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The quality and acceptance of machine learning (ML) approaches in cardiovascular

data interpretation depends strongly on model design and training and the interaction

with the clinical experts. We hypothesize that a software infrastructure for the training

and application of ML models can support the improvement of the model training and

provide relevant information for understanding the classification-relevant data features.

The presented solution supports an iterative training, evaluation, and exploration of

machine-learning-based multimodal data interpretation methods considering cardiac

MRI data. Correction, annotation, and exploration of clinical data and interpretation

of results are supported through dedicated interactive visual analytics tools. We test

the presented concept with two use cases from the ACDC and EMIDEC cardiac MRI

image analysis challenges. In both applications, pre-trained 2D U-Nets are used for

segmentation, and classifiers are trained for diagnostic tasks using radiomics features

of the segmented anatomical structures. The solution was successfully used to identify

outliers in automatic segmentation and image acquisition. The targeted curation and

addition of expert annotations improved the performance of the machine learning

models. Clinical experts were supported in understanding specific anatomical and

functional characteristics of the assigned disease classes.

Keywords: visual analytics, co-learning, machine learning, CMR, human in the loop (HITL), cardiovascular

phenotyping, artificial intelligence, classification

1. INTRODUCTION

In recent years publications and product developments have shown the potential of artificial
intelligence systems in cardiovascular medicine (1–4). Especially data-driven machine learning
models can support automatic interpretation of complex spatio-temporal information such as ECG
or image data, and the integrated analysis of complementary data from electronic health records,
sensor systems, etc. Two factors that are essential for the successful deployment of AI solutions
for image-based and multi-modal data interpretation are the model design and training and the
interaction with the users (3, 5).
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1.1. Integration of Image-Based
Information in Multi-Modal Cardiac
Disease Classification
Integrating complementary data of different types such as
demographic information and laboratory and image data
requires complex models that filter the densely sampled image
information appropriately. Many approaches for phenotyping
or predictive modeling using multi-modal data integrate image
information via conventional clinical parameters such as the
stenosis degree or the ejection fraction (6, 7). Thereby valuable
feature information of contained in the comprehensive image
data might be neglected. In contrast to the traditional features,
which describe the heart chamber volumes and myocardial
motion patterns of the left and right ventricle, so-called radiomics
features describe shape and texture properties of segmented
regions context-independently based on image intensities and
voxel classification (8). Radiomics features extracted from non-
contrast cine MRI have successfully been used to differentiate
between patients with myocardial infarction (MINF), dilated
cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM),
and an abnormal right ventricle (RV) (9–12). Further approaches
used features describing the myocardial texture in MRI-based
T1 and T2 maps (13) or delayed enhancement MRI (14) to
differentiate myocardial pathologies.

Standard radiomics features, which can be calculated with
freely available libraries such as pyradiomicswere designed for the
assessment of compact structures such as tumors (15). To better
consider the complex structure of the heart, further features
have been suggested. The Minkowski-Bouligand dimensions,
as described by Captur et al. (16) assesses how the length or
complexity of a contour increases while increasing the scale
or detail at which it is measured and is used to assess the
trabecularization of myocardium. Further features specifically
describing the cardiac anatomy such as the septum thickness have
been suggested by Tautz et al. (17, 18).

1.2. Expert Annotations for Cardiac Image
Interpretation
Quantitative and radiomics analysis of cardiac MRI image
data usually requires segmentation of the relevant anatomical
structures (19). Recent publications demonstrate the potential of
deep learning models such as the U-net for the segmentation
and interpretation of typical imaging sequences such as short-
axis cine MRI (20). However, the performance of these models
depends on the quality of the training data, and previous studies
showed that the annotation performance of clinical experts
is influenced by the annotation framework (21). The “Society
for Cardiovascular Magnetic Resonance” (SCMR) recommends
analyzing image frames in end-diastole (ED) and end-systole
(ES) (19) for assessing the global cardiac function. Therefore,
clinical datasets are often only sparsely annotated, and interactive
intelligent annotation and correction tools are required to extend
and improve the data so that they can be used to train machine
learning models. Commercial medical products might be used
if the software offers the export of the expert segmentation in
an open format. Open-source application such as 3D Slicer (22),

