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Background: LDL-C is the primary target of lipid-lowering therapy and used to

classify patients by cardiovascular disease risk. We aimed to develop a deep neural

network (DNN) model to estimate LDL-C levels and compare its performance with

that of previous LDL-C estimation equations using two large independent datasets of

Korean populations.

Methods: The final analysis included participants from two independent population-

based cohorts: 129,930 from the Gangnam Severance Health Check-up (GSHC) and

46,470 participants from the Korean Initiatives on Coronary Artery Calcification registry

(KOICA). The DNN model was derived from the GSHC dataset and validated in the

KOICA dataset. We measured our proposed model’s performance according to bias,

root mean-square error (RMSE), proportion (P)10–P20, and concordance. P was defined

as the percentage of patients whose LDL was within±10–20% of the measured LDL. We

further determined the RMSE scores of each LDL equation according to Pooled cohort

equation intervals.

Results: Our DNNmethod has lower bias and rootmean-square error than Friedewald’s,

Martin’s, and NIH equations, showing a high agreement with LDL-C measured by

homogenous assay. The DNN method offers more precise LDL estimation in all pooled

cohort equation strata.

Conclusion: Thismethodmay be particularly helpful for managing a patient’s cholesterol

levels based on their atherosclerotic cardiovascular disease risk.

Keywords: low-density lipoprotein, deep neural network, pooled cohort equation, Korean, cardiovascular disease

INTRODUCTION

Cardiovascular disease (CVD) risk assessment is the first step in managing and preventing major
vascular events and all-cause mortality (1). Low-density lipoprotein cholesterol (LDL-C) is a
major modifiable cardiovascular risk factor (1). According to the recent American College of
Cardiology/American Heart Association (ACC/AHA) and European Society of Cardiology and
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European Atherosclerosis Society (ESC/EAS) guidelines, LDL-
C should be strictly managed for primary and secondary
prevention of cardiovascular events (2, 3). To best inform
clinical decisions and the use of effective therapies, health care
providers require a precise and accurate method to measure
LDL-C in the clinical setting. Additionally, providers need a
method that guides LDL-C management strategies based on a
patient’s risk of CVD (3, 4). Many working groups recommend
setting individualized targets for LDL-C based on a patient’s total
CVD risk level to manage CVD (2, 3). In 2013, the ACC/AHA
developed pooled cohort equations (PCEs) to predict the 10-
year risk for atherosclerotic cardiovascular disease (ASCVD)
events and recommended the use of these PCEs in treatment for
blood cholesterol (5).

Although tests for measuring LDL, such as beta-quantification
(BQ) procedure and Vertical Auto Profile (VAP), have been
developed, these techniques are more expensive than the
standard lipid panel and inappropriate for routine clinical
practice (6, 7). Traditionally, LDL-C is estimated using the
Friedewald equation, which applies a fixed ratio of triglycerides
(TGs) to very low-density lipoprotein (VLDL) cholesterol
(8). However, the Friedewald equation underestimates
LDL-C at low levels of LDL-C and with high TGs levels
(9). Therefore, a novel method was developed by Martin,
wherein LDL-C is expressed as follows: total cholesterol—
high-density lipoprotein cholesterol—TGs/(strata-specific
median VLDL-C:TGs ratio) (10). Nonetheless, neither the
Friedewald nor the Martin methods are well-suited to the
setting of severe hypertriglyceridemia (10). Recently, Maureen
Sampson et al. developed the following new LDL-C equation
for patients with hypertriglyceridemia and/or a low level of
LDL-C from the National Institutes of Health (NIH) Clinical
Center: TC/0.948 – HDL-C/0.971–[TG/8.56 + (TG × non-
HDL-C)/2140 – TG2/16100]−9.44 (11). This new equation
also requires independent verification in multiple datasets,
particularly in the Asian population. Machine learning with
deep neural network (DNN) models has been highlighted
for classification systems to diagnose disease because it can
represent highly complex data (12). DNN utilizes multiple
processing layers to learn representations of data with multiple
levels of abstraction (12, 13). Taken together, the application
of the machine learning could be a simple task applied in the
modern laboratory that is efficient in terms of technology and
cost (14). However, several studies have evaluated machine
learning for cardiovascular risk assessment including LDL
determination. Although several studies have developed
machine learning methods to estimate LDL levels (14–16),
they created machine learning models with relatively small
sample sizes.

