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In addition to their essential role in hemostasis and thrombosis, platelets also modulate
inflammatory reactions and immune responses. This is achieved by specialized surface
receptors as well as secretory products including inflammatory mediators and cytokines.
Platelets can support and facilitate the recruitment of leukocytes into inflamed tissue.
The various properties of platelet function make it less surprising that circulating
platelets are different within one individual. Platelets have different physical properties
leading to distinct subtypes of platelets based either on their function (procoagulant,
aggregatory, secretory) or their age (reticulated/immature, non-reticulated/mature). To
understand the significance of platelet phenotypic variation, qualitatively distinguishable
platelet phenotypes should be studied in a variety of physiological and pathological
circumstances. The advancement in proteomics instrumentation and tools (such as
mass spectrometry-driven approaches) improved the ability to perform studies beyond
that of foundational work. Despite the wealth of knowledge around molecular processes
in platelets, knowledge gaps in understanding platelet phenotypes in health and disease
exist. In this review, we report an overview of the role of platelet subpopulations in
inflammation and a selection of tools for investigating the role of platelet subpopulations
in inflammation.
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INTRODUCTION

Platelets promptly initiate a set of responses at the endothelium upon encountering molecular
or biophysical cues of aberrations in vascular flow, form, or function. Such responses include
platelet adhesion to endothelium, shape change, secretion, and aggregation which is physiologically
critical to limit vessel leakage and prevent bleeding (1, 2). There are roughly 300,000 platelets
per µl of blood, with a cell volume of 7 fl and a mean surface area of 8 µm2, which makes
them display a larger total volume and surface area compared to all other leukocyte subtypes.
Platelet involvement in inflammatory or immune processes via their proinflammatory mediators
as well as surface receptors clearly shows that they have a role that exceeds being mere players in
hemostasis and thrombosis. Thrombus formation can be divided into 3 distinct phases: adhesion,
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activation, and aggregation of platelets (3). Upon activation,
platelets release considerable quantities of secretory products and
express a multitude of immune receptors on their membrane
giving them the ability to support the recruitment of leukocytes
into inflamed tissue and regulate their function. Platelets are
able to form aggregates with neutrophils (Platelet-Neutrophil
Complexes, PNCs), which leads to mutual activation of both
cells resulting in cytokine release, exposition of certain adhesion
molecules, and receptors on the cell surface which in turn
facilitates extravasation of these cells into inflamed tissue (4). The
PNC formation is mainly mediated by the platelet’s P-selectin
(CD62P) and its ligand P-selectin glycoprotein ligand-1 (PSGL-1)
on neutrophils (4, 5). The importance of the P-selectin/PSGL-1
axis has been shown, as blocking platelet CD62P could abolish
PNC formation in murine and human whole blood samples (6).
Hence, platelets provide an ideal and crucial link to explain the
inseparability of thrombotic and inflammatory events such as
atherosclerosis or atherothrombosis. Circulating platelets differ
one from another with respect to their (a) size (7, 8), (b)
surface receptor expression (9–11), (c) glycosylation (12), (d)
granule content (13, 14), (e) response to agonist stimulation (15–
17), and (f) participation in thrombus formation (18), meaning
that within the normal platelet pool there are some distinct
subpopulations each performing a certain role in different
settings. Indeed, in contrast to rapid shape change and other
responses platelets can also undergo more extended transitions
in phenotype that are increasingly associated with chronic disease
(1, 19, 20). The phenotype in its generalized concept refers to the
observable, distinguishable, or measurable type of phenomenon
exhibited by a biological entity resulting from the interaction of
its genotype and environment (21, 22). The notion to describe
single-cell properties of platelets or platelet subpopulations that
deviate from normal is gaining more attention to evaluate
whether these phenotypes are indicative or causative agents of
disease. Both in vitro as well as in vivo studies have begun to
catalog heterogeneous subpopulations of platelets described as
procoagulant, “angry,” coated, secretory, exhausted, or sticky – in
different pathological settings. Despite the wealth of knowledge
around molecular processes in platelets, knowledge gaps in
understanding platelet phenotypes in health and disease exist.
Here, we present an overview of different platelet phenotypes and
their behavior during an inflammatory response.

