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Background: Compared with bone marrowmesenchymal stem cells (BMSCs), decidual

mesenchymal stem cells (DMSCs) are easy to obtain and exhibit excellent angiogenic

effects, but their role in cell transplantation after myocardial infarction (MI) remains unclear.

Methods: BMSCs and DMSCs were harvested from healthy donors. The effects of both

cell types on angiogenesis were observed in vitro. Metabonomics analysis was performed

to compare different metabolites and screen critical metabolic pathways. A murine model

of acute myocardial infarction (AMI) was established, which was randomized into five

groups (control, BMSC, DMSC, DMSC + ODCshRNA and BMSC + ODC consisting of

50 animals, equally divided into each group). The therapeutic effect of DMSCs on MI in

rats was assessed based on neovascularization and cardiac remodeling.

Results: DMSCs exhibited a better angiogenic effect on human umbilical vein

endothelial cells (HUVECs) than BMSCs in vitro. In addition, ornithine metabolism,

which is associated with vascularization, was significantly increased in DMSCs. The

transplantation of DMSCs in the rat MI model significantly enhanced angiogenesis

of the infarct border area and improved cardiac remodeling and dysfunction

postinfarction compared with BMSCs. Furthermore, inhibition of ornithine metabolism

by silencing ornithine decarboxylase (ODC) in DMSCs partly abolished the benefits of

DMSC transplantation.

Conclusion: Compared with BMSCs, DMSCs exhibited better efficacy in improving

revascularization and heart remodeling post-MI via the activation of ODC-associated

ornithine metabolism.

Keywords: ischemic heart disease, decidual mesenchymal stem cells, bone marrow mesenchymal stem cells,

ornithine decarboxylase, revascularization, heart remodeling
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GRAPHICAL ABSTRACT | Silencing ODC in DMSCs inhibited spermine secretion, weakened endothelial cell proliferation and the expression of VEGF and bFGF,

resulting in decreased angiogenesis. Overexpression of ODC in BMSCs promoted spermine secretion, enhanced endothelial cell proliferation and the expression of

VEGF and bFGF, resulting in increased angiogenesis. Transplantation of DMSCs can better improve angiogenesis after myocardial infarction by activating

ornithine metabolism.
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INTRODUCTION

Despite the advances in reperfusion and drug therapy, acute
myocardial infarction (MI) remains one of the major causes of
cardiovascular death (1). It is well known that bone marrow
mesenchymal stem cells (BMSCs) could be utilized as a feasible
candidate for cell transplantation after MI in view of their
plasticity in vivo (2). However, BMSCs application did not
show a satisfactory therapeutic effect on tissue repairment
in clinical trials partly due to insufficient supply, limited
proliferation capacity and aging (3). Decidual mesenchymal stem
cells (DMSCs) from early pregnancy tissue have been found
to proliferate significantly to promote vascular regeneration in
severe preeclampsia, suggesting it may be a favorable potential
target to treat ischemic heart disease (4). Decidual tissue harbors
a large number of mesenchymal stem cells (MSCs), which
are easy to obtain, exist in decidual tissue. In addition, the
organizational source is so extensive that it is very likely to be an
excellent seed cell in the renewable medical field for the treatment
of ischemic heart disease.

Wang et al. reported that compared with BMSCs and
adipose-derived mesenchymal stem cells (ADMSCs), human
endometrium-derived mesenchymal stem cells (EnMSCs)
were conferred a superior ability of cardioprotection and
supports of enhanced microvessel density. The secreted
exosomes expresses high level of miR-21, suggesting that
miR-21 enhances cell survival through PTEN/Akt signaling
pathway (5). Metabolomics is an emerging approach to
comprehensively reveal the metabolic status of organisms
correlating knowledge regarding genotype with phenotype.
Metabolomics has been demonstrated to be an important tool
for the discovery of biomarkers and potential drug treatment
targets in cardiovascular disease (6). In addition to reflecting
the disease phenotype, metabolites are implicated in the
pathophysiological processes of numerous diseases. Thus,
metabolomics may be beneficial for understanding both normal
physiology and pathophysiology (7). Screening the differences
in metabolite profiles between DMSCs and BMSCs might
provide novel insights into the underlying mechanisms of
DMSC transplantation (8). Previous studies have reported that
active ornithine metabolism is related to tumor invasion and
angiogenesis (9).

