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Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association
with increased metabolic syndrome such as cardio- and cerebrovascular disorders
and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia
miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to
treat NAFLD and metabolic syndrome disease without clarified defined mechanisms.
Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved
steatosis by reducing the delivery of metabolic substrates to liver as a promising way.
Here we systematic review evidence showing that Danshen against NAFLD through
diverse and crossing mechanisms based on metabolic targets. A synopsis of the
phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic
targets regulating the progression of NAFLD is initially provided, followed by the
pharmacological activity of Danshen in the management NAFLD. And then, the possible
mechanisms of Danshen in the management of NAFLD based on metabolic targets
are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol
regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate
response element–binding protein (ChREBP) related with lipid metabolism pathway, and
peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the
others associated with pleiotropic metabolism will be discussed. Finally, providing a
critical assessment of the preclinic and clinic model and the molecular mechanism in
NAFLD.

Keywords: Danshen, non-alcoholic fatty liver disease, metabolic targets, pharmacokinetic, molecular mechanism

Abbreviations: ABC, ATP-binding cassette transporter A1; AP-1, activator protein-1; CAR, constitutive
androstane receptor; C/EBP, CCAAT-enhancer-binding proteins; ChREBP, carbohydrate response element–binding
protein; CT, cryptotanshinone; CYP, cytochrome P450; DNL, de novo lipogenesis; ERK, extracellular signal-regulated protein
kinase; FGF21, fibroblast growth factor 21; FXR, farnesoid X receptor; GLUT-4, glucose transporter 4; JNK, c-Jun N-terminal
kinases; LA, lithospermic acid; LXRα, liver-X-receptorα; MAPK, mitogen-activated protein kinases; NAFL, non-alcoholic
fatty liver; NAFLD, Non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NF-κB, nuclear factor-κB; OATPs,
organic anion transporting polypeptides; PAA, protocatechuic acid; PCA, protocatechuic aldehyde; PPARs, peroxisome
proliferator-activated receptors; PXR, pregnane X receptor; RA, rosmarinic acid; RXRα, retinoid X receptorα; SHP, small
heterodimer partner; SAA, salvianolic acid A; SAB, salvianolic acid B; SAC, salvianolic acid C; SAD, salvianolic acid D;
SREBP-1c, sterol regulatory element-binding protein-1c; SULT, sulfotransferases; STATs, signal transducers and activators of
transcription; TCM, traditional Chinese medical; TI, dihydrotanshinone I; TSI, tanshinone I; TSIIA, tanshinone IIA; TSL,
tanshinol; UGT, UDP-glucuronosyltransferases.
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INTRODUCTION

NAFLD refers to a spectrum of liver diseases, which defined
by steatosis in more than 5% of hepatocytes with little or no
alcohol consumption (1). NAFLD is composed of non-alcoholic
fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH),
which is characterized by steatosis, hepatocellular ballooning and
lobular inflammation and accompanied by varying degrees of
liver fibrosis (2). With the worsening of the fibrosis, some patients
with NASH deteriorate to hepatic cirrhosis or even hepatic
carcinoma. Currently, almost 25% of the general population
worldwide suffer from NAFLD, and 20% of them will progress
to hepatocirrhosis as the disease deteriorates (3). NAFLD is
a metabolic stress liver injury, and its main pathogenesis is
insulin resistance and lipid metabolism disorders. Metabolic
syndromes such as obesity, insulin resistance, hyperglycemia,
dyslipidemia, and hypertension are the main risk factors for
NAFLD. However, drugs that interfere with NASH have side
effects such as pioglitazone for insulin resistance, vitamin
E for antioxidants, (4), and the only approved treatment
is hygiene and dietary measures to date. At present, the
prescription of traditional Chinese medical (TCM) contribute
to the improvement of lipid infiltration of the liver and
of the related anthropometric, and biochemical parameters
(5). Besides, TCM may be promising treatment strategies for
NAFLD due to their relatively cost-effective, multiple targets and
few side effects.