MITK Workbench (23) also provide generic tools for interactive
(24, 25), semi- and fully-automated segmentation algorithms.
These software tools integrate open-source libraries such as
MONAI Label1 to support an efficient interaction between the
annotation and machine learning environment (26). Specialized
research software tools such as Segment (27) and CAIPI (28)
provide dedicated solutions for the annotation and processing
of four-dimensional cardiac data, which can be used to generate
training data. The International Radiomics Platform (IRP) (29)
supported by the German Radiological Society2 further enables
the combination of annotated image data with clinical data
and questionnaires.

1.3. Clinical Integration of AI-Based
Solutions for Cardiac Image Interpretation
Modern deep learningmodels can classify several cardiac diseases
directly from image data (30, 31), but the inference process is
hardly understandable for most clinical experts. Explainability
approaches for convolutional neural networks support the
identification of image regions, which contribute to classification
results (32) and provide information for plausibility checks as
demonstrated for the interpretation of echocardiograms (33).
Explainability methods have been suggested for enhancing the
classification of cardiac diseases. Interpretability methods such
as Discovering and Testing with Concept Activation Vectors
(D-TCAV) can be used to show underlying features of the
classification (34). Especially in cardiovascular research, it can
be highly beneficial for hypothesis generation to understand
the shape and tissue characteristics, which determine the
assignment of a patient to a particular class. Working with well-
defined features, as suggested in Radiomics (8), might enable a
compromise between the optimal consideration of the complex
image information and a classification that is understandable
for clinical experts (35). However, the complex multi-modal
data used in phenotyping are difficult to interpret for humans
with classical approaches such as heatmaps and two-dimensional
diagrams (36, 37). When omics or image data is involved there
is a lack of backtracking within these tools, which links the
classification to specific relevant locations or time frames of the
underlying data.

Integrating AI training setups into clinical environments faces
several ethical and legal challenges. The management of health
record data is defined by the General Data Protection Regulation
(GDPR)3. These regulations define how and for what purpose
health data can be accessed. Platforms for federated AI training
such as JIP (38) and QuantMed (39) provide interfaces for
loading data from the Picture archiving and communication
system (PACS) and sharing fully trained models in a secure and
compliant way.Moreover, JIP implements an interface to connect
open-source deep learning libraries and permits the integration

1Medical Open Network Artificial Intelligence. Available online at:

https://monai.io
2https://www.drg.de/de-DE/3601/radiomics/
3https://www.eu-patient.eu/globalassets/policy/data-protection/data-protection-

guide-for-patients-organisations.pdf
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of other image processing frameworks like MITK or platforms
like IRP (29).

The FDA guidelines address the problem of the need for
AI model adaptation and improvement through retraining,
and suggest an efficient dynamic process for the development
and quality assurance of DL/ML methods in medical image
processing (40). The document describes how to manage data,
re-train, evaluate, and update AI methods in clinical settings
in such a way that newly trained models fulfill the regulatory
requirements for a medical product.

1.4. Goals
We hypothesize that a dedicated setup for the training and
application of machine learning methods with an expert-in-the-
loop approach can speed up and improve the training of the
AI models for image processing and multi-modal classification.
Furthermore, it can support the clinical expert in exploring and
understanding the analyzed datasets.

