS. However, these experiments directly demonstrated
the complexity of such an approach since solRP105 was only
functionally active when co-expressed with the cofactor MD1.
The latter is required for the stability of the solRP105 protein
(142). This is illustrative for the lack of knowledge in this field
to translate these findings toward actual therapeutic application.
Better understanding of the regulation of TLR signaling via
accessory molecules in vascular and cardiac remodeling could
help to develop new therapies aiming at guiding beneficial
TLR response.
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