In this study, we found that ornithine and spermine, which
were regulated by ODC, were the main mechanisms the
angiogenesis of HUVECs. We also confirmed that DMSCs could
better improve angiogenesis and cardiac remodeling post-MI
in vivo via ODC-associated ornithine metabolism compared
with BMSCs.

MATERIALS AND METHODS

Isolation and Culture of Human DMSCs
and BMSCs
Human decidual samples were collected from 20- to 30-year-
old healthy women undergoing early pregnancy abortion in the
clinic. Each sample was rinsed with saline, and then stored
in a sterile bottle of a fully medium with 0.1% Penicillin and

streptomycin until it was processed in the laboratory (<2 h
later). All samples were rinsed for three times with sterile
PBS, and then cut into 1–2 mm3 pieces, which were treated
by 0.2% IV-type collaborate (Yeasen, Shanghai, China) and
0.25% trypsin. Ethylenediamine tetracetate (Trypsin EDTA;
Gibco, Gaithersburg, MD, USA) covered the tissue, water bath
(37◦C/150 rpm) shaked it for 1 h subsequently. Cell digestion
was filtered by a 200µm nylon mesh (BD Falcon, San Jose, Ca,
USA), which was cultured in DMEM/F12 (Hyclone, Southlogan,
Utah, USA) medium containing 10% FBS (FBS; Sciencell,
Sandiego, CA, USA) to terminate the enzymatic reaction. After
being separated by centrifugation (1,000 rpm/5min), cells were
resuspended in 4ml DMEM/F12 medium containing 10% FBS,
and cultured in an incubator of 37◦C, 5% CO2. On the
second day, DMSCs were observed in the culture bottle (10).
Similarly, BMSCs were also obtained from female patients (20–
30 years old) who needed median thoracotomy in cardiac
surgery, stored into a bottle pre-filled with heparin later, quickly
transferred to the laboratory for treatment. An equal volume of
lymphocyte separation solution was mixed with bone marrow
by centrifugation at 2,500 × rpm for 20min. BMSCs, the
mononuclear cells layer, were obtained and washed twice.
DMSCs and BMSCs were seeded in DMEM/F12 (HyClone)
supplemented with 10% FBS (ScienCell) and cultured at 37◦C
in an atmosphere containing 5% CO2 (10). Third-generation
DMSCs/BMSCs were used for the following experiments.

All participants provided informed consent, and all
procedures in the study were conducted in accordance
with the ethical standards of the First/Second Affiliated
Hospital of Harbin Medical University and the principles of the
Helsinki Declaration.

Cell Morphological Observation and
Phenotypic Identification
The morphology of both MSCs was observed under a light
microscope (Leica, Germany). As for cell identification, 2 × 106

BMSC and DMSC cell suspensions were fully mixed with CD73-
PerCP, CD90-FITC, CD105-APC, CD34-FITC and CD45-PerCP
antibodies for 30min followed by detection via flow cytometry
(BD, USA).

Comparison of the Proliferation and
Cloning Ability of DMSCs and BMSCs
DMSCs and BMSCs at an initial density of 1 × 103 were
cultured for 12, 24, 48, and 72 h in 96-well plates. Cell
Counting Kit-8 (CCK-8; Dojindo, China) was utilized to
detect proliferation ability according to the manufacturer’s
instructions (11).

DMSCs and BMSCs with initial densities of 300, 600, and
900/well were cultivated in 6-well plates and cultured for
2 weeks. After being fixed with 4% paraformaldehyde, the
cells were covered with crystal violet staining solution for
10min. A colony containing ≥20 cells was considered as a
clonal colony.
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Metabonomic Analysis of DMSCs and
BMSCs
The supernatants of DMSCs and BMSCs were deproteinized with
100 µL acetonitrile in centrifuge tubes, vortexed for 2–3min,
placed on ice water for 20min, and then centrifuged at 12,000
rpm, 4◦C for 15min, which were transferred into another tube
and centrifuged again with thementioned conditions. At last, 200
µL supernatants were transferred into the sample bottle for LC-
MS analysis. A 10 µL aliquot of the sample was injected into the
ZORBAXSB-C18 column (AgilentTechnologies, INC) (12). Mass
spectrometry analysis was assessed by using an Agilent Agilent
6,530-QTOF/MS instrument (Agilent Technologies) in both ESI
+ and ESI– modes. Finally, metabolic pathway enrichment was
performed by using MetaboAnalyst.