The existing infrastructure and tool solutions presented in the
previous paragraphs address all aspects required to set up an
environment that supports the development and application of
machine learning methods for the integrated usage of cardiac
MRI data in multi-modal data classification. Based on these
building blocks, we present a concept for a central environment
that supports dynamic machine learning with experts in the
loop. This central infrastructure should manage data and
the training and inference of machine learning models for
multi-modal cardiac data interpretation. We envision central
modules for cardiac structures segmentation, an automated
pre-processing and features extraction process, and a multi-
modal cardiovascular disease classification. To integrate clinical
experts into the loop we suggest an interactive exploration of
the extracted data and a disease hypotheses generation method.
Furthermore, this module should provide an interactive data
correction and data integrity check, as well as dynamic updates of
machine learning models. We test the presented setup with two
use-cases and publicly available data from MICCAI challenges

on image-based disease classification: the ACDC challenge for
the classification of cardiomyopathies (41) and the EMIDEC
challenge for the detection pathologies (49) using cardiac MRI
and non-image information.

2. MATERIALS AND METHODS

We propose a modular web-based software environment
to support co-learning and comprehensive analysis of
cardiovascular imaging data (Figure 1). The architecture of
our solution contains the following main components: a data
model; a semi-automated tool for efficient labeling; extraction of
cardiovascular and radiomics features; visual analytics interface.

For integration into the clinical infrastructure, DICOM
network services (42) are used to receive imaging data from PACS
systems. On arrival of new data, automated processes import,
classify, and, depending on the type of data, automatically pre-
process, segment datasets, and extract radiomics features. A web-
based application is provided for semi-automated segmentation
correction as described in Section Data Correction, Data
Integrity, and Dynamic Updates of Machine Learning Models.
Cases that the users correct can be directly used to improve
the segmentation algorithm by re-training. Figure 1 shows
the workflow for refining the segmentation and classification
solution. Study data can be analyzed in a web-based visual
analytics application Section Interactive Multi-modal Data
Exploration with Visual Analytics.

2.1. Data Model
The data model is essential for the traceability of the origin
of classification results. Figure 2 shows the major entities and
their hierarchical organization. Our data model follows a similar
structure described by the DICOM standard (42) using patients
and studies as entities to describe a patient cohort. Each patient
entity can have one or more studies. Each study can contain
several cases containing one or more 3- or 4-dimensional
images. For each case, deformation fields, clinical parameters,

FIGURE 1 | Concept of an iterative process for the training and evaluation of the ML-based segmentation and classification models. On import, image data is

automatically segmented, pre-processed, and features are extracted. The results of the automatic segmentation and classification is displayed in the visual exploration

interface. In addition clinical experts can manually correct the segmentation results of detected outliers. These corrections can be used to refine the segmentation

model.
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FIGURE 2 | Schematic representation of the data model.

and annotations, such as image type, or classification labels are
stored. Automatic segmentation results and landmarks for the
definition the 17-segment model defined by the American Heart
Association (AHA) are stored in sessions so that it is always
traceable on which data the calculated parameters are based.
Furthermore, this data handling allows an evaluation of several
readers or repeated measurements and thus supports inter- and
intra-observer or ML model comparisons.

2.2. Machine Learning for Multi-Modal
Disease Classification
2.2.1. Automatic Segmentation, Pre-processing, and

Feature Extraction
The image processing part of the application is developed with
MeVisLab (43). For data pre-processing and the training of
models for the slice-wise segmentation of cardiac structures,
we use the Redleaf framework, which allows the integration of
inference methods directly in the MeVisLab based applications.
U-nets are trained for the segmentation of the relevant structures
such as RV, LV, and myocardium (44). These segmentations
form the basis for the extraction of typical radiomics features
and image-based cardiac biomarkers as suggested in Section
Introduction. For 4D image data we generate radiomics feature
curves that provide dynamic changes and motion patterns.
These time-resolved features are aggregated using minimum,
maximum, median, and (arithmetic) mean.

2.2.2. Multi-Modal Cardiovascular Disease

Classification
The classifications are based on features describing local and
global cardiac function, and radiomics features. We apply eight-
fold nested cross-validation to select relevant feature classes.
Moreover, during the cross-validation, we perform a model
selection of five classifiers and their respective hyperparameters
and train a classifier as described in Ivantsits et al. (45).