Danshen has been used widely to treat metabolic syndromes
such as hypertension, dyslipidemia, and hyperglycemia, which
is consisted of active constituents such as hydrophilic phenols,
lipophilic diterpenoids and polysaccharides (6). Accumulating
evidence has suggested that the preventive and therapeutic
potential of Danshen on NAFLD is related to reducing the risk
of metabolic disorder in preclinic and clinic trials (7–10). What
counts is, the frequency of clinical use of Danshen reached 7.28%
in treatment with NAFLD, second only to the peach kernel (11).
A case in point is that 8 randomized controlled trials with 800
patients of NAFLD showed that Danshen relieved the degree
of hepatosteatosis by significantly reducing the plasma levels of
transaminases (9).

The pathogenic driver of NAFLD is that the imbalance
between glucose and lipid metabolism leads to excessively
accumulated lipids within the liver (12, 13). Metabolic targets
can rebalance the metabolic disorders and improve steatosis
by reducing the delivery of metabolic substrates to the liver
in patients with NAFLD (14–16). Additionally, a large number
of pharmacological studies have shown that drugs targeting
metabolic targets can effectively treat NASH, which proves that
metabolic targets would be a promising prospect therapy for
the treatment of NAFLD (4, 17, 18). Previous reviews discussed
the prominent metabolic targets of NAFLD pharmacotherapy,
including lipid metabolism pathway modulator acetyl-CoA
carboxylase (acetyl-CoA), nuclear receptors, thyroid hormone
receptors, glycemic modulator, sodium-glucose co-transporter
2 and fibroblast growth factors, etc. (12, 19). Herein we
focus primarily on the significant metabolic targets associated
with Danshen, including c-Jun N-terminal kinases (JNKs),
SREBP-1c, ChREBP, PPARs, CYPs and the others, to provide

theoretical basis for the development of a new way of Danshen
treatment of NAFLD.

PHYTOCHEMISTRY OF DANSHEN

We reviewed phytochemistry of Danshen to fully understand
its roles in NAFLD. Over 200 chemical components including
phenolic acids, diterpenoids and polysaccharides have been
identified from this plant (20).

The phenolic acids of Danshen contain a core skeleton
of phenylpropanoid (C6-C3). It is generally believed that
the phenolic acids are mostly conjugated with (R)-3- (3,4-
Dihydroxyphenyl)-2-hydroxy- propanoic acid and derivatives
or dimer of caffeic acid (21). For instance, Salvianolic acid A
(SAA) is composed of tanshinol (TSL) and two molecules of
caffeic acid. Previous studies have clarified the phenolic acids
bioactivities such as anti-inflammatory, anti-oxidative, cardio-
protection activity (22).

As a representative of diterpenoids, tanshinones are
comprised of naphthalene or tetrahydronaphthalene rings
A and B, ortho- or para-naphthoquinone or lactone ring C, and
a furan or dihydrofuran ring D (21). Among these, tanshinone
IIA (TSIIA) and cryptotanshinone (CT), which are characterized
by an ortho-quinone C-ring. TSIIA, CT, tanshinone I (TSI), and
dihydrotanshinone I; (TI) as primary and marker constituents
in the official Chinese Pharmacopoeia, which exhibit the
biological activity of anti-oxidative, anti-inflammatory, and
anti-diabetic (23).

Besides, polysaccharides, flavonoids, steroids, and
phenanthrenequinone have been identified in Danshen, which
proved that a variety of pharmacological activity. For instance,
the polysaccharides of Danshen exhibits immunomodulatory
and antitumor effects (21).

In this article, we briefly presented the identified chemical
structure in Danshen, which related to the pharmacological
effects of NAFLD as Figure 1. Interested readers are inspired to
know more compounds of Danshen refer to related reviews.

PHARMACOKINETICS
CHARACTERISTICS OF DANSHEN

Pharmacokinetics is a bridge linking herbal medicine and
pharmacological responses. The active ingredients of Danshen
exert therapeutic effects of NAFLD through entering the systemic
circulation to reach the target organ or tissue. Painstaking efforts
directed at mechanisms influencing the pharmacokinetics of
Danshen can aid in improving their intended pharmacological
activity. The major topics cover (i) Danshen ability to enter a
system and how to metabolite and eliminate through various
tissues, and (ii) what factors determine the course of Danshen
bioavailability and how to improve it.

