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Pulmonary hypertension (PH) refers to a clinical and pathophysiological syndrome in
which pulmonary vascular resistance and pulmonary arterial pressure are increased
due to structural or functional changes in pulmonary vasculature caused by a variety
of etiologies and different pathogenic mechanisms. It is followed by the development
of right heart failure and even death. In recent years, most studies have found that
PH and cancer shared a complex common pathological metabolic disturbance, such
as the shift from oxidative phosphorylation to glycolysis. During the shifting process,
there is an upregulation of glutamine decomposition driven by glutaminase. However,
the relationship between PH and glutamine hydrolysis, especially by glutaminase is yet
unclear. This review aims to explore the special linking among glutamine hydrolysis,
glutaminase and PH, so as to provide theoretical basis for clinical precision treatment
in PH.

Keywords: pulmonary hypertension, glutamine hydrolysis, glutaminase, tricarboxylic acid cycle, targeted therapy

INTRODUCTION

Pulmonary hypertension (PH) is a progressive and vicious vascular disease occurring via multiple
mechanisms, which can lead to right heart failure as well as multiorgan dysfunction and is
associated with a poor prognosis (1, 2). PH is often highly heterogeneous and has complex clinical
manifestations. Epidemiological data on PH from several international registries show that the
incidence of PH in the adult population is about 2.4 per million person-years and the prevalence is
about 15 per million (3, 4). At the cellular and molecular level, PH is a complex panvasculopathy
involving dysregulation of multiple vascular cell types, such as excessive proliferation, apoptosis
resistance, accompanied by inflammation and fibrosis, which in turn results in the increase of
pulmonary arterial pressure and the remodeling of right ventricular (RV) (5).

Pulmonary hypertension is classified by the World Health Organization (WHO) into five
major categories based on the histopathology, hemodynamic characteristics, and possible etiology
(6), such as pulmonary arterial hypertension (PAH), PH due to left heart disease, PH due to
lung diseases and/or hypoxia, PH due to pulmonary artery obstructions, and PH with unclear
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and/or multifactorial mechanisms. Emerging evidence points
out that no matter the type of PH, it ultimately shows a
complex phenotype that can be observed in cancer characterized
by excessive proliferation, resistance to apoptosis, epigenetic
signature alteration and inflammation (7–10). As a consequence,
the pathological changes akin to cancer cause the pulmonary
vascular remodeling. Previous studies show that this phenotype
switch is mainly related to the metabolic reprogramming per
se (11, 12). Lines of evidence demonstrated that metabolic
derangement might alter pulmonary vascular functions, and
exacerbate symptoms, or reduce the survival rate of patients with
PH (13). To date, the metabolic abnormalities manifested by the
transition from oxidative phosphorylation to glycolysis, namely
the Warburg effect, have become the limelight of metabolic
studies in PH (14, 15).

However, this metabolic shift is not enough to meet
the energy demand of the cells for excessive proliferation.
The tricarboxylic acid cycle (TCA cycle) is very important
for the synthesis of biological macromolecules. In TCA
cycle, the corresponding intermediates of the cycle need to
be continuously supplemented through the complementary
pathway. In cancer, the hydrolysis of glutamine by glutaminase
to provide intermediate products for TCA cycle is one of the
most well-known complementary pathways (16). In recent years,
the potential role of glutamine metabolism in the formation
of PH has been increasingly discussed. Nevertheless, the exact
contribution of glutamine metabolism, especially glutaminase, to
PH is not fully understood. Herein, the review aims to summarize
the glutamine metabolism, the role of glutamine and glutaminase
on the progression of PH, so as to open a new avenue for PH
treatment (7, 17).

PROPERTIES OF GLUTAMINE AND
GLUTAMINASE

Glutamine is the most abundant non-essential amino acid
in the human body and synthesized from L-glutamic acid
and ammonia through the action of the cytoplasmic enzyme
glutamine synthetase (GS). Skeletal muscle is the main producer
of plasma glutamine pool (18). Glutamine can be used as a raw
material for biosynthesis when cells grow and divide. Carbon
from glutamine is used in the synthesis of amino acids and
fatty acids, and nitrogen from glutamine acts directly on the
biosynthesis of purines and pyrimidines (19, 20).