We perform a feature importance analysis as (46) proposed.
This analysis can be performed on any fittedmodel by calculating
a base score produced by the training or test set model. This is
followed by a random shuffle to one of the features and compared
to the baseline’s predictive power. This procedure is then repeated
and applied to all features to come up with an importance score.
This importance analysis gives insights into the decision made
by a classifier and can further be used to discover potential data
integrity issues.

2.3. Interactive Multi-Modal Data
Exploration With Visual Analytics
The interactive visualization is designed to support the
evaluation, validation, and hypothesis generation. It is provided
as a web-based tool for the clinical experts (Figure 3).

The interface provides an overview of relevant features for
a given patient cohort. These features are identified by the
feature importance analysis of the machine learning module. In
order to be sure that features such as, e.g., gender are always
considered, users can also select features to be included in the
exploration view. The parallel coordinate plots (PCP) visualize
the multi-dimensional data as line sets with points representing
the datasets’ parameters. Each y-axis represents the relevant
value range of one parameter. Each line corresponds to one
patient dataset. Time-resolved parameters are represented by the
aggregated minimum, maximum, or mean values.

Further chart types support an advanced exploration of
relationships between different parameters. Scatter plots
with regression lines visualize linear relationships between
parameters. Histograms show the distribution of different
parameters. Box plots give a standardized overview of the data
set. Pie charts visualize how frequently individual values or cases
of the disease class occur in the study. This can also be used to
visually identify unbalanced data sets, for which appropriate
measures can be taken in the case of subsequent training.

The exploration tool is designed as a hierarchical tool with
different interlinked views. The linking of the data is based
on the data model described in Section Data Model. Cases
can be selected interactively in the PCP by a technique called
brushing (47). The selected parameter range specifies the subset
of patients considered for the dependent diagram and curve
views. Images can be selected in the 2D viewer from this subset
by a drop-down menu above the viewer. The line corresponding
to the image selected in the 2D viewer is highlighted in the PCP
and the curve diagram by changing thickness and alpha value.

A curve diagram enables the analysis of temporal dynamics
of individual parameters. As shown in Figure 3, the curve color
corresponds to the class assigned to the underlying dataset to
enable a comparison of feature dynamics.

The image viewer shows the image data of a selected case
with segmentation contours and an overlay of the segmentation
uncertainty. Schematic visualization of the heart shows the
position of the displayed image slice with regard to the
cardiac anatomy. This approach supports the identification and
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FIGURE 3 | The parallel coordinates plot in the top row shows multi-dimensional data as line sets. Each y-axis represents a specific parameter. The diagrams in the

center row show distributions and correlations of selected parameters. The curve view on the bottom left supports the exploration of the temporal dynamics of a

selected parameter over the cardiac cycle The image data, the curve parameter of the selected timepoint is based on is displayed in the image viewer on the bottom

right. Contours and overlay show the segmentation as well as the local certainty of the segmentation model.

exploration of outliers as shown in Figure 4 and thereby the data
curation. Furthermore, via the aggregation of time-resolved data
in the PCP the user can backtrack information from a specific
feature to the relevant regions within the underlying image. This
can further be used to identify any data integrity issues.

2.3.1. Data Correction, Data Integrity, and Dynamic

Updates of Machine Learning Models
A second tool supports the correction and extension of ML-
based segmentation results (Figure 5). The image viewer allows
to delineate and correct contours defining the anatomical
structures (left and right endocardium, left epicardium) using
spline, freehand, and brush tools. The overview table indicates
the segmentation status of the image slices. When analyzing
time-resolved data, such as cine MRI, area and volume as
segmentation certainty curve diagrams support the identification
of mis-segmented timeframes to reduce the manual interactions.
Sparse corrections by the users can be transferred in 3D using
shape-based interpolation (25). To transfer segmentation results
motion-compensated onto adjacent time frames, we use the
deformation field generated by a Morphon-based method (48).
In the timepoint widget users can specify which timepoints to
consider (Figure 6). To help the users to generate consistent
segmentation results, an optional tool can enforce that the LV
epicardial contour encloses the LV endocardial contour, and that
left epicardial and right endocardial contour do not intersect,
using spatial set-theoretical boolean operations (Figure 6C). For

each individual contour, we store whether it was manually
corrected. Thereby, the quality of the automatic segmentation
algorithms can be assessed. This information can also identify
new cases to improve the AI-based segmentation approach via
fine-tuning or re-training.