PHENOLIC ACIDS

Extensive research performed the complicated absorption
mechanism of phenolic acids of Danshen. The gastrointestinal
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FIGURE 1 | The compounds in Danshen related to the pharmacological effects of NAFLD.
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absorption of rosmarinic acid (RA), salvianolic acid B (SAB),
protocatechuic aldehyde (PCA) and TSL were characterized by
passive diffusion in the intestine (24, 25). Besides, the paracellular
absorption transport pathway also existed in SAB and TSL
(26). The phenolic acids were of low bioavailability in animal
or human plasma after oral administration, except for TSL.
For instance, the oral bioavailability of SAB, salvianolic acid
C (SAC), lithospermic acid (LA), salvianolic acid D (SAD),
magnesium lithospermate B and miltirone were 1.07, 0.29, 1.15,
4.16, 0.02, and 3.4% in rats, respectively (27–31). Moreover,
the concentration of Danshen preparations in plasma after oral
administration slightly detectable in human subjects. Li et al.
found that the Cmax of TSL, PCA and protocatechuic acid (PAA)
in humans were 134.1± 48.4, 10.5± 5.6, and 59.0± 18.6 ng/mL
after oral administration of Compound Danshen Dripping Pills
(32). Researches showed that the poor bioavailability of phenolic
acids was due to their adverse properties, including molecular
mass, hydrogen bonding capacity and molecular flexibility
(33). TSL has good properties and its bioavailability reaches
to 30–40% in animals (34). Injection is more effective than
oral administration. The TSL, SAD, LA, RA, PCA, and TSL
exhibited considerable exposure in human subjects and rats after
intravenous administration Danshen (35, 36).

Polyphenol compounds were transformed by colonic
microflora and decomposed into simple phenolic acid
derivatives, easily absorbed from the intestine. The major
metabolites of phenolic acids were the methylated and their
sulfated and glucuronide products in humans, rats and dogs,
which may be responsible for the biological activity (37, 38). SAA,
SAB, PCA, and LA were subject to extensive elimination mainly
via hepatobiliary excretion of glucuronide and renal excretion
(37). For example, SAB seemed to enter liver cells rapidly after
oral or intravenous dosing, and methylated metabolites may exert
antioxidant action. PCA was transformed into PAA in the liver
and then eliminated by conversion into sulfates and methylated
glucuronides followed by renal excretion (36). However, RA,
TSL, and SAD were eliminated mainly via renal excretion, rather
than hepatobiliary excretion (34, 39). Among these, RA could
be broken down into smaller phenolic acids such as TSL and
caffeic acid and eliminated by renal excretion in healthy human
subjects (40). Further studies with the metabolic pathways of
other component in Danshen preparations are required.

Several presystemic processes, including gastrointestinal
solubility, membrane permeability, gastrointestinal degradation,
transporter-mediated intestinal efflux, systemic intestinal wall
metabolism, and hepatic metabolism, could lead to the
low bioavailability of phenolic acids. Researchers have been
trying to improve the bioavailability of Danshen such as
ameliorating dosage form (e.g., sodium caprate and lipid
nanoparticle formulations). For instance, the sodium caprate
could significantly enhance the bioavailability of both TSL
and SAB by improving intestinal permeability (26). When
encapsulated into liposomes and chitosan nanoparticles, the t1/2
and AUC0−∞ of SAB in beagle dogs were higher than that of
free SAB (41, 42). Certain components in Danshen preparations
can affect the pharmacokinetic behavior of other coexisting
ingredients, which contributed to synergistic or metabolic

transformation. Chang et al. observed that the AUC0−8, CL
and t1/2 of TSL and SAB were significantly influenced by
the content variation of the other major components in the
Danshen injection (43). Moreover, the tanshinones affected
the bioavailability and distribution of RA, SAB, and TSL, and
accelerated the biotransformation of Sal B to TSL. Similarly,
the phenolic acids could influence the biotransformation of
CT to TSIIA and improve the bioavailability of TSIIA (44).
Additionally, the common Danshen compound compatibility
herbs such as borneol can also improve the bioavailability of
Danshen (45). Therefore, it will be interesting to focus on the
transformation or interaction of components between Danshen
preparation in the future.