Glutamine metabolism is a process in which cells convert
glutamine into TCA cycle metabolites under the action of
multiple enzymes. The first step in this process is the breakdown
of glutamine into glutamate and ammonia by the action of
glutaminase. There are two isozymes of glutaminase, one is
kidney-type glutaminase (GLS1) located on chromosome 2
and the other is liver-type glutaminase (GLS2) located on
chromosome 12. These two isozymes can produce multiple
mutants by specific splicing (21). The role of these two enzymes
has been well studied in oncology (22, 23). The activity of GLS
is very high in small intestine, kidney, white blood cell and
vascular endothelial cells (19). In addition, GLS1 is the main

isoform expressed in cardiovascular tissues (17, 24). GLS1 has
three isoforms: GLS (KGA, which is corresponding to longer
transcript isoform), GLS C (GAC, which is corresponding to
shorter transcript isoform) and GAM. GAM has no catalytic
activity, while KGA and GAC differ only in C-terminal sequence.
It was found that GAC has greater catalytic activity and is
always upregulated than KGA in tumor cells (23). LGA (which
is corresponding to shorter transcript isoform) and GAB (which
is corresponding to longer transcript isoform). In most tumors,
GLS2 serves as a tumor suppressor and GLS1 as an oncogene (25).
The reason may be that GLS2 can bind to small GTPase Rac1 and
inhibit its interaction with the Rac1 activator guanine nucleotide
exchange factor, which in turn inhibits Rac1 and thus favoring
the suppression of tumor metastasis (26). While GLS1 could
interact with multiple regulatory factors such as MYC proto-
oncogene (MYC), microRNAs and nuclear transcription factor-
KB to promote tumor progression (21, 25). However, in some
tumors, such as MYCN-amplified neuroblastoma tumor, GLS2 is
highly expressed and promotes the occurrence and development
of tumors (27).

To play a role, glutamine has to be transported by specific
carriers on the cell membrane before the entry into the cell.
Alanine-serine-cysteine transporter 2 (ASCT2), also known as
solute carrier family 1, member 5 (SLC1A5) is one of the
most important transporters in this process. Human ASCT2 is
a Na+ dependent glutamine carrier located on the surface of
cell membrane and lysosome membrane (28, 29). It is widely
distributed in normal lung, skeletal muscle, large intestine,
kidney, testis and brain (30).

GLUTAMINE METABOLISM IN
PULMONARY HYPERTENSION

The role of glutamine metabolism in tumor cells proliferation
has been widely demonstrated. In malignant proliferating
cells dominated by glycolysis, the upregulation of glutamine
metabolism promotes energy metabolism via the modulation
of TCA cycle and provides raw materials for lipid and amino
acid delivery as well as biosynthesis of purines and pyrimidines,
which ultimately promotes tumor growth by facilitating cell
proliferation and inhibiting cell apoptosis (31, 32).

The upregulation of glutamine metabolism has been
extensively studied in many types of cancer and it’s very critical
for the pathogenesis of cancers, which renders it a well-known
target for cancer therapy. The need for glutamine is particularly
urgent in highly proliferating cells such as cancer cells and
diseased blood vessel cells (5, 33). Growing evidence shows that
GLS1 and GLS2 are related to tumor progression and growth rate,
and tumor proliferation can be delayed by gene manipulation
or inhibition/activation of these enzymes (34, 35). In concert
with cancer metabolic switch for proliferating cells, the role of
glutamine metabolism in the development of PH, especially
glutaminase as a key enzyme in the initiation of glutamine
hydrolysis pathway, has drawn great attention worldwide in
recent years (17, 24). In this section, glutamine metabolism
dysfunction, the mechanisms of glutamine metabolism mediated
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PH and key genes in regulation of glutamine metabolism in PH
will be mainly discussed.