PLATELET SUBTYPES

Platelets have different physical properties leading to
distinct subtypes of platelets based either on their function
(procoagulant, aggregatory, secretory) (Figure 1) or their age
(reticulated/immature, non-reticulated/mature). Indeed, it has
been described that at wound sites there is a subpopulation that
is the first to adhere to collagen and spread to form a monolayer
known as “vanguard platelets” and a second population that
adheres to and spread onto nearby collagen or over the vanguard
platelets described as “follower platelets” (23). When “vanguard
platelets” adhere to collagen, they rapidly begin to spread and
lose the distinctive mound-shaped structure. Then, this process

is usually followed by additional adhesion of vanguard platelets
as well as other platelets (follower platelets) (23). The platelet-
platelet interactions are crucial for follower platelets deposition
thus, functional GPIIb/IIIa receptors are indispensable. From
another perspective, another platelet subpopulation lacks
endothelial nitric oxide synthase (eNOS), fails to produce nitric
oxide, and has a down-regulated soluble guanylate cyclase
signaling pathway. In turn, this subpopulation of platelets shows
greater activation of αIIbβ3 and adhesion to collagen, resulting
in larger aggregates than eNOS-positive platelets (24). In the
concept of heterocellular control of coagulation, platelets can
be distinguished in different tasks such as control of thrombin
generation, support of fibrin formation, and regulation of fibrin
clot retraction (25). Within the functional scope, there are two
distinct phenotypes of platelets with distinct surface properties
facilitating these coagulant functions. One is a phenotype that
externalizes phosphatidylserine (PS) and binds tenase and
prothrombinase complexes, leading to accelerated coagulation at
the wound site and controlling thrombin and fibrin generation
(25). A second phenotype is characterized by active integrin
αIIbβ3, which tightens the clot into an impermeable cell mass by
pulling fibrin over the platelet plug (25). The youngest platelet
subtype released into the circulation appears to be more reactive
and shows an increased tendency to recruit other platelets and
immune cells to the site of injury. The newly formed platelets
contain a residual amount of the megakaryocytic messenger
RNA (mRNA) that gives them a greater array of functional
pathways (26). As platelets age, the total protein content is
degraded or lost without the possibility for replacement leaving
old platelets with several biological alterations in function (26).
Differences related to platelet age propose a young platelet
subpopulation that are rapid hemostatic responders and an
old platelet population with higher apoptosis and senescence.
Some data also showed that lung megakaryocytes (Mks) have
immune cell characteristics that differ from bone marrow (BM)
Mks characterized by antigen-presenting-cell-like cell markers
and functions (27). These site-specific cell characteristics may
in part be driven by the tissue environment as lungs and BM
are very different tissue environments. In the BM, Mks face
a few pathogen challenges and the environment is relatively
hypoxic, while in the lung there’s high oxygen (O2) as well
as a microbiome. Such immune regulatory functions of Mks
described here are likely to be forwarded to the platelet progeny.
It is clear that there are intrinsic platelet factors (such as platelet
size and structure, protein composition, genetic factors, and
platelet age), and environmental factors (such as the local
rheology, exposure to agonists, surrounding cells, and plasma)
that account for the response heterogeneity. The evidence that
supports the concept of functionally different subpopulations of
platelets is well-reported and targeting platelet subpopulations
might be an encouraging antithrombotic approach.