Plasmid Construction and Transfection
Plasmid containing ODC shRNA or ODC sequences was
transfected to inhibit or up-regulate ODC inDMSCs and BMSCs,
respectively. Cells transfected with empty plasmids were regarded
as the control group. Plasmid transfection was conducted via
Lipofectamine (Invitrogen, USA) following the manufacturer’s
instructions (13). The ratio of transfection reagents to plasmid
was 2 µl:1 µg. Western blot analysis was used to assess
ODC protein levels as is previously reported (14). After 72 h
culture, Transfected cells with GFP expression were visualized
with fluorescence microscope (Leica, Germany).which was used
to identify transfected cells and non-transfected cells. Then,
transfection efficiency was assayed by fluorescence-activated cell
sorting (FACS; BD, USA).

ELISA
Using a transwell chamber coculture experiment system, the
coculture experiment was performed in the chambers of 24-well
plates (Corning, USA). DMSCs (10 × 104) and BMSCs were
inoculated in the upper chamber, and HUVECs (1 × 104) were
cocultured in the lower chamber for 24 h. HUVECs without
hMSCs served as a negative control. VEGF and bFGF levels
in the medium of the Transwell chamber were detected via
ELISA kits (Cusabio, China) according to the manufacturer’s
instructions (15).

EdU Staining
Human umbilical vein endothelial cells (HUVECs) were
cocultivated with DMSCs or BMSCs for 24 h using a Transwell
chamber coculture experiment system. The effects of DMSCs
and BMSCs on HUVEC proliferation were examined by
using a commercial EdU Kit (UE, China) according to the
manufacturer’s protocol. Images were obtained by using a
fluorescence microscope (Leika, Germany) and analyzed with
ImageJ (11).

Comparison of the Angiogenesis Abilities
of DMSCs and BMSCs in vitro
Matrigel (100 µl/well; Corning, Standard, USA) was added to
a 24-well plate (8µm pore size; Corning, USA) and incubated
for 30min at 37◦C. HUVECs (6 × 104/well) were plated in
Matrigel and inoculated in differentmedia harvested fromDMSC

and BMSC culture media for 2 h. Images were obtained by light
microscopy and analyzed by ImageJ.

Rat Model of MI and MSC Implantation
A total of 50 adult male SD rats (200–220 g) were purchased from
the animal experiment center of the Second Affiliated Hospital
of Harbin Medical University and were divided into five groups:
control, BMSCs, DMSCs,DMSCs + ODCshRNA and BMSCs +
ODC. All procedures for animal experiments were performed
in accordance with the guidelines reported in “Experimental
Animal Care and Guide.” As is described in our recent study,
rats were intraperitoneally injected with cyclosporin A (5 mg/kg;
Novartis, Basel, Switzerland) per day from 3 days before surgery
to the end of the experiment. Briefly, the rat was placed in
a supine position to carry out the tracheal intubation (Artery
puncture needle, 16G), the small animal inhalation anesthesia
machine (Harvard Apparatus, Holliston, MA, USA) was used
for anesthesia and maintaining breath, and inhaled gas was
isoflurane. Through the left lateral thoracic incision, the left
anterior descending coronary artery was ligated 1.5–2mm below
the left atrial appendage with a 5-0 Prolene needle. Myocardial
infarction was confirmed by the whitening of the left ventricular
anterior wall and apex. Ten min after ligation of the left anterior
descending artery, 2.0 × 106 cells from different groups were
injected into the center and boundary of the infarct area.

Cardiac Function Assessment
Cardiac function was assessed based on the left ventricular
ejection fraction (LVEF) and left ventricular shortening fraction
(LVFS) via echocardiography. M-mode ultrasound images were
collected in the section of the left ventricular papillary muscle
via an S12–4 probe (EPIQ 5; Philips). All the data were collected
based on at least four consecutive cardiac cycles.

Infarct Size Measurement
The infarct size of MI rats was measured as is previously reported
(10). The ratio of the scar length and the circumference were
measured by Masson’s trichrome staining.

Immunofluorescence Staining
One or 4 weeks after the operation, an immunofluorescence
staining assay was performed to evaluate angiogenesis by
detecting α-smooth muscle actin (α-SMA) (AF1032, Affinity)
and vWF (ab6994, Abcam) expression. Moreover, transplanted
cell survival was also detected by anti-cardiac troponin T
(ab45932, Abcam) and anti-mitochondria (ab92824, Abcam)
antibodies, according to the previous reports (15). Images
were collected under an inverted fluorescence microscope
(Leica, Germany).