Dysfunction of Glutamine Metabolism in
Pulmonary Hypertension
Until now, metabolic reprogramming and mitochondrial
dysfunction have been considered as the key events, leading
to the excessive proliferation and anti-apoptosis of pulmonary
vascular cells in the progress of PH (36, 37). Lines of evidence
shows that amino acid metabolism, especially glutamine
metabolism, plays an important role in tumorigenesis. For
example, there exists a connection among the dysregulation
of glutathione levels, tumor progression and cancer drug
resistance (38, 39). Given the similarities between PH and
cancer, studies were carried out to depict the relationship of
glutamine metabolism and PH. Bertero et al. found that GLS
expression was upregulated in lung tissues of human PAH
(17). Similarly, Egnatchik et al. (33) demonstrated a systemic
and pulmonary-specific alterations in glutamine metabolism,
with the diseased pulmonary vasculature. In particular, bone
morphogenetic protein receptor type 2 (BMPR2) mutation
carriers had significantly more glutamine uptake than the control
group. In addition, BMPR2 mutant pulmonary microvascular
endothelial cells took up glutamine at twice the rate of WT cells,
engendering a link between BMPR2 signaling and glutamine
uptake. This team also identified that loss of sirtuin 3 (SIRT3)
is a determinant for increased glutamine metabolism. On the
contrary, preserving the function of SIRT3 is able to prevent
the progress of PH in BMPR2 mutant mice via modulation of
increased glutamine-driven metabolic reprogramming (33).

It is well known that structural and functional alterations of
pulmonary arterial smooth muscle cells (PASMC) and pulmonary
artery endothelial cells (PAEC) lead to remodeling of the
pulmonary artery wall and increase vascular resistance. To
address the glutamine alteration in those cells in PH, Bertero
et al. (17) exposed PAEC and PASMC to a hard matrix and found
increased uptake and breakdown of glutamine in both cell types,
which may be related to activation of the YAP/TAZ-GLS1 axis
and thus favoring a PH phenotype. As right ventricular failure
is the main cause of death in PAH patients (40), how glutamine
metabolism affect right ventricle also drew much attention in the
setting of PH. It has been reported that the metabolic intensity
of 14C-glutamine in the right ventricle of monocrotaline induced
PAH rats was six-fold of that in the control rats (41). Accordingly,
the expressions of glutamine transporters SLC1A5 and SLC7A5
were also upregulated in the right ventricle of monocrotaline
induced PAH rats, which may be caused by the activation of
the cMyc-Max pathway as a consequence of right ventricular
ischemia. All these findings pinpoint a dysfunctional glutamine
metabolism in PH.

The Roles of Glutamine Metabolism
Mediated Pulmonary Hypertension
Glutamine metabolism is involved in the development of PH
(Figure 1). Thus, exploring the role of glutamine metabolism in

PH could lead to the discovery of novel therapeutic options in the
management of pulmonary hypertension.

Promotion of Homeostasis of Redox
The synthesis of reactive oxygen species (ROS) and antioxidant
glutathione (GSH) is essential in maintaining the redox balance
in our body (42). Normally, physiological levels of ROS
can maintain the homeostasis of redox, while excessive ROS
would destroy the macromolecules within the body and lead
to imbalance of redox. The transfer of electrons to oxygen
via the mitochondrial electron transport chain to produce
superoxide is one of the production pathways of ROS. During
this process, glutamine metabolism plays an important role
in maintaining intracellular ROS homeostasis. One of the
most common pathways is that glutamine is metabolized to
produce glutathione, which further affects ROS levels (19, 43).
Studies have shown that the loss of GSH disrupts the redox
homeostasis of cells, leading to the accumulation of ROS,
which ultimately leads to cell damage and even death. At
the same time, glutamine can also affect ROS homeostasis by
producing NADPH through glutamate dehydrogenase (GLUD)
(44). Besides, aspartic acid or malic acid produced by the TCA
cycle is transported to the cytoplasm and converted by malate
to pyruvate, during which NADPH is produced. The production
of NADPH then provide the reducing equivalents for GSH
reductase to regenerate GSH so as to promote redox homeostasis
(45). NADPH-dependent transcriptional repressor C-terminal-
binding protein 1 (CtBP1) was increased in fibroblasts from the
pulmonary arteries of chronically hypoxic calves or idiopathic
pulmonary arterial hypertension (IPAH) patients, which shaped
the metabolic reprogramming of PH-fibroblasts toward glycolysis
(46). All the findings implicate that dysfunctional glutamine
metabolism might be responsible for the progression of PH via
the manipulation of redox balance.