3. RESULTS/APPLICATION

We test the presented setup with two use-cases and publicly
available data from MICCAI challenges on image-based disease
classification: the ACDC challenge for the classification of
cardiomyopathies (41) and the EMIDEC challenge for the
detection of myocardial pathologies (49) using cardiac MRI and
non-image information.

3.1. Classification of Cardiovascular
Disease Based on Cardiac Cine MRI
Cardiac cine MRI provides information on the anatomy
and the function of the heart and can help to differentiate
between cardiovascular diseases. In this study, we use the
freely available dataset from the ACDC challenge (41) to
demonstrate how our software environment can be used
to support experts in improvement and understanding of
cardiomyopathy classification. The dataset comprises normal
subjects and patients with one of the following cardiovascular
diseases (CVD): previous myocardial infarction (MINF), dilated
cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM),
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FIGURE 4 | Exemplary case of a segmentation outlier (represented by the red line) in the total EMIDEC study consisting of 100 cases. It can be identified in the PCP

by three blue brushes. In the image viewer the erroneous segmentation is clearly visible.

FIGURE 5 | The expert segmentation correction tool shows the segmentation results as contour overlay in the image viewer. The brush tool is visualized as a circle.

The table in the upper displays the segmentation status per image slice and anatomical structure. The curve diagrams on the bottom left show the area curves and

the segmentation algorithms’ probability of the segmentation results on the current slice.

and an abnormal right ventricle (RV). The dataset contains
the same number of cases in each subgroup. Clinical experts
delineated the left epicardial and endocardial borders in end-
systole and end-diastole and assigned the CVD class. The data

was acquired on Siemens MRI scanners on 1.5T (Aera) and 3T
(Trio Trim); the in-plane resolution was between 1.37 × 1.37
and 1.68 × 1.68mm2, the slice thickness was between 5 and
8mm, distance between slices was 5–10mm, and 28–40 phases
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FIGURE 6 | (A) Shape-based interpolation: manual contours (yellow) are defined on two slices. The blue contours represent the interpolated results. (B) Temporal

correction: top row shows a series of time frames of a cine MRI dataset. The solid contour shows the manually corrected contours. The dotted contours represent the

incorrect segmentation results. The time-point widgets show the range the user selected for correction via contour propagation. (C) Correction with logical conditions:

the contour of the right endocardium was originally drawn into the septal wall (blue dotted contour). The solid contour represents the corrected segmentation.

covered each cardiac cycle. In this study a pre-trained 2D U-Net
was retrained on 75 cases from the challenge’ training set. The
optimal classifier obtained by the described grid search on the
ACDC challenge dataset yields a random forest classifier with
230 estimators, the Gini criterion, a maximum depth of six, a
minimum of samples per leaf of six, and a minimum sample split
of nine. This classifier is built with 112 shape- and texture-based
features plus the patients height and weight. For the random
forest classifier 80 cases were used for training and 20 cases for
testing. Figure 10A shows the confusion matrix of this classifier
before the correction. This results in an overall accuracy of 0.85,
with a precision of 1.0 and recall of 0.75 on RV cases, a precision
of 0.75 and recall of 0.75 on normal cases, a precision of 0.67 and
recall of 1.0 on MINF cases, a precision of 1.0 and recall of 1.0
on HCM cases, and a precision of 1.0 and recall of 0.75 on DCM
cases. Additionally, Figures 10C,D illustrate the AUC scores for
each individual class plus the macro AUC score of 0.94 before
the correction and an AUC score of 0.98 after the correction.
After correcting segmentation outliers that were identified via
the PCP, the accuracy of the classifier improved from 0.85
to 0.9 (Figure 10B). Furthermore, Figure 10E exemplifies the
feature importance of the random forest classifier. We observe
the patients’ left myocardium sphericity to be the most crucial
variable in detecting pathological cases, closely followed by
the left blood pool volume and the interventricular septum