TANSHINONES

Few studies have reported the absorption mechanism of
tanshinones. Yan et al. elucidated that the transport mechanisms
of TSIIA and CT were active transport or facilitated diffusion
(46). Zhang et al. observed that CT was transported primarily
via an active mechanism across the intestinal epithelium, a
saturable process that could pump CT into the luminal side (47).
Meanwhile, other studies reported that TSIIA might not exclude
a passive transport process (48, 49) due to its low molecular
weight (294 D) and high lipophilicity (logP = 6.1) (50). The
plasma level of tanshinones is low, generally in the nM to the
sub-µM range in animals after oral or injection. Here offers
instances that, Yu et al. found that the oral bioavailability of
tanshinone IIB (TSIIB) was about 3% in rats (51), and the
Cmax of 0.274 µg/mL of TSI after intravenous injection at
3 mg/kg dose in rats (52). Additionally, the blood concentration
of Danshen mixture was poor in rats, either. The Cmax of
TSI, TI, TSIIA, and CT were 1.63 ± 0.78, 3.23 ± 1.40,
2.78 ± 0.96, and 0.66 ± 0.27 ng/mL after oral administration
of PF2401-SF (the standardized fraction of Danshen, equivalent
to TSI: TI: TSIIA: CT = 1.15:1.10:4.1:1.91 mg/kg) to rats (53).
When a mixture of phenolic acids and tanshinones including
TSL (10.25 mg/kg), RA (6.39 mg/kg), CT (9.82 mg/kg), TI
(13.58 mg/kg), TSI (3.90 mg/kg), and TSIIA (5.79 mg/kg) were
orally administered to rats, the Cmax of each constituent was
72, 37, 43, 11, 55, and 22 ng/ml, respectively (54). Exposure
to tanshinones of granular powder formulation after a single
oral administration in healthy volunteers, the Cmax of TSI,
TSIIA, and CT was 6.57, 25.8, and 146.7 ng/mL, respectively
(55). The low bioavailability of tanshinone is mainly due to the
lack of molecules with high logP or optimal HLB values and
permeability. Therefore, bioavailability enhancement improved
the application of tanshinones in the clinic.

Previous investigation indicated that the concentration of
tanshinones in bile was much higher than in plasma and urine,
suggesting that the tanshinones are mainly metabolized in
the liver (56). TSIIA is preferentially distributed into the liver
after either intravenous or oral doses, which is due to the self-
association or self-assembly of highly hydrophobic compound
to form macromolecules or polymers and can be recognized
and taken up by the reticuloendothelial system (48). TSIIA
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underwent extensive CYP-mediated oxidation, and then subject
to glucuronidation, after the glucuronides hydrolysis, aglycones
are reabsorbed from the intestine and excreted into bile as a
conjugate (57). TI was initially biotransformed into TSI and
then shared the metabolic pathways, including glucuronidation,
hydroxylation, reduction, methylation, and the O-sulfate
conjugated reaction (58, 59). Hence, methylation, demethylation,
dehydrogenation, hydrogenation, and hydroxylation were the
major metabolic transformation of tanshinones.

The factors including poor solubility, poor permeability, and
formulation, etc. resulting in low bioavailability of tanshinones.
Similar to phenolic acids, the ultrafine powder and solid lipid
nanoparticles formulations could improve the bioavailability
of CT, TSIIA, TI, and TSI by enhancing their stability
and permeability (60–62). On the other hands, components
in tanshinone extracts also affected the pharmacokinetics of
monomer constituents. Song et al. reported that tanshinone
extracts synergically promoted the absorption of TSIIA and
CT and accelerated the transformation of CT to TSIIA (63).
The mechanism of promoting absorption and biotransformation
between components in TCM formula should be further studied.