Promotion of Cell Proliferation
The phosphoinositide 3-kinase (PI3K)/AKT/mammalian target
of rapamycin (mTOR) [PIK3/AKT/mTOR] pathway is one of
the keys signaling pathways involved in cell proliferation (34),
and activated by various growth factors and mitotic cytokines
(34). The mTOR is a serine/threonine kinase and consisted of
two different functional complexes, mTOR complex 1 (mTORC1)
and mTOR complex 2 (mTORC2) (47). The mTORC1 is a major
growth regulator that promotes cell proliferation in response
to growth factors, extracellular nutrients and amino acids. The
mTORC2 can promote cell survival by activating AKT, regulate
cytoskeletal dynamics by activating protein kinase C, and control
ion transport and cell growth by serum/glucocorticoid-induced
kinase 1 phosphorylation (48). Tang et al. (49) found that two
mTOR complexes play different roles in the development of PH.
Inhibition of mTORC1 attenuated PH development. However,
inhibition of mTORC2 results in a spontaneous increase in
PH. In particular, amino acids, especially glutamine, play a
crucial role in mTORC1 activation. Jenna et al. (50) pointed
out that glutamine stimulates mTORC1 through a non-Rag
GTPase-dependent mechanism. In RagA and RagB knockout
cells, glutamine is still able to promote the transfer of mTORC to
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FIGURE 1 | Overview of glutamine metabolism in pulmonary arterial hypertension. Under pathological stress or upon activation of oncogenes, glutamine (Gln) is
transported from extracellular to intracellular space by alanine-serine-cysteine transporter 2 (ASCT2) [also known as solute carrier family 1, member 5 (SLC1A5)]. Gln
is then hydrolyzed to glutamate (GLU) and ammonia (NH3) driven by increased GLS expression in mitochondria. GLU is transformed into α-ketoglutaric acid (α-KG),
which participates in the tricarboxylic acid (TCA) cycle for energy supply. During the process, the abnormal glutamine metabolism would ultimately lead to the
pathological changes of pulmonary arterial hypertension via modulation of redox homeostasis, cell proliferation, autophagy and synthesis of biological
macromolecules. Myc, MYC proto-oncogene; KRAS, kirsten rat sarcoma viral oncogene; p53, p53 gene; GLUD, glutamate dehydrogenase; ISO, isocitrate; Cit,
citrate; OAA, oxaloacetate; Mal, malate; Fum, fumarase; Suc, succinic acid; Asn, asparagine; Asp, aspartate; ASL, argininosuccinate lyase; NO, nitric oxide; Pyr,
pyruvate; NADPH, nicotinamide adenine dinucleotide phosphate; NADP, nicotinamide adenine dinucleotide phosphate.

lysosome under the action of V-ATPase. Studies have also shown
that PI3K/Akt1/mTOR signal pathway is involved in regulating
the proliferation of pulmonary artery smooth muscle cells
(PASMCs) in PH (51). mTOR-Notch3 signaling participated in
chronic neonatal PH rat model after hypoxia exposure. Inhibition
of mTOR or Notch3 is documented to prevent pulmonary artery
remodeling after hypoxia challenge (52). In addition, glutathione
metabolism is also dramatically altered in human PASMCs under

the stimuli of the potent mitogen platelet derived growth factor-
BB, a process regarded as a trigger for the media hypertrophy in
pulmonary vasculature (9).