thickness parameter.
Figure 7 shows the visual exploration interface for the

complete ACDC dataset. Cases of all patients are shown in the
PCP. The rightmost y-axis shows the patients’ CVD, which is
also visualized in the pie chart on the top right. One can see
an equal distribution of the diseases in the dataset. Multiple
clusters and outliers can be observed. As a first step, clear outliers
were removed by deselecting outliers by the averagemyocardium

intensity cluster tendency, average septum thickness, and
average left ventricle tortuosity. After removing these outliers,
one can differentiate between HCM and DCM patients based on

the left blood pool coarseness and relative septum thickness. This
can also be seen in the corresponding box plots in the second row.
When only selecting patients with HCM and DCM, this becomes
even more prominent as shown in Figure 8.

While outliers were excluded in this first analysis of the
study cohort, it is also possible to select and analyze these
individual outlier cases. Figure 9 shows cases with strong motion
artifacts that could be detected by the left blood pool surface
area parameter. The crosshair in the images in the second row
shows the center of the left blood pool in the basal slice. The
misalignments in the slices can also be depicted in the 3D
visualization of the segmentation.

In outlier cases where the segmentation had failed, it was
manually corrected using our labeling interface. After correcting
the outlier cases, parameters were extracted again, and the cases
were classified again. Figure 10B highlights the classification
performance after the correction of the cases as described in
Section Interactive Multi-modal Data Exploration with Visual
Analytics. We observer an improvement in accuracy from 0.72
to 0.8.

3.2. Classification of Normal and
Pathological Cases From Late-Gadolinium
Enhanced MRI in the Left Myocardium
The EMIDEC challenge (49) provided benchmarking data
to assess the performance of segmentation and classification
algorithms using clinical parameters and late gadolinium
enhancement (LGE) MRI data (50). The dataset consists of 150
cases: 100 diseased patients and 50 normal cases. Patients were
split into 100 training and 50 testing sets, containing 1/3 normal
and 2/3 pathological cases, which roughly corresponds to real-
life observations in the clinical settings. The data was acquired
on Siemens MRI scanners on 1.5T (Aera) and 3T (Skyra); the
in-plane resolution was 1.25 × 1.25 and 2 × 2mm2, the slice
thickness was 8mm and the distance between slices 8–13mm. In
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FIGURE 7 | Visual analytics of complete ACDC dataset, which consists of 100 cases. The lines in the PCP represent the patients of the underlying cohort. The color

of the lines visualizes the classification result and corresponds to class color in the pie chart. The selection via the blue brushes in the PCP includes patients without

outliers for features such as septum thickness, myocardium intensity cluster tendency, and left ventricle tortuosity. The scatter plot in the second row shows the EDV

vs. avg. myocardium intensity cluster tendency for this cohort. In the box-plots, the distributions of max. myocardial sphericity, max. LV volume and left ventricular

diameters in each disease subgroup are shown. The curve diagram shows the LV blood pool curve of each patient over the cardiac cycle.

a post-processing step, the image slices were realigned to prevent
any effects of breathing motions.

Analogously to the previous case study, the dataset from
the EMIDEC challenge was integrated into our classification
and exploration environment. A 2D U-Net was used to
generate segmentations of the LV endocardial and epicardial
border trained on data from 100 patients with myocarditis
and cardiomyopathy to segment the myocardium in the LGE
MRI data. As no cases with no-reflow areas were included
in the patient data, we also included the 50 unlabeled cases
from the challenge’s test set. Initial segmentations for these
cases were generated by a pre-trained model. An expert used
the tools described in Section Data Correction, Data Integrity,
and Dynamic Updates of Machine Learning Models to correct
these segmentations. Next, the segmentation results were added
to the internal cases with expert segmentation, and the final
segmentation model was trained. This final model segmented
the LV endocardial and epicardial contours and extracted the
radiomics parameters on the 80 cases from the challenge’s
training set. A classifier was trained to differentiate between
normal and pathological cases with 25 shape- and texture-
based features. We applied a similar strategy as in the ACDC
case study. An eight-fold nested CV was used for model and
hyperparameters selection. Essential image-based features for the
classifiers are shown in the PCP.