Procoagulant and Aggregatory Platelets
There are major differences between aggregatory and
procoagulant platelets which leads to the question of how a
platelet becomes procoagulant while another does not. For
a platelet to become procoagulant, it is required to have a
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FIGURE 1 | Different circulating platelet subtypes each perform a certain role in different settings and participation in thrombus formation.

high and sustained calcium rise leading to PS externalization,
coagulation factor binding, and calpain-mediated inactivation
of αIIbβ3 integrin (23, 28–30). The fundamental calcium rise for
the procoagulant response is led by calcium mobilization from
intracellular stores, which is associated with the activation of
calcium (Ca2+) activated chloride channels, resulting in an initial
salt entry, which is then followed by the influx of water (23, 25,
31, 32). The electrochemical drive for Ca2+ entry is enhanced as
well as membrane hyperpolarization as a result of the chloride
ion entry, and that’s achieved through both store-operated
and store-independent pathways (23, 29, 31–33). Jointly these
responses guarantee a high and sustained level of cytosolic
calcium required to drive the procoagulant response. It is
important to emphasize that the irreversible membrane swelling
or ballooning that results from the physical disruption of the
membrane-cytoskeleton interaction and an increase in internal
hydrostatic pressure provided by a coordinated fluid entry system
is a key event during procoagulant platelet formation (23). All
these changes lead to a distinct population of highly activated
platelets characterized by surface-exposed PS, prolonged
cytosolic Ca2+ rises, a rounded structure, and the ability to bind
coagulation factors such as factor V (FV) and factor X (FX) (25).
Meanwhile, a different pattern of calcium signaling is found
in aggregate-forming platelets, which is rather characterized
by intermittent spikes in calcium levels or oscillatory calcium
responses (18, 23, 29, 34). Aggregatory platelets have active
αIIbβ3 integrins on their surface which is a major difference
to PS-exposing platelets enabling them to consolidate the plug
by clot retraction (25). This might be seen as a mechanism for
narrowing the gaps between platelets to allow contact-dependent
signaling (35). Upon dual agonist stimulation of platelets with
collagen and thrombin, a subpopulation of cells is observed
known as coated-platelets (formerly known as COAT-platelets),
which retains high levels of several procoagulant proteins on its
surface resulting in an unparalleled ability to promote thrombin
generation (36).

Secretory Platelets
Besides the procoagulant and aggregatory roles that platelets
play, upon activation, platelets act as secretory cells. Platelets
contain multiple storage granules (such as α-granules, δ-granules,
and lysosomes) that release their content when activated by
fusing the intracellular granules with the plasma membrane.
Besides the intracellular vesicles, platelets are able to produce
extracellular vesicles, these secretions in turn can influence many

physiological and pathophysiological processes. The importance
of platelet secretion granules and their content (such as growth
factors, chemokines, cytokines, and microbicidal proteins) can
be further elucidated by looking at platelets lacking α-granules
(such as in gray platelet syndrome), δ-granules (such as in
Hermansky-Pudlak syndrome), or both can result in bleeding,
reduced inflammation, and impaired vascular remodeling and
wound healing (37). The extracellular vesicles in turn which can
be further classified to exosomes and microvesicles also seem
to play a role in blood-related processes (38). In the context
of inflammation, platelet-derived extracellular vesicles interact
with leukocytes and their inflammatory role can be observed
in rheumatoid arthritis stimulating cytokine production from
synovial fibroblasts (37). Not only they are able to secrete multiple
products, but platelets are also able to take up plasma-derived or
cell-derived components such as RNA species from tumor cells
(39). Taken together, all of these multiple mechanisms indicate
that there is bidirectional communication of platelets and
platelet-derived mediators with components of the inflammatory
pathways, in a manner that platelets influence their environment,
and their environment in return has an influence on them. This
concept can be further supported by the observation of platelets
interaction with leukocytes and the coagulation system during
thromboinflammation. The so-called “exhausted platelets” which
is a phenotype seen in patients with solid tumors, sepsis, or stroke,
characterized by low platelet activation responses in vitro, is also
another example of how the environment affects platelets (40).