Regulation of Autophagy
Autophagy is an important process of intracellular turnover
that is evolutionarily conserved in eukaryotes. In this process,
some damaged proteins or organelles are wrapped by autophagic
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vesicles with double membrane structure and sent to lysosomes
for degradation and recycling. In the process of autophagy,
glutamine metabolism cannot be ignored (53, 54). Activated
protein kinase 2 (GCN2) and integrated stress response (ISR)
can induce autophagy, while glutamine can inhibit this process
by inhibiting GCN2 activity and ISR (55, 56). In addition,
glutamine can indirectly stimulate the mTOR pathway to inhibit
autophagy (57). ROS as a stress response can also induce
autophagy response, but glutathione and NADPH produced
by glutamine metabolism can inhibit ROS production (58).
Moreover, ammonia from glutamine catabolism can promote
autophagy reactions through autocrine and paracrine (59). In
addition, studies have shown that GS can directly regulate
autophagy response by regulating glutamine metabolism (60).
The abnormal autophagy regulation is associated with a variety
of diseases, such as neurodegeneration, cancer, heart disease, liver
disease, and vascular diseases (61, 62). In recent years, the role
of autophagy in the development of PH has gradually become
a research hotspot (63, 64). It is well known that pulmonary
vascular remodeling is an important process in PH progression.
Studies have found that autophagy abnormalities can be observed
in PAECs, PASMCs and RV cardiomyocytes in animal models
and patients with PH (63). Depending on the degree of autophagy
activity, autophagy may be an inhibitor or promoter in the
pathogenesis of PH.

Promotion of the Synthesis of Biological
Macromolecules
Glutamine contains five carbon atoms, one amino nitrogen atom,
and one amide nitrogen atom, which renders it raw materials for
cell growth, division of biosynthesis. Carbon from glutamine is
used in the synthesis of amino acids and fatty acids, and nitrogen
from glutamine acts directly in the biosynthesis of purines and
pyrimidines. It was found that glutamine-driven respiration in
the mitochondria provides electron receptors for aspartic acid
synthesis in proliferating cells, which in turn promotes nucleotide
synthesis (20). Under the condition of hypoxia, the increased
intake of glutamine promotes the synthesis of lipids from
carbon atoms, which is a key process in malignant proliferating
cells under stress (65). Glutamine promotes the synthesis of
O-N-AcetylGlucosamine (GlcNAc) transferase (OGT) through
the synthesis of uridine diphosphate O-N-AcetylGlucosamine
(UDP-GlcNAc), which plays an important role in endoplasmic
reticulum folding proteins (66, 67). Besides, study by Barnes
et al. showed that OGT regulated the formation of vascular
endothelial tube and the sprouting of vascular in idiopathic PAH,
and inhibition of OGT also resulted in the decreased PASMCs
proliferation (68).

Common Genes Regulating Glutamine
Metabolism in Pulmonary Hypertension
MYC Proto-Oncogene
MYC, as one of the common oncogenes in human cancer, is
closely related to the upregulation of glutamine metabolism
(69). It is reported that MYC mutated cells were significantly
dependent on exogenous glutamine for the cell survival (56).
MYC binds to promoter of high-affinity glutamine transporters

(70), including ASCT2 and SN2 (also known as SLC38A5),
and further upregulates the glutamine transporter, leading to
increased glutamine uptake. Of note, MYC can also influence
the activation of mTOR pathway by regulating the metabolic
reprogramming of glutamine (71, 72). Although the specific
contribution of MYC to the metabolic disturbance of PH has not
been elucidated, it has been found that MYC activation is related
to the proliferation of PAECs and PASMCs (5, 73). In addition,
recombinant interleukin-6 (IL-6) treatment in rodent models
under hypoxia led to pulmonary vascular remodeling, at least in
part by MYC activation (74, 75). MYC was also proved to inhibit
the expression of a microRNA family (mainly mir-23a and mir-
23b) (5, 76), thereby increasing the expression of their target gene
GLS and thus upregulating the glutamine catabolism, promoting
the circulation of glutamine derived TCA cycle and glutathione
production. Recently, it has been proposed that mir-23a can
regulate PASMC proliferation and migration by regulating its
target gene BMPR2 during the development of PH (77).