The optimal classifier identified by our grid-search on the
EMIDEC challenge dataset turned out to be an extra tree classifier

with 190 estimators, the Gini criterion, a maximum depth of
six, a minimum of samples per leaf of six, and a minimum
sample split of nine. Figure 11A illustrates the confusion matrix
of this classifier before the interactive correction. This results in
an overall accuracy of 0.75, with a precision of 0.79 and a recall of
0.85 on pathological cases, a precision of 0.67, and a recall of 0.57
on normal cases. Additionally, Figures 11C,D illustrate the AUC
scores for each individual class of 0.85 before the correction and
an AUC score of 0.87 after the correction. Figure 11E represents
the feature importance, where the importance is defined by the
difference of the models’ baseline and the score after a feature
permutation. We observe the patients left blood pool surface

area to be the most crucial variable in detecting pathological
cases, closely followed by left myocardium difference entropy

and left myocardium contrast parameter.
Outliers could be disabled via brushing on myocardial

contrast, myocardial cluster tendency, myocardial complexity,

left blood pool coarseness in the PCP analogous to the analysis
of the ACDC dataset in Figure 7. After correcting segmentation
outliers that were identified via the PCP, the accuracy of the
classifier improved from 0.75 to 0.8 (Figure 11B).

4. DISCUSSION

To test our hypotheses, we applied the presented software
environment to two multi-modal machine learning tasks: the
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FIGURE 8 | Comparison of features of HCM (green) and DCM (red) patients from the complete dataset. The upper diagram shows dynamics of the left bloodpool

coarseness over the cardiac cycle. The lower diagram display the changes of the relative septum thickness. The viewers on the right show the time frames

corresponding to the orange line for an example case of a DCM and HCM patient. The solid blue line indicates the septum thickness. The dashed line shows the

diameter heart diameter, that is used for normalization of the septum thickness. The coarseness of the selected timepoint is shown on top of the left blood pool. The

example cases differ strongly in the anatomical relations as well as in the blood pool intensity distribution.

FIGURE 9 | Outlier with motion artifacts. Changes in the left endocardial and epicardial surface area indicate the presence of an outlier. The 3D rendering of the

segmentation surface highlights the misaligned slices. The green crosshair in the image viewers was placed in the center of the left blood pool in a basal slice, giving

an impression of the motion of the blood pool center.
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FIGURE 10 | Illustration of the ACDC classifier performance on the test dataset consisting of 20 cases. (A,B) Highlights the confusion matrix for the ACDC classifier

before and after the correction of image segmentations via our described visual outlier detection. Similarly, (C,D) show the AUC score improvement of the classifier.

(E) Depicts the 10 most important features for this classifier.

FIGURE 11 | An illustration of the EMIDEC classifier performance on the test dataset consisting of 20 cases. (A,B) Show the confusion matrix for the EMIDEC

classifier before and after the correction of image segmentations via our described visual outlier detection. (C,D) Illustrate the AUC score before and after the

correction. (E) Depicts the importance of the top 10 features for this classifier.