Young and Senescent Platelets
Platelets are anucleate cells that circulate for approximately
7–10 days during which their protein composition change
as they age leading to alterations in structure and function.
Reticulated platelets (RP) (also known as immature platelets)
represent the youngest platelets released into the circulation
from Mks and are referred to as “reticulated,” analogous to
reticulocytes in erythropoiesis (41). These young platelets appear
to have increased RNA content compared to mature platelets
as well as more dense granules and higher levels of surface
activation markers upon stimulation (Figure 2) (37). Hence,
this platelet fraction is considered to show increased reactivity
and is associated with impaired response to antiplatelet therapy
(42–44). RP is about 2–3 times higher in the BM compared to
peripheral blood where they are present for≤24 h in humans and
count for around 12% of the total platelet population in a steady-
state (45–47). Platelet aging is linked to a decrease in cytoskeletal
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FIGURE 2 | Alterations on platelets during their lifetime in the circulation.

protein, lower mitochondria number, as well as lower calcium
dynamics and granule secretion (26). A recent study showed that
the total protein content was almost 50% lower in old platelets
compared to young platelets (26). Besides, during conditions with
increased platelet turnover, RP appear to be larger than mature
platelets, for instance, in humans after chemotherapy (48). On
the other hand, platelet size may not correlate with platelet
age under steady-state platelet production and clearance further
confirmed using the Abbott Sapphire analyzer showing a negative
association between RP and mean platelet volume (MPV) (49).
Despite the fact that platelets are anucleate, they still share some
similarities in mechanisms that are used by nucleated cells for
programmed cell death resulting in a steady state of platelet
production and clearance in health. With aging in the circulation,
platelets appear to show a gradual decline in Bcl-xL expression,
which is an anti-apoptotic protein that in turn liberates the
proapoptotic Bak/Bax proteins leading to Bak/Bax pathway
activation and starting mitochondrial-dependent apoptosis and
subsequent PS exposure (25). After PS exposure on their outer
membrane surface, platelets are cleared via scavenging receptors
on phagocytic cells in the liver and other organs. The apoptotic
PS exposure differs mechanically from that of agonist-induced,
as apoptotic PS exposure appears to rely on caspase activation
(25). These clear distinctions between apoptotic and agonist-
stimulated PS-exposing platelets have led to the suggestion that
the latter are activated by a necrotic cell death pathway. The
loss of the negatively charged sugar moiety sialic acid from the
surface of senescent platelets is another way by which platelets
are cleared from the circulation by the hepatic asialoglycoprotein
receptor 1 (76).

PLATELET SUBPOPULATIONS IN
CARDIOVASCULAR DISEASES

In the scope of cardiovascular diseases (CVD), different platelet
subpopulations have different roles in the prognoses of the
disease, and some of them are linked to a higher risk of major

adverse cardiovascular events and death (48, 50). While the
procoagulant activity of platelets is vital for hemostasis after
vessel injury, it has been linked to stroke and coronary artery
disease (51–53). Indeed, stable coronary artery disease (CAD)
has been associated with a heightened procoagulant platelet
response when compared to healthy controls, and this response
is not even inhibited by aspirin alone (54). High levels of coated
platelets were also associated with an increased risk for recurrent
infarction in non-lacunar stroke (55). RP might have a significant
role in myocardial ischemia/reperfusion (I/R) injury, caused by
the interventional reopening of an occluded coronary vessel
in the context of myocardial infarction (MI) especially as RP
seem to exhibit resistance to common antiplatelet therapies at
least to some extent (56). Beyond providing therapeutic targets,
measuring these heterogeneous subpopulations of platelets with
specific molecular properties may offer the means to define,
predict and diagnose platelet-associated conditions – especially
vasculopathy that is progressed by inflammatory, procoagulant,
and other platelet responses.