In this study, we aimed to develop a DNN-based LDL-C

estimating model (LDL-CDNN) and compare the performance

of this DNN model with that of previous formulas for LDL-

C calculation using two large independent datasets of Korean

populations. Furthermore, we aimed to validate the utility of

LDL-CDNN in the group stratified by estimated CVD risk.

METHODS

Study Population
This study used the data of two independent population-
based cohorts: Gangnam Severance Health Check-up (GSHC)
dataset and Korean Initiatives on Coronary Artery Calcification
(KOICA) registry. The GSHC dataset consisted of retrospective
data obtained from 144,910 participants who visited Gangnam
Severance Health Check-up for comprehensive health check-ups
from March 2, 2007, to March 12, 2020. After excluding
participants with missing data for demographics (n =

8,795), lifestyle factors (n = 106), and laboratory tests (n
= 6,079), a total of 129,930 participants were included in
this analysis.

The KOICA registry dataset contained retrospective,
multicenter, observational cohort data obtained from 56,446
patients who underwent a general health examination at
one of six healthcare centers in Korea from December
2012 to August 2016 (17). All participants voluntarily
signed an informed consent form before the study,
and the institutional review boards (IRB) of each study
site approved the study protocols. After excluding the
participants with missing data for laboratory tests (n =

9,976), a total of 46,470 participants were included in
this study.

This study was conducted in accordance with the
Declaration of Helsinki and approved by the Institutional
Review Board of Severance Hospital (IRB No. 4-2020-
0323). To create a prediction model, 70% of participants
of the GSHC were randomly assigned to a derivation
dataset. A DNN equation for LDL was developed using
the derivation dataset (Figure 1). To validate the model,
30% of GSHC participants were randomly assigned to
an internal validation dataset. KOICA registry samples
were assigned to an external validation dataset. Data on
the history of hypertension, diabetes, and smoking status
were obtained from a self-reported questionnaire to both
cohort participants.

Lipid Assessment
All blood samples were collected from the antecubital vein
after an overnight fast of at least 8 h. In the GSHC, serum
LDL-C was measured by a homogenous direct assay using
reagents from Sekisui Medical Corporation (Tokyo, Japan) on
a Hitachi 7600 automated analyzer (Hitachi, Tokyo, Japan)
until March 17, 2014; after this date, the homogeneous direct
assay used reagents from Beckman Coulter Inc. (Brea, CA,
USA) on an AU5800 automated analyzer (Beckman Coulter
Inc.). In the KOICA registry, data were gathered from three
locations: Severance Check-up Healthcare Center, Seoul National
University Healthcare System Gangnam Center, and Samsung
Medical Center. Serum LDL-C levels were measured by
homogenous direct assays using reagents from Sekisui, Beckman,
or Roche Diagnostics (Mannheim, Germany) on Hitachi 7600,
Modular D2400, or Architect Ci8200 (Abbott, Abbott Park, IL)
automated analyzers.
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FIGURE 1 | Conceptual schematic for internal and external validation of machine learning models. For internal validation, the Gangnam Severance Health Check-up

(GSHC) was reserved for testing the model performance. For external validation, Korean Initiatives on Coronary Artery Calcification (KOICA) registry was used to test

the model performance. The DNN consists of six hidden layers, four hidden layers, and two hidden layers, with 30 nodes in each layer. Ten cross-validation was

performed to determine the structure of DNN in the derivation set. We selected the best DNN model with lowest mean standard error (MSE) among the three layers. A

total of three DNN models were competed. The final model was validated using the external validation set.
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Assessment of Various LDL Cholesterol
Estimation
A number of studies have developed methods to estimate LDL.
We adopted three methods: Friedewald (18), the Martin method
(10), and NIH methods (11). The Friedewald LDL-C equation
was used as TC–HDL-C– (TG/5) in mg/dL. A novel equation
for LDL-C was estimated as TC – HDL-C – TG/adjustable factor
(based on the non-HDL-C and TG levels derived from a 180-
cell 2D table). The NIH equation for LDL-C was estimated
as TC/0.948 – HDL-C/0.971 – (TG/8.56 + [TG × non-HDL-
C]/2140 – TG2/16100)−9.44.