Statistical Analysis
Data were analyzed by using GraphPad Prism 5.0 and are
presented as the mean ± SD (n = 5). The two groups were
analyzed by t-test, and the multigroup comparison was analyzed
with one-way ANOVA followed by Tukey’s multiple comparisons
post-hoc test. P < 0.05 was considered statistically significant.
Each test was repeated at least thrice.
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RESULTS

DMSCs Promote HUVEC Proliferation and
Vascularization in vitro
Both MSCs expressed characteristic surface markers CD73,
CD90 and CD105 but not CD34 and CD45 (Figure 1A).
Morphologically, DMSCs exhibited fibroblast-like wall growth
and a large shuttle splicing hammer shape, which is similar
to the morphology of BMSCs (Figure 1B). According to the
results of CCK-8 and colony experiments, the proliferation
rate of DMSCs was approximately 2 times higher than that
of BMSCs (P72h < 0.001 for CCK-8, P900 < 0.001 for colony
experiments; Figures 1C–E). The above results suggested that
DMSCs exhibited better proliferation capability than BMSCs.

In addition, compared with BMSCs, DMSCs significantly
increased HUVEC (Control) proliferation in vitro (PControl−BMSC

< 0.001, PControl−DMSC < 0.001; Figures 1F,G). DMSCs
effectively promoted the vascularization performance of
HUVECs compared with BMSCs (PBMSC−DMSC < 0.001;
Figures 1H,I). Moreover, DMSCs stimulated HUVECs to
produce more VEGF and bFGF, as is shown by ELISA (PVEGF
< 0.001, PbFGF < 0.001; Figures 1J,K). These results indicated
that DMSCs exhibit a more favorable capacity to boost the
proliferation and angiogenesis of HUVECs than that of BMSCs.

Ornithine and Spermine Are the Major
Metabolite That Differs Between DMSCs
and BMSCs
Unsupervised clustering showed a significant difference in
metabolic features between DMSCs and BMSCs (Figures 2A,B).
In addition, partial least squares-discriminant analysis (PLS-
DA) showed significant differences in metabolic profiles between
BMSCs and DMSCs. The displacement test showed that
the Q2 cum values were lower than the original values in
almost all cases (Figures 2C,D), indicating favorable stability
and effectiveness of the discriminated model. According to
the KEGG enrichment results for all differential metabolites,
arginine and proline metabolism were the most important
metabolic pathways (Figure 2E). Compared with the supernatant
of BMSCs, 4-hydroxyproline and niacinamide were decreased in
DMSC supernatant, whereas only ornithine and spermine were
increased significantly in DMSC supernatant (Figures 2F–I). The
above results suggest that the increased ornithine and spermine
levels in DMSC supernatant might represent the major factor
of angiogenesis promoted by DMSCs more effectively compared
with BMSCs.

ODC Inhibition in DMSCs Weakens Their
Ability to Promote Angiogenesis
The transfection of GFP plasmid could be observed under
fluorescence inverted microscope, FC data showed that
transfection efficiency was 58% in DMSCs and 31.5% in BMSCs
(Figure 3A). After transfection of the ODC shRNA plasmid
in DMSCs or ODC plasmid in BMSCs for 72 h, the protein
levels of ODC were significantly down- and up-regulated in
DMSCs and BMSCs, respectively (PODCshRNA < 0.01, P ODC <

0.001; Figures 3B,C). As is expected, ODC inhibition in DMSCs
obviously limited the proliferation of HUVEC, while ODC up-
regulation in BMSCs promoted the proliferation of endothelial
cells under co-cultivation conditions (PODCshRNA−DMSC < 0.01,
PODC−BMSC < 0.001; Figures 3D,E). Further, whether ODC is
involved in the regulation of endothelial function or not was
assessed. Compared with the DMSC group, ODC inhibition
for DMSCs resulted in the decrease capability of endothelial
tubule formation (PODCshRNA−DMSC < 0.001; Figures 3F,G), and
VEGF and bFGF secretion in HUVEC(PVEGF < 0.001, PbFGF
< 0.001; Figures 3H,I). Conversely, ODC overexpression in
BMSCs significantly promoted endothelial tubule formation
(PBMSC−ODC < 0.001; Figures 3F,G), and the secretion of VEGF
and bFGF (PVEGF < 0.001, PbFGF < 0.001; Figures 3H,I). These
results suggested that ODC is a critical target that promotes
stem cell-mediated improvement of HUVECs proliferation and
endothelial function in vitro.