PLATELET SUBPOPULATIONS IN
INFECTIOUS DISEASES

In infections, the formation of an intravascular thrombus might
be part of the process of pathogen containment which is also
known as “immunothrombosis,” and platelets are key players in
promoting this process. Although platelets and their products
suppress infection, during an infection platelet consumption
and removal are increased often leading to thrombocytopenia.
Platelets can be immunomodulatory cells during an infection
regulating and/or participating in the inflammatory response
with certain dysregulation in platelets subpopulation such as
higher levels of young/reticulated platelets which can be reported
as high immature platelet fraction (IPF) levels during infection.
For instance, during dengue infection thrombocytopenia is a
common complication and IPF can be used as an indicator to
predict platelet recovery 24–48 h earlier (57). Another example is
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the significant correlation between higher IPF and the diagnosis
of sepsis as well as a predictor of severe thrombocytopenia and
mortality (43). One more example is the COVID-19 caused by
the severe acute respiratory syndrome corona virus-2 (SARS-
CoV-2), which is associated with a high incidence of venous
and arterial thromboembolic events and the pathophysiology
seems to be multifactorial. During COVID-19 infection platelets
express procoagulant phenotype, which shows enhanced PS
externalization and increased apoptotic markers (58, 59). There’s
a strong need for markers to guide antithrombotic therapy
in COVID-19 patients and to somehow monitor the platelets’
dynamics. IPF provides indices of platelet turnover and reactivity
in patients with COVID-19 respiratory disease which might serve
as a prognostic marker for disease severity. Several studies have
shown that patients with COVID-19 had higher levels of IPF
and immature platelet count (IPC) than healthy controls and
patients with cardiovascular risk factors (60–64). IPF has been
a useful tool not only in detecting an infectious state, but also
in differentiating a serious state from a minor one (65). Such
findings suggest that platelets are refractory to the inflammatory
process that is happening which makes them (platelet population
as whole or subpopulation markers) a very good candidate to be
used as a diagnostic/prognostic marker in certain conditions such
as vascular diseases, cancer, infectious diseases (65), pregnancy
complications, liver diseases (66–68). More recent findings on the
immunomodulatory role of platelets during an infectious status
are the platelet’s role during the hand, foot, and mouth disease
(HFMD) caused by enterovirus 71 (EV71). It has been shown
that platelets have distinct roles in the pathogenesis of HFMD
by regulating the pathogenic CD4 + T cell differentiation and
function (69). When exploring the mechanism by which platelets
regulate CD4 + T cell differentiation, gene expression of the T
cell surface molecule CD40 was found to be decreased in the
mild group of patients while it increases gradually in the severe
group. PSGL-1 gene expression on the other hand, which binds
to the platelet’s P-selectin was also found to increase significantly
in the severe group. Such findings suggest that platelets in
severe patients with HFMD mainly regulate T cells through
CD40L, GPIbα, and CD62P. Not only that, but plateletcrit and
platelet count levels both were positively associated with the
severity of HFMD (69). Alongside the change in the total platelet
count, platelet subpopulations would also show certain trends of
dysregulation during different disease states.

TOOLS TO INVESTIGATE PLATELET
SUBSETS

Advances in research methodology and technology such as the
application of flow cytometry to platelet studies have enhanced
our ability to study platelet subpopulations. The platelets are
stained with receptor-specific monoclonal antibodies conjugated
to fluorescent probes and evaluated with fluorescence flow
cytometry (FFC). FFC offers the possibility to evaluate platelets
and their function in small blood volumes and very rapidly
(∼10,000 platelets/min), and hence, FFC has been traditionally
used in clinical and research settings (70, 71). In terms of