Determination of DNN Structure and
Validation Strategies
Figure 1 describes the overall study scheme that applied in
this study. First, we split the GSHC data into a derivation set
(70%) and an internal validation set (30%). The KOICA registry
used as external validation set. Second, DNN model selection
was conducted using the tournament method. We selected the
preliminary results as a form of competition among a variety
of DNN structures. The candidate DNN structures consisted of
six hidden layers, four hidden layers, and two hidden layers.
For six hidden layers, the DNN model was set as the pyramid
structure. In other words, the candidate number of nodes were
10 nodes for six layers, 20 nodes for four layers, and 30 nodes for
two layers, but less than or equal to the previous layers. In the
cases of four and two hidden layers, candidates were determined
similarly using the above pyramid structure. Ten cross-validation
was performed to determine the structure of DNN and to check
its performance in the derivation set. Additionally, 90% of the
derivation dataset was arranged into a training dataset. Then, a
remnant dataset remained as a testing dataset. Notably, the 10
cross-validation analyses were exclusively conducted using only
the derivation dataset. We selected the best DNNmodel with the
lowest mean standard error among the three layers (one of six
layers, one of four layers, and one of two layer). A total three
DNNmodels were eligible to be entered into the final round.

For the third step, these three models (i.e., the best models in
layer 6, layer 4, and layer 2) competed, and one model with the
best performance was determined to use in this study (Figure 2).
Notably, the final round was conducted using the internal
validation dataset (30% of GSHC). Finally, we validated the
selecting final model using the external validation set according
to four accuracy indices.

Performance Measurement
Our study conducted the cross-validation, a set of methods
for measuring the performance of a predictive model on a
test dataset. To determine whether the DNN model accurately
represents the LDL level, we conducted four model validation
methods: bias, RMSE, P10 to P20, and concordance.

Based on previous studies, the bias (estimated LDL – mean
value of LDL) of each LDL equation was calculated, and the one-
sample t-test was used to measure the degree of average bias of
each estimation method differing from zero (19, 20). The RMSE
is the square root of the mean of the square of all of the error.

The most common measure of cross-validation is the RMSE. We
also calculated the accuracy using the “P” value. P was defined
as the percentage of patients whose LDL was within±10–20% of
the measured LDL. We found that P30 was too loose criteria for
evaluating clinical accuracy when we reviewed the Hwang et al.
study (20). Therefore, we used P10, P15, and P20, and we defined
Pn (n= 10, 15, and 20) as follows:

Pn =
number of samples with estimated LDL− within mean LDL± n%

number of all samples

Concordance has been used to test the classification accuracy
between estimated LDL and directly measured LDL.

Concordance =
# of B ∩ A

# of A

where A are samples with direct measured LDL within a specific
range and B are samples with estimated LDL in the same range as
directly measured LDL.

To assess the concordance in LDL-C risk classification
between estimated and directly measured LDL, we classified
LDL-C values into six categories (<99, 100–129, 130–159,
160–189, and ≥ 190 mg/dL) according to previous published
dyslipidemia guidelines (21, 22). Because the number of samples
below into the <99 mg/dl of LDL category was too small,
we integrated them into 100 mg/dl or less. Concordance in
classification between estimated LDL and directly measured
LDL were tested according to TG classification and non-HDL-C
classification with the same method.

Application of Pooled Cohort Equations
Treatment based on absolute risk determined using
combinations of risk factors rather than one value such as
LDL-C has been widely accepted since the National Cholesterol
Education Program Adult Treatment Panel III guidelines
published in 2001. In 2013, the ACC/AHA developed a new
risk score, based on major National Heart, Lung, and Blood
Institute-funded cohort studies. These PCEs predict 10-year risk
of hard ASCVD (23). In 2018, Yadlowsky et al. (24) derived a
revised version of 2013 PCEs to improve the clinical accuracy of
CVD risk prediction. We used these revised PCEs. The statistical
code that we used is available at https://github.com/sanjaybasu/
revised-pooled-ascvd. PCE scores were stratified into 20th
deciles. Concordance in classification between PCEs and the
LDL equation according to 20 categories was examined in the
study cohorts.