In view of the survival rate after cell transplantation, anti-
mitochondrial staining results suggested that DMSCs exhibited
better survival rate than that of BMSCs (PBMSC−DMSC <

0.001), whereas ODC inhibition significantly reduced the
survival rate of DMSCs (PODCshRNA−DMSC < 0.001), and
ODC overexpression improved the BMSCs survival post
transplantation in rats heart with AMI (PBMSC−ODC < 0.001)
(Figures 4A,B). Microvessels and arterioles in the infarct area
were visualized by immunofluorescence staining for vWF and a-
SMA (Figures 4C,E). The number of microvessels and arterioles
in the DMSC group was significantly more than that of BMSCs
groups (PBMSC−DMSC < 0.001; Figures 4D,F). ODC inhibition
in DMSCs reduced the density of neovascularization compared
with DMSC treatment (PODCshRNA−DMSC < 0.001), while ODC
up-regulation in BMSCs significantly improved the angiogenesis
capability compared with wile type BMSCs transplantation
(PBMSC−ODC < 0.001). The results suggested that DMSCs
exhibited a greater survival rate and better angiogenesis in the
infarcted area of MI partly by activating ODC pathway.

DMSCs Transplantation Improves Cardiac
Remodeling and Dysfunction via the
ODC-Dependent Pathway
We further explored whether ODC mediated the effect
of DMSCs/BMSCs transplantation on heart function after
MI. Masson staining suggested that DMSC transplantation
significantly inhibited myocardial fibrosis post-MI compared
with BMSCs transplantation (Figures 5A,B). However, ODC
inhibition masked the benefits of DMSCs transplantation, while
ODC overexpression significantly improved the therapeutic
effect of BMSCs to reduce the infarcted area (PODCshRNA−DMSC

< 0.001, PBMSC−ODC < 0.001; Figures 5A,B). Compared with
the DMSC groups, DMSCs with ODC inhibition had lower
LVEF and LVFS (PODCshRNA−DMSC < 0.001, PBMSC−ODC <

0.01; Figures 5D,E), as well as thinner left ventricular wall,
while ODC overexpression in BMSCs significantly improved
the cardiac function (Figures 5C,E). The results showed that
DMSCs could delay ventricular remodeling post-MI through
ODC-mediated ornithine metabolism. The long-term LVEF and
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FIGURE 1 | Identification of DMSCs and BMSCs and comparison of their ability to promote proliferation and vascularization in vitro. (A) Flow cytometric analysis of

cell surface markers on BMSCs and DMSCs. (B) Morphological observation of BMSCs and DMSCs. (C) Cell viability of BMSCs and DMSCs. (D,E) Morphological and

quantitative analysis of representative colonies derived from BMSCs and DMSCs. (F) The proliferation ability of HUVECs in response to different treatments in vitro as

assessed by EdU staining. (G) Quantitative analysis of EdU-positive cells. (H) Representative images of tube formation of HUVECs with different treatments in vitro. (I)

Quantitative analysis of tube formation. (J,K) Detection of VEGF and bFGF secretion levels from HUVECs under different treatment conditions in vitro. *P < 0.05, **P

< 0.01, ***P < 0.001. #P < 0.05, ##P < 0.01, ###P < 0.001.
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FIGURE 2 | Metabolic profiles of BMSCs and DMSCs. (A,B) Principal component analysis score plots for discriminating BMSCs and DMSCs in ESI + and ESI-

modes. (C,D) PLS-DA plots and validation plots for discriminating BMSCs and DMSCs in ESI + and ESI- modes. (E) Column chart and bubble chart of KEGG

enrichment analysis of all differential metabolites. (F–I) Metabolite profiles of different biomarkers between epithelial BMSCs and DMSCs. Each P-value was <0.01.