THE POLYSACCHARIDES OF DANSHEN

In addition to phenolic acids and tanshinones, polysaccharides of
Danshen exhibited antioxidant, immunoregulatory, ameliorating
metabolic disease, hepato-protective, and against NAFLD
(64). Few studies involved pharmacokinetics of Danshen
polysaccharides compared with the pharmacodynamics. This
is related to the complex molecular structure, which lacks both
chromogenic and light absorption groups, and susceptible
to the interference of biological substances in concentration
detection. What’s worse, it is well known that polysaccharides
are poorly absorbed. Generally, there are three theories for
the mechanism of oral absorption of polysaccharides: direct
absorption, intestinal microflora absorption and intestinal
Peyer collection lymph node absorption (65). Wang et al.
concluded that ganoderma lucidum polysaccharide was ingested
by pinocytosis in Caco-2 cells (66). And the elimination of
polysaccharides is mostly by the kidney (67). Some researchers
believe that polysaccharides work through direct absorption
in the gut. A novel polysaccharide of Danshen, SMWP-U&E,
improved the absorption of weaned piglets by increasing
the diversity and evenness of the intestinal microflora after
doses at 1.5 g/kg to the pigs (68). Lack of evidence regarding the
mechanism of the pharmacokinetics of polysaccharides is a major
barrier to realizing the full potential pharmacological activity.

DISCUSS THE ACTIVITY AGAINST
NON-ALCOHOLIC FATTY LIVER
DISEASE OF DANSHEN COMPOUNDS
WITH LOW BIOAVAILABILITY

The phenolic acids, tanshinones, and polysaccharides isolated
from Danshen exhibited various biological activity such as

against NAFLD. However, how some Danshen compounds with
low bioavailability exhibit their pharmacological activity against
NAFLD. Here we attempt to interpret this from four aspects: (i)
the chemical structure-activity of Danshen, (ii) the bioavailability
of Danshen compounds in comparison between physiological
and physiological condition, (iii) pharmacological activity of the
improved bioavailability compound of Danshen, (iiii) Danshen
induced gut microbiota alteration.

THE CHEMICAL STRUCTURE-ACTIVITY
OF DANSHEN

The preventive and therapeutic potential of Danshen on
NAFLD is related to reducing the risk of metabolic disorders,
including antioxidant, anti-inflammatory, immunoregulatory,
etc. Normally, the chemical structures of phenolic acids influence
their redox potential. Specially, polyphenols with two o-hydroxyl
groups on an aromatic residue are more capable of scavenging
free radicals than polyphenols with only one hydroxyl group (69).
The other active constituents of Danshen, diterpenoids, were
demonstrated to exert anti-inflammatory, immunosuppressive
and antitumor activity. Quinone group and aromatic ring are
the basic structure of tanshinone activity, and carbonyl may play
an important role in its antitumor activity (37). Zheng et al.
confirmed that the antiproliferative effects of abietane quinone
diterpenoids against five cancer cell lines (70). On the other hand,
in addition to the parent compounds, the metabolites usually
exhibited pharmacological activity. For instance, the sulfate esters
and glucuronides metabolites of phenolic acids were shown to
retain part of their antioxidant properties (71). Therefore, many
of the biological effects observed in animal or clinical studies may
be explained by the microbial metabolites of those compounds.
Much research effort is needed to evaluate the biological effects
of the conjugated derivatives and microbial metabolites of
polyphenolic acids and diterpenoids. Generally, the structure-
activity relationship between polysaccharides and intestinal flora
from molecular weight, glycosidic bond, and monosaccharide
composition (72). However, Danshen polysaccharide has not
been studied in this respect.

THE BIOAVAILABILITY OF DANSHEN
COMPOUNDS IN COMPARISON
BETWEEN PHYSIOLOGICAL AND
PHYSIOLOGICAL CONDITION

The pharmacokinetics of Danshen formulation varies with
pathological and physiological conditions due to the biological
environment in the body. Accumulative studies have shown
that the bioavailability of Danshen increased under pathological
conditions compared to normal conditions. Shi et al. found that
the plasma concentrations of TSL, PCA, PAL, SAC, SAB, and
TSIIA and the AUC0−t, MRT0−t, and t1/2 of SAB and TSL in the
middle cerebral artery occlusion rats were significantly increased
compared with the sham-operated group (73). The CL of STS
was lower in coronary heart disease patients than in healthy
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volunteers in a population pharmacokinetic model study (74).
Moreover, several metabolites of TSIIA presented differences in
the distribution between the sham control and the Alzherimer’s
Disease Rat model (75). The pharmacokinetics of Danshen in the
NAFLD disease state needs to be studied since several studies
have demonstrated the altered pharmacokinetics of drugs in
NASH patients (76).