platelet subpopulations, certain markers could be applied to
distinguish them and evaluate their dynamics. For instance,
young/reticulated can be evaluated and differentiated from the
older platelets in the circulation depending on their RNA content
using nucleic acid dyes. Thiazole orange or SYTO13 both
have been reported as indicators of reticulated platelets (72,
73). Another method to evaluate reticulated platelets is using
automated hematology analyzers such as the Sysmex analyzers
reported as IPF% or #IPC (74). There are several pre- and
post-analytical considerations when evaluating platelets using
these techniques and we have reviewed all these considerations
in greater detail in a previous review which readers might
refer to (41). Annexin V could be used in FC to report
the levels of procoagulant or apoptotic platelets due to its
ability to bind to PS (75). Aggregatory platelets could also be
evaluated using antibodies against the active αIIbβ3 integrins.
While desialylated platelets can be detected by conjugating
the ricinus communis agglutinin I (RCA-1) lectins with a
fluorochrom, which specifically target exposed galactose residues
following GP desialylation (76). FFC comes with a major
limitation which is the limited number of parameters that can
be simultaneously analyzed due to emission spectra overlap
increasing the complexity of the compensation required for
accurate analysis (77). The way to solve the inherited limitation of
FFC is to overcome the spectral overlap and have the possibility to
evaluate different markers simultaneously on individual platelets.
One way to achieve that is by applying mass cytometry (MC),
which is a next-generation flow cytometry platform and using
probes that are conjugated to heavy metal isotopes instead of
fluorescent dyes and time-of-flight as a detection technique (78,
79). Using MC there will be no need for compensation as this
detection technique has minimal spectral or channel overlap
resulting in an increase in the number of cellular parameters
that can be analyzed simultaneously on individual cells. MC
enables simultaneous phenotypic and functional analysis of
multiple parameters applying panels of up to 45 different cellular
parameters (80), and in theory up to 100 different parameters
(81, 82). The possibility to evaluate multiple markers can be a
great way to evaluate platelet heterogeneity within the platelet
pool of healthy donors and patients. Platelets could be evaluated
in whole blood or in the form of platelet-rich plasma (PRP),
which allows the evaluation of high numbers of events enabling
the investigation of previously unappreciated small platelet
subgroups. One of the limitations with platelet subsets studies,
in general, is the lack of standardized protocols that are easily
reproducible. Recently, a structured method to stain and evaluate
platelets from PRP using CyTOF was published which allows
the acquisition of 300,000 to 500,000 events and recording the
expression of up to 40 markers at once (78). MC data can be
analyzed using Visual stochastic neighbor embedding (viSNE) to
visualize high-dimensional single-cell data, for platelet-specific
analysis some groups have developed freely available analysis
pipelines such as CYANUS (83). As expected, such a detailed
evaluation of the platelet pool revealed some differences between
baseline and stimulated samples in healthy donors. For instance,
studies have shown that the expression of CD42a and CD42b
receptors goes down after TRAP stimulation (84). MC analysis of
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platelets from Glanzmann Thrombasthenia (GT) patients show
a significant reduction in CD41, CD61, and activated integrin
αIIbβ3 surface expression (84).