LVFS after DMSC and BMSC transplantation were significantly
increased compared with the control group. However, LVEF and
LVFS in the BMSC + ODC group were significantly increased

compared with the BMSC groups (Figures 5C–E). These results
suggest that DMSC transplantation can significantly improve
cardiac function post-MI partly via ODC-mediated ornithine
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FIGURE 3 | ODC inhibition partly abolished the effects of DMSCs on angiogenesis in vitro. (A) Transfection of plasmid containing GFP gene in stem cells GFP

Fluorescence in DMSCs (upper row) and in BMSCs (lower row), transfection efficiency of hMSCs was detected by fluorescence-activated cell sorting. (B,C) ODC

protein expression in DMSCs after ODC inhibition and BMSCs after ODC overexpression. (D,E) Representative images of DAPI/EdU staining in DMSCs or BMSCs

treated with ODC shRNA or overexpression plasma for 72 h, respectively. (F) Representative images of tube formation in HUVECs under different treatment conditions

in vitro. (G) Quantitative analysis of tube formation. (H,I) Detection of VEGF and bFGF secretion levels from HUVECs after different treatments in vitro. *P < 0.05, **P <

0.01, ***P < 0.001, Scale bar, 100µm. #P < 0.05, ##P < 0.01, ###P < 0.001.
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FIGURE 4 | ODC inhibition partly abolished the effects of DMSCs on angiogenesis in vivo. (A,B) Anti-human mitochondrial staining showed the survival of

transplanted cells for 1 and 4 weeks in vivo. (C–F) Blood vessel density determined by a-SMA and VWF staining for 4 weeks in vivo. ***P < 0.001, #P < 0.05, ##P

< 0.01, ###P < 0.001.
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FIGURE 5 | DMSC transplantation improves cardiac remodeling and dysfunction partly via the ornithine decarboxylase-dependent pathway. (A,B) Masson’s trichrome

staining to assess the infarct size 4 weeks after cell transplantation (blue = collagen; red = myocardium). Serial sections were cut at 500-µm intervals from the site of

the ligature toward the apex. (C) Representative echocardiography images before and after MI (high lines: LVEDd; low lines: LVESd). (D,E) LVEF and LVFS. (ANOVA;

*P < 0.01, **P < 0.01, ***P < 0.001; n = 5). #P < 0.05, ##P < 0.01, ###P < 0.001.
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metabolism. There was no significant between-group difference
in LVESd and LVEDd (Supplementary Figure 1).

DISCUSSION

MI still causes more than 7 million deaths worldwide
every year (16). The incidence rate of heart failure after
MI was more than 50% in 5 years. Previous studies have
shown that BMSCs (17), embryonic stem cells (18), iPSCs
(19), CD34 + angiogenic stem cells (10) and other MSCs
promote blood flow reperfusion of infarcted myocardial
tissue, induce angiogenesis in infarcted myocardium,
and significantly improve cardiac function. Although
MSC transplantation is considered as a promising
therapeutic strategy for cardiac remodeling in ischemic
heart disease, the effect is not satisfactory in clinical
translational research.

Once pregnant, endometrial stroma rapidly differentiates
into decidua, where the vascular density increases rapidly
(20, 21). Therefore, we hypothesize that MSCs from the
decidua in early pregnancy may be involved in angiogenesis
and vascular endothelial repairment. In addition, our
previous studies initially confirmed that decidual CD34-
positive stem cells significantly promote angiogenesis and
improve cardiac remodeling in rats post-MI. However, the
proportion of unsorted CD34-positive decidual cells was
<10%, which largely limited its clinical translation. In this
study, we confirmed that CD34-negative stem cells, the main
type of DMSCs, exhibit a stronger potential to promote
angiogenesis and improve cardiac function in the context
of MI.

Uncovering the metabolic characteristics of DMSCs and
BMSCs would be helpful to understand the biological differences
between both stem cells. Compared with BMSCs, arginine
and proline metabolism are the most important metabolic
pathways, and ornithine and spermine are crucial components
of these pathways. Previous studies have confirmed that
the arginine metabolism pathway is involved in angiogenesis
partly by stimulating the secretion of growth hormone and
insulin. Ornithine, as a basic amino acid, plays various roles
in gene expression, protein synthesis, and angiogenesis of
the fetus during pregnancy (22). Other reports suggest that
ornithine and its corresponding metabolic pathway might play
a significant role in improving placental vascular growth,
wound healing and cancer treatment (23–25). Herein, our
study demonstrated that ornithine metabolism in DMSCs might
be the major cause of vascular endothelial proliferation and
angiogenesis post-MI.