PHARMACOLOGICAL ACTIVITY OF THE
IMPROVED BIOAVAILABILITY DANSHEN
COMPOUND

The modified Danshen compounds improved bioavailability
and pharmacological activity. Li et al. reported that STS was
a promising drug for treating NAFLD by decreasing lipid
accumulation and suppressing inflammation (77). Moreover,
TSIIA encapsulated into globin to form nanoparticles that could
markedly attenuate the progression of hepatic fibrosis (78). The
nanoparticle-containing TSIIA was significantly more effective in
inhibiting tumor growth in mice with hepatoma than free TSIIA
(79). The pharmacological activity of modified other compounds
from Danshen need further study.

DANSHEN INDUCED GUT MICROBIOTA
ALTERATION

Hypothesized mechanisms of how the gut microbiome
contributes to the development of NAFLD by increasing
intestinal permeability, leading to the release of
lipopolysaccharide into the host, which can trigger tissue
and systemic inflammation, and metabolite produced by
microorganisms that can influence immunity (80, 81). Currently,
increasing evidences showed that Danshen preparations and
the monomer active components regulated intestinal flora.
For example, the aerial parts of Danshen could imbalance the
intestinal microflora disorder caused by diabetes (82). Wang
et al. observed that SAA modulated gut microbiota imbalance
during colitis by increasing the gut microbial diversity as well
as selectively promoting some probiotic populations (83).
Many preparations containing Danshen balanced the intestinal
flora such as SMWP -U&E (68), BuZangTongLuo decoction
(84), the mixture of yeyachun and Danshen (85). Among
these, Danshensu Bingpian Zhi not only reversed HFD-induced
intestinal microbiota dysbiosis but also stimulated brown adipose
tissue browning and maintains intestinal barrier integrity (86).
Previous studies indicated that microbiota composition is
related to insulin resistance (87, 88). Probiotics and Danshen
polysaccharide combination has the potential to be used as
a therapeutic for ameliorating NAFLD via regrouping the
composition of the intestinal microbiota and improvement
of insulin resistance. In addition, Bacteroidetes/Firmicutes
ratio can be increased by Danshen polysaccharide, which is
a compositional biomarker for obesity and type 1 diabetes
mellitus (89). Danshen preparation including Jian-Gan-Xiao-
Zhi (90), DLT-SM (91), and GuanXinNing Tablet Decoction

FIGURE 2 | The sources and disposal of hepatic free fatty acids. The key
pathogenesis of NASH are hepatic free fatty acids. The liver acquires free fatty
acids through DNL and lipolysis of triglyceride in adipocytes. Phosphorylation
of JNKs in adipose tissue dramatically impacts insulin signaling, which
contributes to excessive delivery of lipids to the liver and leads to NASH.
Moreover, increased DNL also result in the elevated liver lipid content in
NAFLD. DNL can be pharmacologically inhibited by targeting its synthetic
enzymes acetyl-CoA, SREBP-1c, and ChREBP. Conversely, the disposal of
fatty acids including oxidation in the mitochondria, cytochromes, and
peroxisomes and formation of triglyceride (TG).

(92) decreased the Firmicutes/Bacteroidetes ratio through
regulation of host metabolism. Recent study has found the
genera Muribaculaceae might be concerned with the resistance
effect of lean mice to HFD (93). Meanwhile, the reduction
of Erysipelotrichaceae may be beneficial to lipid metabolism
(94). Dingxin Recipe IV increased the relative abundance of
Muribaculaceae and decreased Erysipelotrichaceae, which is
beneficial to lipid metabolism (95). However, the mechanism of
those bacteria in the development of lipid metabolism remains
unclear. Besides, there is an intense correlation between fecal
microbiota and inflammatory factors. For example, TI enriched
bacterial species which promote butyric acid metabolism
or negatively correlated with inflammatory factors (89).
Interestingly, the effect of water extract on root and rhizome of
Danshen was stronger than that of alcohol extract, which further
confirmed that Danshen could improve intestinal microflora
disorder (96). Most evidence in this field comes from animal
experiments and further human study is needed.