Kirsten Rat Sarcoma Viral Oncogene
The oncogene KRAS promotes the gene expression of enzymes
related to glutamine metabolism in cells. Specifically, KRAS
leads to the downregulation of GLUD, increases the dependence
on glutamic-oxaloacetic transaminase 1 (GOT1), and releases
aspartic acid into the cytoplasm through malic enzyme 1 (ME1)
to produce NADPH, which ultimately increases the production of
glutathione (70, 78). In addition, KRAS mutations can induce cell
dependence on glutamine metabolism. However, this depends
on different types of KRAS mutations. Compared with G12C
and G12D mutant cells, the lung cancer tumor cells with KRAS-
G12V mutation are less dependent on glutamine (79), but the
specific mechanism is not clear at present. Pullamsetti et al.
(80) described that KRAS transgenic mice exhibited an increased
media thickness of small vessels and enhanced RV fibrosis in the
tumor-bearing lungs, which mimicked the clinical manifestation
of lung cancer-associated PH. However, the specific role of
glutamine metabolism in this disease setting still needs to be
further explored.

p53
Glutamine metabolism can also be regulated by tumor suppressor
factors, such as p53, which contributes to gene defects repair
and tumor stabilization. In transformed cells, the inhibition of
malic enzymes ME1 and ME2 by p53 during the TCA cycle is
essential for the production of NADPH and the metabolism of
glutamine (81). The downregulation of ME1 and ME2 is also
able to activate p53 mediated by protein kinases activated by
AMP and MDM2 in a feed-forward manner. In addition, p53 can
promote the expression of GLS2 and removes intracellular ROS
to protect cells from DNA damage (26, 82). Besides, p53 promotes
the expression of SLC1A3, an aspartic acid/glutamate transporter,
allowing the use of aspartic acid to support cells in the presence
of extracellular glutamine deficiency, thereby rendering tumor
cells resistant to glutamine starvation (83). Hennigs et al. (84)
demonstrated that p53 based angiogenesis therapy can activate
the vasoprotective gene regulatory program to repair PAECs,
regenerate pulmonary microvessels, and abolish PH. Recently,
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combination treatment by HIF-2α antagonist and p53 agonist
has been proved to reverse established experimental PH (68).
However, the interaction between glutamine metabolism, p53
and PH has not been fully described.

Other Factors Linking Glutamine,
Glutaminase and Pulmonary
Hypertension
Hypoxia
Pulmonary hypertension is divided into five groups according
to WHO PH classification. The third group is due to pulmonary
disease and/or hypoxia, which accounts for almost a quarter of all
patients with PH (85). Its pathophysiological mechanism involves
hypoxic-related pulmonary vasoconstriction/remodeling,
vascular endothelial and smooth muscle dysfunction,
metabolomics derangements, inflammation, hypercoagulability,
and so on (86–88). Hypoxia is considered to be a driver of
metabolic conversion and glutamine metabolism in tumor cells
(89). One of a recent publication also showed that glutamine
and glutamate metabolism was the most remarkable altered
metabolism in response to hypoxia in primary rat PASMCs
(90). In addition, group 3 PH patients seems to take up more
glutamine by the pulmonary vasculature compared to controls
(33). HIF (including HIF1α and HIF2α) is a major transcription
factor that tends to stabilize under hypoxia. Sun and Denko
demonstrated that HIF1α stabilization inhibits glutamine
oxidation (65), and HIF-2α may promote atypical glutamine
metabolism by activating the PI3K/mTORC2 pathway during
tumor progression (91).