Statistical Analysis
Numeric data distribution of overall study population was
described as the histogram. Continuous data were presented as
the means± standard deviation and medians (IQR). Categorical
data were presented as number (%). General characteristics of
three groups (derivation dataset, internal validation dataset, and
external validation dataset) were compared using the one-way
analysis of variance and Mann-Whitney U test for continuous

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 February 2022 | Volume 9 | Article 824574

https://github.com/sanjaybasu/revised-pooled-ascvd
https://github.com/sanjaybasu/revised-pooled-ascvd
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kwon et al. Machine Learning Method for LDL-C Estimation

FIGURE 2 | (A,B) DNN model selection. The DNN consists of six hidden layers, four hidden layers, and two hidden layers, with 30 nodes in each layer. Black bars,

upper margins, and maximum lines in each boxplot indicate the means, one standard deviation (SD), and 1.96 SD deviation values, respectively. The best DNN model

among each layer was selected, and the tournament method was used to identify the final model. The 30, 30 in the two-layer model had the lowest MSE and was

selected as the final model.

variables. Categorical variables were compared using the chi-
square test among the three groups. Additionally, Bonferroni
correction was conducted.

To select the combination DNN model for predicting LDL-
C, 10-fold cross-validation was performed. Cross-validation is
the statistical method to reduce an overfitting problem in the

estimating and evaluation of the performance of the models (25).
First, the internal data was randomly split into a training dataset
(n = 38,928) and a test dataset (n = 91,002). In 10-fold cross-
validation, the internal training set was randomly partitioned into
10 subsets. The cross-validation process was repeated 10 times,
with each of 10 subsets used as internal validation data. For
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selecting the best model, all possible combinations were fitted,
and the performance of each model was compared. The model
that produced the best prediction performance was selected as
the preferred model.

Statistical analysis was conducted using R Statistical Package
(Institute for Statistics andMathematics, Vienna, Austria, version
4.1.0, www.R-project.org). A p value <0.05 was used as the
significance level.

RESULTS

To identify any differences among the three datasets at
baseline, we compared the general characteristics of study
participants across the three datasets. Figure 3 presents the
general characteristics of the study populations from the three
datasets. The distribution of entire dataset was described. The
mean age ± standard deviations were 48.6 ± 11.5 years in the
derivation dataset, 48.5 ± 11.4 years in the internal dataset,
and 54.0 ± 8.9 in the external dataset. The proportions of
male participants were 53.5% in the derivation dataset, 53.6%
in the internal dataset, and 76.2% in the external dataset. The
proportion of high-risk CVD group (PCE ≥20%) were 11.2%
in the derivation set, 10.9% in the internal validation set, and
19.6% in the external validation set. Participants in KOICA were
more likely to be old, male, have a history of hypertension
and diabetes, smoke cigarettes, and have a high CVD risk. No
significant differences were found between the derivation and
internal validation sets.

Figure 4 shows the lipid profiles of the three datasets. The
mean values of total cholesterol were 198.3 ± 37.1 mg/dl in
the derivation set, 198.3 ± 37.0 mg/dl in the internal validation
set, and 197.1 ± 35.0 mg/dl in the external validation set. The
median values (interquartile range [IQR]) of TGs were 105 (75–
153) mg/dl in the derivation and internal validation sets and 113
(79–163) mg/dl in the external validation set. The mean values
of HDL cholesterol were 54.4 ± 13.2 mg/dl in the derivation set,
54.4 ± 13.1 mg/dl in the internal validation set, and 52.3 ± 13.1
mg/dl in the external validation set. The mean values of directly
measured LDL were 124.8 ± 32.4 mg/dl in the derivation set,
124.8 ± 32.5 mg/dl in the internal validation set, and 124.6 ±

31.3 mg/dl in the external validation set. The Korean Initiatives
on Coronary Artery Calcification (KOICA) registry exhibited
significantly lower levels of total cholesterol and HDL cholesterol
but a significantly higher level of TGs. The levels of LDL-C
and estimated LDL-C were not significantly different among
the three sets. These baseline characteristics are presented in
Supplementary Table S1.