THERAPEUTIC TARGETING OF
PLATELET SUBPOPULATIONS

Dual antiplatelet therapy is recommended for secondary
prevention of coronary artery disease, including a cyclo-
oxygenase-1 inhibitor, and a platelet adenosine diphosphate
(P2Y12) receptor inhibitor (85). Aspirin is a dose-dependent
cyclooxygenase (COX) inhibitor that inhibits COX-1, and at
higher concentrations, it inhibits COX-2, through irreversible
acetylation of a serine residue in the catalytic channel (86, 87).
This inhibition will translate into permanent suppression of
thromboxane A2 (TXA2) generation in platelets. On the other
hand, inhibiting the P2Y12 receptor on platelets prevents platelet
activation by ADP. There are several P2Y12 inhibitors such as
clopidogrel which has an antiaggregatory effect and is beneficial
in the treatment of MI. Subpopulations of platelets exist as a
result of variability in surface molecules expression which might
be attributed to differences related to platelet age or differences
in exposure to local in vivo activating conditions. The activated
procoagulant platelets come with unique challenges for drug
therapy such as aspirin and P2Y12 blockers that usually target
the inhibition of platelet secretion, which in turn demonstrates
a need for alternative targets. Now, with the advancement in
mass spectrometry instrumentation, it is possible to perform
quantitative studies beyond that of earlier work allowing the
discoveries of the importance of every receptor or platelet state
and possibly targeting them more beneficially. The existing
literature suggests a need for a clinically effective antiplatelet-
antiprocoagulant regimen to limit the procoagulant response of
platelets. For instance, it has been observed that cyclic-adenosine-
monophosphate (cAMP) elevation can sufficiently inhibit the
initiation of COVID-19 antibody-mediated procoagulant platelet
generation thus reducing subsequent thrombus formation (88).
Indeed, inducing increased intracellular cAMP levels in platelets
using clinically approved therapeutic agents such as iloprost was
shown to prevent COVID-19 antibody-mediated coagulopathy.
A different potential agent might be acetazolamide, which
is a mild diuretic that is already in clinical use and has
been shown as a potent antithrombotic (89). Acetazolamide
is a carbonic anhydrase inhibitor that suppresses platelet
procoagulant responses and thrombus formation by distinct
mechanisms and is also capable of blocking water entry via the
water channel aquaporin 1 (AQP1) (89, 90). Another attractive
target for the development of new antithrombotic drugs would
be the PAR1 system, which mediates human platelet activation
at low thrombin concentration, unlike PAR4 which requires a
higher concentration of thrombin for platelet activation and
thus preserve a protective mechanism in situations such as
trauma (91). Indeed, preclinical and early clinical work on PAR1
inhibition was promising in terms of safety profile and did not
affect primary hemostasis. Vorapaxar (SCH530348), developed
by Schering Plough is one of the anti-PAR1 molecules used
in clinical trials (92). Another molecule is atopaxar (E5555),

developed by Eisai pharmaceuticals. It is a small organic
molecule, orally active, an inhibitor that binds at the tethered
ligand binding site of PAR1 (93). An increase of bleeding events
in the study group seems to be reported when compared to the
placebo group. On the other hand, adding a third antiplatelet
drug to the standard dual antiplatelet therapy is a higher risk
of bleeding thus, these agents should be considered differently
in future trials not only as an “add-on” therapy. Targeting
primary platelet activation pathways is also one of the recent
efforts to develop new classes of antiplatelet drugs. Targeting
the immunoreceptor tyrosine-based activation motif (ITAM)-
containing collagen receptor GPVI/FcRγ-chain complex would
provide platelet inhibition due to the role of these receptors
in the downregulation of platelet ITAM-receptor signaling (94).
The results from targeting GPVI are encouraging with reduced
aggregation and smaller arterial thrombi, with no major bleeding
complications. It has been suggested in the literature that
both PECAM-1 (which inhibit signaling downstream of the
collagen receptor GPVI and other platelet activation pathways,
such as those mediated by ADP and thrombin), and G6b-B
(which inhibits platelet activation by the ITAM-bearing receptors
GPVI and CLEC-2) are worthy of consideration as targets
for new antiplatelet therapy. For greater details on targeting
PECAM-1 and G6b-B as antithrombotic targets, readers may
refer to (94).

CONCLUSION

The responsive transitions in form and function platelets
undergo are essential to repair vascular endothelium and mediate
hemostasis. Platelets are central players in immunosurveillance
and vascular inflammation as they facilitate the recruitment
of leukocytes into the inflamed tissue as well as enhancing
leukocytes’ contact with endothelium, which is achieved by the
different adhesion molecules and soluble immune mediators.
In response to a variety of physiological and pathological
circumstances, qualitatively distinguishable platelet phenotypes
are increasingly reported in the circulation with conceptually
vague origins and significance. It is of great importance to have
a meaningful and practical manner where platelets themselves
can serve as important puzzle components and also provide
physiologically relevant examples on cellular function and
vascular wellbeing.
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