Vascular Stiffness
Pulmonary sclerosis is an important component of the
pathogenesis of PH, and stiffness can be used as an indicator
of disease progression. The composition and quantity of the
extracellular matrix (ECM), as well as vascular tension, can
influence the vascular stiffness (5). The ECM network provides
biophysical support for the various cells in the vascular wall,
thus maintaining the mechanical stability and elastic recoil
of the artery. Several pathogenic factors such as vascular
injury, expression of pro-inflammatory factors, abnormal growth
factors, and/or hypoxia exposure can cause ECM remodeling
and stiffness (5). The accumulation of ECM is a significant
pathological change in vascular wall in patients with PH. Recent
studies have shown that arteriosclerosis and ECM remodeling
are not only associated with end-stage PH, but also serve as
early markers of PH (92, 93). The mechanotransduction of
ECM refers to the process by which cells can perceive and
adapt to external mechanical forces. However, studies on the
process by which the mechanotransduction of is related to the
vascular system are just emerging (17). The Hippo signaling
pathway has two associated transcriptional co-activators, YES-
associated protein 1 (YAP) and TAZ (or WWRT1), which are
activated by the ECM and thus serve as a central regulator of cell
proliferation, which can regulate the growth and development of
tissue (94, 95). It was found that pulmonary vascular stiffness

can activate YAP/TAZ at early PH, thus inducing the Mir-
130/301 family to further enhance ECM remodeling and cell
proliferation in vivo (96, 97). In addition, YAP/TAZ-induced
pulmonary vascular stiffness has also been found to control
important metabolic changes in PH (17, 92). In this process,
YAP/TAZ is activated by the ECM in pulmonary vascular cell
types, and YAP/TAZ subsequently activates the GLS enzyme,
promoting glutamine metabolism and anaplerotic reaction. It
also has downstream effects on cell proliferation, migration,
and apoptosis among various vascular cell types in a time-and
stage-specific manner, leading to changes in the extracellular
environment that lead to pulmonary vascular dysfunction, which
in turn causes PH (92).

TARGETED THERAPY FOR
GLUTAMINASE IN PULMONARY
HYPERTENSION

In recent years, glutamine metabolism has been regarded
as one of promising therapeutic strategies against metabolic
reprogramming in proliferative diseases such as tumors, PH and
other cardiopulmonary diseases. Glutaminase, as a central part in
glutamine metabolism, has emerged as a popular target (98, 99).
Studies have shown that the expression of GLS in some breast
cancer and nervous system tumors is higher than that in normal
tissues, and the use of small molecule GLS inhibitors such as
BPTES, CB-839 and compound 968 can significantly inhibit the
growth of tumor cells (21, 100). Of note, whether GLS-targeted
drugs can be applied in clinical practice is gradually attracting the
attention. This section of the review will discuss the various drugs
that target glutamine metabolism.

Bis-2-(5-Phenylacetamido-1,2,4-
Thiadiazol-2-yl)Ethyl Sulfide 3
Glutaminase exists in the form of dimer in an inactive state and
is transformed into active tetramer after phosphorylation. BPTES
are allosteric inhibitors of GLS, which can specifically bind to GLS
and inhibit its phosphorylation activation (101, 102). In addition,
BPTES can also inhibit the phosphorylation of GLS. Qie et al.
(103) confirmed that BPTES could significantly downregulate
or inhibit the proliferation of breast cancer cells with high
GLS expression. Bertero et al. (17) observed that BPTES could
inhibit the proliferation and migration of pulmonary vascular
cells via modulation of the YAP/TAZ-GLS axis. However, the
disadvantages of poor metabolic stability, low water solubility and
low bioavailability limit the clinical application of BPTES (104).