Figure 5 shows the performance of various LDL equations
in the external validation set. The LDL-CDNN was biased the
lowest from the zero (mean: 0.11 and t-value: 2.0 in the internal
validation set and mean: −0.08 and t-value: 1.9 in the external
validation set). The LDL-CFriedewadl was biased the highest for
zero (mean: 6.38 and t-value: 88.3 in the internal validation set
and mean: 6.49 and t-value: 129.3 in the external validation set).
The LDL-CDNN had the lowest root mean-square error (RMSE),
and the Friedewald LDL-C equation had the highest RMSE in

both validation sets. In the external validation set, LDL-CDNN

had superior performance in the P10 and P15. The LDL-CDNN

had the highest concordance in the LDL-C range from 100 to 190
mg/dl.

Figure 6 describes the RMSEs of various LDL equations using
the external validation set. The LDL-CDNN had lowest RMSE
within a TG range as high as 250 mg/dl. When analyzed by non-
HDL-C ranges, LDL-CDNN had the lowest RMSE values among
all estimations, particularly at the lower range (40–159 mg/dl
non-HDL-C range). This range has a similar meaning to 70–190
mg/dl LDL-C.

Figure 7A shows the distribution of PCE categories. The
RMSEs of each LDL-C estimation methods were presented
according to each of the 20 PCE categories (Figure 7B). The LDL-
CDNN had the lowest RMSE in most of the PCE score range in the
external validation set.

DISCUSSION

In the current study, we developed the DNN method for
estimating LDL. This method was a better estimator over the
previous equations including Friedewald’s, Martin’s, and NIH
formulas, showing a high agreement with LDL-C measured
by a homogenous assay. In particular, the DNN method is
more concordant with serum LDL-C throughout all PCE strata,
meaning that RMSE is consistently low not only in low-risk CVD
groups but also high-risk CVD groups.

Previous epidemiological studies have consistently revealed
significant associations between blood cholesterol levels and
coronary artery diseases (26). Gofman et al. (27) reported that
LDL and VLDL are associated with coronary artery diseases. LDL
particles are the major group for the transport of cholesterol
by the LDL receptor and plasma LDL concentrations (28).
Findings from familial hypercholesterolemia, a mutation in the
LDL receptor gene, suggests that exposure to excessive LDL-C
at an early age results in premature ASCVD (28, 29). Results
from Mendelian randomization studies have indicated that
polymorphisms associated with lower LDL level are associated
with a lower risk of ASCVD (29, 30). These findings provide
powerful evidence that LDL is an important causal factor for
ASCVD risk. Therefore, several studies have tried to develop
more accurate LDL-C estimation that could be used in routine
clinical practice (9–11).

Since the 1970s, the Friedewald formula has been used to
calculate LDL-C levels using the standard TC, HDL-C, and
TG lipid profiles (9). This method assumes a fixed factor (5:1)
for the TG to VLDL-C ratio. However, LDL-C estimation with
the Friedewald formula underestimates LDL-C compared with
ultracentrifugation or methods of direct LDL-C measurement
(9). The limitations of the Friedewald formula are that it is not
applicable in non-fasting subjects or those with TG levels of 400
mg/dl or more or those with LDL levels lower than 70 mg/dl (31).
Furthermore, this formula could be inaccurate in patients with
diabetes, kidney diseases, or liver disease, all of which have been
defined as risk-enhancing factors in the ACC/AHA guidelines
(32–34). These issues have becomemore important as cholesterol

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 February 2022 | Volume 9 | Article 824574

http://www.R-project.org
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kwon et al. Machine Learning Method for LDL-C Estimation

FIGURE 3 | Clinical characteristics of the study population among the three datasets. P values were calculated using the t-test and Mann-Whitney U test for

continuous variables or the chi-square test for categorical variables. ***p < 0.001. PCE, pooled cohort equations.
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FIGURE 4 | Lipids profiles and LDL values from the various LDL equations. The distribution of whole dataset was described. P values were calculated using the t-test

and Mann-Whitney U test for continuous variables.
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FIGURE 5 | Performances of four LDL estimation methods. (A) Bias of four LDL estimation models. (B) RMSE of four LDL estimation model. (C) P10, 15, and 20 of

four LDL estimation models. (D) Concordances of four LDL estimation models. DNN, deep neural network; FW, Friedewald LDL-C; LDL, Low-density lipoprotein

cholesterol; NIH, NIH equation for LDL-C; Novel, novel equation for LDL-C.

treatment has evolved to consider much lower LDL-C levels for
prevention of CVD in high-risk patients.