ODC catalyzes ornithine decarboxylation, which is the
first rate-limiting enzyme in polyamine biosynthesis (26, 27).
Reductions in ODC expression and biological activity could
directly affect the production of polyamines and regulate cell
proliferation and apoptosis. A previous study showed that
ODC activity was a necessary condition for angiogenesis
and migration of primary HUVECs (28). In this study, we
further used ODC shRNA to transfect DMSCs to inhibit

polyamine production, which could significantly reduce
the effect of ornithine on the pro-angiogenesis of HUVECs
through ODCs. We further carried out reverse verification
in BMSCs and also supported this conclusion. These
findings also suggest that the main mechanism by which
DMSCs promote angiogenesis partly involve the regulation
of ODC metabolism. Prior studies have shown that the
protective effect of the ODC/polyamine system on cardiac
ischemia/reperfusion injury in diabetes mellitus can be achieved
by regulating the ODC/polyamine system (29–31). Our study
emphasized that ODC-mediated ornithine metabolism is one
of the manifest regulation pathways that distinguish DMSCs
and BMSCs.

The prevalence of ischemic cardiomyopathy in
premenopausal women was significantly lower than that in
men, which may partly explain the advantages of DMSCs
compared to BMSCs. Munira et al. showed that uterine-derived
cells can home to the damaged myocardial tissue, promote
myocardial repair, and improve cardiac function, indicating
that uterine-derived cells might be used for the treatment of
ischemic cardiomyopathy (32). Consistently, Kanwang et al.
also found that EnMSCs exhibited a better cardioprotective
effect than BMSCs or AdMSCs and the endometrium may
be the preferred source for cardiovascular MSC therapy (5).
In this study, the proliferative and clonal abilities of DMSCs
were also stronger than those of BMSCs. The proliferative
activity and vascular regeneration ability in the conditioned
medium of the DMSC and HUVEC co-culture group were
stronger than that of the BMSC and HUVEC co-culture
group. Wang et al. compared the gene expression profiles,
solvency, and growth factor levels of endometrial regenerative
cells and bone marrow stromal cells and found obvious
differences (33). Reza et al. have studied that marrow MSCs are
transplanted into the myocardial infarction model of rabbits,
the transplanted cells produce some angiogenesis factors and
affect the internal environment, which promotes angiogenesis,
reduces myocardial remodeling and improves cardiac function.
Due to the uncertain results of the current clinical trials
concerning BMSCs autologous transplantation in patients with
cardiovascular diseases, our study further emphasizes the human
DMSCs heart transplantation might be superior to BMSCs
(34). We compared the differences in metabolites between
DMSCs and BMSCs for the first time and found that DMSCs
secreted more ornithine and spermine. DMSC transplantation
improved the cardiac function and infarcted area of rats with
MI. LVEF and LVFS are the most commonly used parameters
to assess left ventricular systolic function (35). The insignificant
difference across stem cell transplantation and control groups
may be attributed to the heterogeneity in the degree of left
ventricular dilatation post-MI. This individual difference could
be attenuated by the ratio form, such as LVEF and LVFS
(36). Histological analysis showed that DMSCs promoted the
formation of microvessels and arterioles in the infarcted area
through ODC metabolism.

Our study emphasizes that DMSCs is a potential choice
for stem cell transplantation in the treatment of cardiac
remodeling after myocardial infarction, and proves for the
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first time that ODC metabolism is the key target for
promoting angiogenesis after myocardial infarction. Meanwhile,
promoting ornithine metabolism of stem cells via targeted
intervention may be a promising strategy to improve the
survival and efficiency of transplanted stem cells, However,
whether exists other key metabolic targets rather than ODC
metabolism or not needs further research, which is also
the limitation of this experiment. This study confirmed that
ODC was one of the factors that the angiogenesis ability of
DMSCs is better than that of BMSCs, while the mechanism
is still shallow. We will further study the upstream and
downstream regulation mechanism of ornithine decarboxylase
spermine pathway.

These results suggest that DMSC transplantation could
improve cardiac function and reduce left ventricular infarct
size in the short-term and long-term recovery of MI. The
improvement effect of DMSC transplantation was stronger than
that of BMSC transplantation in MI, which could be attributed
to the metabolites secreted by DMSCs, such as the ornithine-
mediated ODC/polyamine system, which plays an important role
in the treatment effects of MSCs.

CONCLUSION

DMSCs transplantation exhibited a better therapeutic effect than
BMSCs transplantation, which may be attributed to the more
active ornithine-mediated ODC/polyamine system in DMSCs.
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