classification of patients with cardiomyopathies considering
cardiac cine MRI data and the detection of myocardial
pathologies considering late gadoliniumMRI data. Via our visual
analytics tools experts could identify erroneous segmentations
as outliers in the PCP as illustrated in Figure 10. In both use
cases, the performance of the classifier could be improved. The
classification accuracy on the test set was improved for pathology
detection from 0.75 to 0.8. The accuracy for cardiomyopathies
was improved from 0.85 to 0.9. This was achieved by correcting
the training dataset and thus the input parameters for the
classifier. Consistent with Demirer et al. (21), we found that
providing annotation tools with familiar interactions to their

routine clinical tools assisted experts with manual corrections.
The expert corrections improved the input parameters of single
cases, which could then be classified correctly. The suggested
visual analytics interface can thus be used to extend approaches,
which support retraining models with user-corrected image
annotations such as the setup suggested by Dikici et al. (51).
Related approaches for the application of visual analytics tools
in the exploration of multimodal study data including image
information as suggested by Bannach et al. (52) and Angulo
et al. (53) strongly focus on the visualization of parameter
distributions and have not been applied in a data curation
context. However, our solution could also be used for cohort
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exploration and enhanced bymore context-specific visualizations
of the cardiac anatomy as suggested e.g., by Meuschke et al. (54).
Furthermore, the classification and visualization environment
could be used not only for the interpretation of the patient data,
but also for a comparison with characteristic cohorts to support
the assessment of the certainty and underlying features of the
disease classification.

The visualization of the certainty maps produced by the
DL-based segmentation, which were displayed as overlays
in the image viewers (see Figure 7), did not influence the
expert corrections. In future work, we could introduce more
sophisticated DL-based outlier detections via Bayesian inference
as proposed by Gal and Ghahramani (55). This method casts
dropout training in DL methods and produces a distribution
of outcomes. Unfortunately, this method increases in inference
time and can hardly be included in real-time applications. As an
additional layer for outlier detection, these certainty maps can
be aggregated and displayed in the PCP to give medical experts
insights into corrupt results produced by DL models.

The combination of the feature importance analysis and
the link to the underlying data model enabled the exploration
essential anatomical and functional disease properties in both use
cases. Figure 10C illustrates that the most significant parameters
for the classification of cardiomyopathies were mostly shape-
based parameters. Whereas, the classification of myocardial
infarctions was a combination of shape- and texture-based
features, as highlighted in Figure 9C. Furthermore, Figure 7
shows that the temporal dynamics of features can also be
important for the classification and the understanding of
disease types.

Our proposed local and specialized cardiovascular software
environment could be successfully applied within a clinical
software environment and was used collaboratively by three
experts. In order to support multi-centric collaborations, it
could be integrated into federated learning platforms such as
JIP via Docker. This leverages the capabilities of our proposed
solution to be applied to federated learning environments that
are compliant with GDPR suggestions on health records.

The organization of the training setup follows the suggestions
by the FDA (40). However, quality assured model development
requires a private validation set to detect model degeneration.
This could be added for future applications.

4.1. Limitations
The datasets used to test our solution are publicly available
and thereby readers can reproduce the described machine
learning setup. However, both datasets are relatively small,
and the available clinical information is limited. The labels
of the EMIDEC dataset are solely based on the inspection of
the image data, so that they mean infarction visible in LGE
MRI and no infarction visible in LGE MRI (49). The second
label does exclude myocardial pathologies. Therefore the clinical
parameters were not included for the interactive optimization of
the classifier as described in Section Classification of Normal and

Pathological Cases from Late-Gadolinium Enhanced MRI in the
Left Myocardium and only integrated for the dataset exploration.
Future work with larger datasets will help to further evaluate and
improve the presented solution.

5. CONCLUSIONS AND OUTLOOK

We have presented a conceptual design for a software
environment that supports the development and application of
machine learning methods for multi-modal disease classification
using MRI data. We tested the potential of an expert-in-the-loop
approach based on visual analysis tools for accelerating algorithm
training and for making the learned features understandable with
promising results. In future work, we will further quantify the
potential of our solution for improving the usage of multi-modal
imaging and proteomics data. In addition, we plan to add the
monitoring module for an FDA-compliant training setup to offer
quality-assured AI solutions. Further clinical studies will have
to assess whether an improved disease classification achieved
through our setup will have and impact patient outcomes
through improved treatment personalization.
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