Martin et al. developed a novel method for LDL-C estimation
by applying an adjustable factor for the TG to VLDL ratio based
on each individual’s non-HDL-C and TG levels (10). This Martin
method provided a more accurate estimate in cases of LDL-
C levels lower than 70 mg/dl, as well as high TG levels (up
to 400 mg/dl). This study used the VAP method for LDL-C
measurement as a reference method. The Martins method still
has one significant weakness: it lacks accuracy for estimating
LDL-C with TG levels of more than 400 mg/dl.

Sampson et al. suggested a new equation for LDL-C estimation
using data from the NIH Clinical Center (11). In their study,
they usedmultiple least squares regression to develop an equation
for VLDL-C and used multiple external validation sets including
both β-quantification LDL-C and direct LDL-C tests (Roche
dLDL-C and Beckman dLDL-C). The strength of the NIH
method was the improved accuracy for estimating the LDL-C
in individuals with low LDL-C and high TG levels. However,
this study included a population with a high incidence of
hypertriglyceridemia. The median TG level was 149 mg/dL (IQR,

98–253 mg/dL), and 14% of the samples had a TG level of 400
mg/dL or more. These values were relatively higher than the
results of our study.

Recently, an increasing number of machine learning
algorithms have been developed for predicting cardiovascular
risk (35). Machine learning provides an improved performance
of modeling and outcome prediction in cardiovascular medicine.
Several studies have developed machine learning methods to
better estimate LDL-C levels (14–16). Lee et al. (14) developed
a DNN model for estimating LDL-C including 180 perceptrons,
which was motivated by the novel method from the standard
lipid profile (TC, HDL-C, and TG). Singh et al. (16) proposed
a machine learning method utilizing random forests for
LDL-C estimation using a direct LDL-C as a reference value.
Tsigalou et al. (15) suggested a machine learning model to
estimate LDL-C using shallow and deep machine learning
methods. Although these attempts improved the accuracy
for LDL-C estimation, these studies were conducted with
relatively small sample sizes, and comparative analyses of the
performances of machine learning and other LDL equations
are needed.
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FIGURE 6 | Comparison of root mean-square errors (RMSEs) for four LDL estimation models. (A) RMSEs for four LDL estimation models according to triglyceride

classification. (B) RMSE for the four LDL estimation models according to non-HDL cholesterol classification.

In this study, we developed the DNN model for LDL
estimation using the pyramid structure and selected the best
DNN model using the tournament method. Then, we compared
the performance of LDL-CDNN to that of other recently
developed LDL estimations with large multicenter data.

We used direct measurement LDL-C as a reference value.
The direct LDL method using homogenous reagents improved
imprecision over the previous methods and can be used more
easily in the clinical setting. To date, several reagents have

been developed by various manufacturers (36). Furthermore,
the Centers for Disease Control and Prevention performed
a manufacturer certification program with the aid of the
Cholesterol Reference Method Laboratory Network to ensure
global standardization and harmonization of lipid laboratory
tests, which satisfy the requirement of the National Cholesterol
Education Program (37).

In our results, the novel and NIH LDL-C equations had more
accurate performance than the Friedewald LDL-C equation; these
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FIGURE 7 | Comparison of RMSE in the four LDL estimation models across the PCE categories. PCE, pooled cohort equations. (A) PCE scores were classified

based on the 20th decile. (B) The RMSEs of each LDL-C estimation methods were separately calculated according to each of the 20 PCE categories.

results were consistently concordant with those of previous
studies. LDL-CDNN had the lowest bias and RMSE of the four
methods tested. Particularly, the higher ratio value of LDL-CDNN

from P20 to P10 indicates that LDL-CDNN better predicts serum
LDL-C within a smaller margin of error.