CB-839 (N-(5-(4-(6-((2-(3-
(Trifluoromethoxy)Phenyl)Acetyl)Amino)-
3-Pyridazinyl)Butyl)-1,3,4-Thiadiazol-2-
yl)-2-Pyridineacetamide)
CB-839 is an oral GLS inhibitor developed on the basis of
BPTES with a lower IC50 value (0.06 µM) and stronger effect
compared to BPTES (101). CB-839 is a non-competitive inhibitor
whose effectiveness does not depend on the concentration of
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glutamine. Drug metabolism associated studies have shown that
CB-839 inhibits the activity of GLS, thereby restricting glutamine
derivatives from entering the TCA cycle (105), so it has a
significant inhibitory effect on the growth of breast cancer,
soft tissue sarcoma and other malignant cells (106, 107). CB-
839 is currently undergoing phase II clinical trials for Non-
small Cell Lung Cancer (NSCLC) (Clinical Trial NCT02771626).
Bertero et al. (17) showed that systemic administration of CB-839
alone was effective in improving PH in rats. However, Acharya
et al. (108) showed that an inhaled form of CB-839 (without
verteporfin) was not effective in alleviating PH. The divergency of
the two studies might be due to the lower levels of CB-839 being
administered via inhalation of PLGA particles.

Compound 968 (5-(3-Bromo-4-
(Dimethylamino)Phenyl)-2,2-Dimethyl-
2,3,5,6-Tetrahydrobenzo[a]Phenanthridin-
4(1H)-One)
Compound 968 is a selective non-competitive inhibitor of GLS,
which has inhibitory effects on GLS1 and GLS2. It prevents the
activation of GLS in cells by preventing the post-translational
modification of GLS. Regarding on the inhibition of GLS, the
allosteric inhibition mechanism of compound 968 is different
from that of BPTES, which is characterized by different binding
sites and mainly inhibits GLS in an inactive state. Compound
968 can inhibit the abnormal Rho-dependent signaling of GLS
in tumor cells, thereby inhibiting the proliferation and migration
of tumor cells, but has almost no effect on the proliferation
of normal cells (102, 109). Its efficiency on the reversal of PH
remains to be investigated.

6-Diazo-5-Oxo-L-Norleucine
6-diazo-5-oxo-L-norleucine competitively binds to the active site
of glutamine and can form a covalent compound that irreversibly
inhibits various glutamine metabolism-related enzymes such
as GLS and GS, and produces analgesic, antiviral, and tumor
inhibition effects (110, 111), alongside with strong side effects
(111). In previous clinical trials for DON, it was found that
high-dose intermittent administration and failure to screen
for glutamine-dependent tumors are the main reasons for
poor clinical effects and serious gastrointestinal reactions (112).
Recently, people have gained a new understanding of the role
of glutamine in a variety of tumor types, which has aroused
people’s interest in metabolic inhibitors (such as DON). In
particular, there have been many breakthroughs in the design
of DON prodrugs, by modifying the carboxyl and amino
groups of DON to obtain prodrugs that are not metabolized
in plasma but decomposed in target cells, including acetyllysine

substituted DON and JHU-083. At present, these two prodrugs
have been studied in tumors. Studies have shown that acetyllysine
substituted DON can be selectively metabolized in P493B
lymphocytes and inhibit tumor cell proliferation in a dose-
dependent manner (113). Leone et al. found that JHU-083
can not only inhibit the metabolism of glucose and glutamine
in tumor cells, but also reverse the tumor microenvironment
and maintain NADPH/NAD + homeostasis (114). Nevertheless,
the reliable evidence demonstrating the efficacy of DON and
its derivatives against PH is still lacking and warrants further
investigation in this disease setting.

CONCLUSION AND PROSPECTIVES

Glutamine metabolism plays an important role in the
proliferation and migration of tumor cells and vascular cells.
Given the similarities between PH and cancers, the role of
glutamine metabolism was explored in the development of
pulmonary vascular remodeling. The dysfunctional glutamine
metabolism leads to the excessive proliferation/migration of
vascular cells via multiple mechanisms akin to that in tumor
cells. A better understanding of glutamine metabolism mediated
pulmonary vascular remodeling may be of great significance
for the targeted therapy of PH. Glutaminase is a crucial enzyme
in the process of glutamine hydrolysis and is also responsible for
the modulation of glutamine metabolism. Although glutaminase
inhibitors such as BPTES, CB839, Compound 968, and DON
have been found to have significant inhibitory effects on
many types of proliferating cells, its preclinical and clinical
application to PH warrants further investigation to have more
therapeutic gains.
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