The concordance of LDL-CDNN was superior within the LDL-
C range of 100–190 mg/dl, which includes the LDL-C IQR

(103–145 mg/dl) in the external validation dataset. Additionally,
LDL-CDNN showed superior performance in non-HDL-C ranges
of 40–159 mg/dl. The range between 40 and 159 mg/dl non-
HDL-C corresponds to 70–190 mg/dl LDL-C. Non-HDL-C is
not unaffected by issues related to the lipoprotein specificity
of serum LDL-C methods toward various ApoB-containing
lipoproteins (38). Therefore, non-HDL-C is known to have better
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concordance with CVD risk score classification in both healthy
individuals and those with hypertriglyceridemia (38).

However, we could not overcome the inaccuracy of LDL
estimation for low LDL and high TG levels, which were similar
with disadvantages of the existing LDL measurement formulas.
This result might have been due to the relatively small number of
people with low LDL and high TG because we used the data from
a generally healthy population.

To overcome these shortcomings, we compared the RMSEs
according to cardiovascular risk stratification using the PCE.
This comparison revealed that LDL-CDNN predicts LDL-C well
across the entire PCE range regardless of CVD risk. PCEs
were first introduced in 2013 as sex- and race-specific tools
for estimating ASCVD risk (23). PCEs included not only age,
sex, and race but also established cardiovascular risk factors
such as smoking status, systolic blood pressure, hypertension
treatment status, diabetes status, and total and HDL-C levels.
PCEs were considered in the context of a particular patient’s
circumstances when deciding whether to use statin therapy (39).
LDL-CDNN consistently predicted LDL-C well in participants
with low or high CVD risk. Our findings suggest that the DNN
method could allow for risk-stratified care management and
reduce ASCVD risk by achievement of LDL-C targets regardless
of risk levels.

This study has several limitations. First, we used a reference
value based on the direct homogenous assay of LDL-C instead of
the β-quantification (BQ) method, which is considered the gold
standard for LDL-C measurement. Therefore, the results of the
current study should be interpreted with caution. Comparison
of LDL-CDNN and BQ method is needed in further studies. The
BQ procedure, which relies on preparative ultracentrifugation
has been the established reference measurement procedure for
HDL-C and LDL-C (6); however, this method is a highly manual
technique requiring significant laboratory skill and expense,
which is not suitable in the clinical setting (11). Homogenous
automated methods for direct measurement of LDL-C are
well-suited to routine clinical application and have an assay
precision generally within the level stated in NCEP guidelines
(40). Therefore, the 2019 EAS/ESC guidelines suggested that
both homogenous enzymatic methods and ultracentrifugation
for LDL-Cmeasurement are useful for clinicians (3). Considering
the real-world data in Korea, the utilization of homogenous
assays has practical merits. Two recent studies, which developed
machine learning method for the estimation LDL-C, also used
direct homogenous assay of LDL-C (15, 16).

Second, factors related to abnormal lipoprotein composition
(e.g., diabetes, obesity, kidney diseases, and liver diseases) were
not available for this analysis like other LDL equations. Third,
LDL-CDNN was more concordant when TG levels were 400
mg/dl or less in the external validation set, which is similar
with other LDL equations such as the Friedewald and novel
methods. Fourth, since our data only included Korean subjects,
there is a limitation in applying our result to other ethnic groups.
Additional validation sets are needed, including other race/ethnic
groups and subgroups. Fifth, although DNN is still useful for
application in predictive models of large-scale studies, it is also
important to consider how to link it to practical use. Despite

of theses weakness, our study used various Korean population
datasets obtained by well-validated laboratories. To the best of
our knowledge, this is the first study to compare the performance
of the DNN method with that of other LDL estimation methods
using a large sample and multicenter, real-world dataset in an
East Asian population. Second, we selected the DNN model
with the best performance using a model selection approach that
consisted of testing all possible combinations.

CONCLUSION

The DNN method offers a more precise LDL estimation in
all PCE strata and may be particularly helpful in managing
patients’ cholesterol levels based on their ASCVD risk. More
studies are needed to determine how the DNNmethod can better
predict LDL-Cwithin low LDL and high TG ranges. Additionally,
longitudinal studies are needed to predict CVD mortality and
morbidity using the DNNmethod.
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