DANSHEN IN MANAGEMENT OF
DISEASE BASED ON METABOLIC
TARGETS RELATED WITH
NON-ALCOHOLIC FATTY LIVER
DISEASE

Mechanisms of Metabolic Targets
Regulating the Progression of
Non-alcoholic Fatty Liver Disease
From the theory of “second two-hit” to “multiple hits,” the
pathogenesis of NAFLD only partially understood so far. When
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determining the pathogenicity drivers of NAFL and NASH,
elucidating the source and fate of fatty acids in hepatocytes is vital
to interpret the metabolic basis of NAFLD. The liver acquires free
fatty acids through de novo lipogenesis (DNL) and triglyceride
lipolysis in adipocytes, as shown in Figure 2. Primarily, fatty acids
are delivered from the blood to the liver through the lipolysis
of triglycerides in adipose tissue, regulated by the insulin on
adipocytes. Phosphorylation of JNKs in adipocytes dramatically
impacts insulin signaling, which contributes to excessive delivery
of lipids to the liver and leads to NASH. Secondly, the increased
peripheral fatty acids and DNL also elevated liver lipid content
in NAFLD. DNL can be pharmacologically inhibited by targeting
synthetic enzymes, such as acetyl-CoA, SREBP-1c, ChREBP
(12, 97).

Besides, nuclear receptors including PPARs, retinoid X
receptorα (RXRα), liver-X-receptorα (LXRα), farnesoid X
receptor (FXR), pregnane X receptor (PXR), and constitutive
androstane receptor (CAR) regulated fatty acids (Figure 3) (98).
Moreover, NAFLD is poised to have an appreciable impact on the
expression and function of ATP-binding cassette efflux transport
proteins (e.g., MRPs), uptake transporters (e.g., OATPs), and
metabolic enzymes such as CYP, UDP-glucuronosyltransferases
(UGT) and sulfotransferases (SULT) (99–101).

The PPARα, PPARβ/δ, and PPARγ are members of the nuclear
receptor PPAR super-family. PPARα, which is expressed at the
high levels in the liver. The deletion of this gene gradually as
NASH progresses accelerated the development of NAFLD in
preclinic and clinic (102). The activation of PPARβ/δ regulated
hepatic glycolipid metabolism in NAFLD (103). PPARγ is mainly
in adipose tissues, where its ligands enhanced adipocyte storage
of fat and contributed to improve NASH (104). In short, PPARs
exerted functions in glycose and lipid metabolism, inflammation,
and fibrosis by modulating the expression of specific target genes
(105). Indeed, the fibroblast growth factor 21 (FGF21) is an
effective metabolic modulator of hepatic glycolipid homeostasis
and insulin sensitivity, and PPARs directly induces FGF21
expression in the rodent liver (106, 107). Besides, activated PPARs
may negatively interfere with the activity of pro-inflammatory
transcription factors such as activator protein-1 (AP-1), signal
transducers and activators of transcription (STATs), and nuclear
factor-κB (NF-κB) and therefore repressing fibrosis progression
(108–110). For instance, PPARα-agonists, fibrates, have shown
vital benefit in treating cardiovascular disease in clinical (111)
and NAFLD in rodents (112). However, the efficacy of fibrates on
NAFLD treatment in humans has not been clarified. Moreover,
PPARs modulated lipid dysregulation and inflammatory by
adiponectin. Overexpression of PPARγ detected in NAFLD,
which is potentially due to adiponectin (113, 114). Researches
showed that the agonists of PPARγ against NAFLD might
attributed to induce adiponectin (115, 116).

FXR, the bile acid receptor, negatively modulated bile acid
synthesis and reduced hepatic gluconeogenesis, lipogenesis and
steatosis at both hepatic and extrahepatic tissues (117). The
hepatic expression of FXR downregulated in NAFLD patients.
Activated FXR appears to influence insulin sensitivity and
lipoprotein transport at multiple levels, which indicated that
FXR holds promise as targeted therapeutic (118). FXR regulated

hepatic bile salt synthesis by stimulating FGF15 (a hormone with
direct glycogen synthesis in the liver and distant organs, FGF19
in humans) expression in the intestinal and repressing CYP7A1
in the liver (119, 120). Activated FXR improved hepatic glycogen
synthesis via inducing FGF15 in mice (121). Of note, FXR
agonist CDCA affected glucose homeostasis by controlling the
expression of glucose transporter 4 (GLUT-4) (122). Meanwhile,
activation of FXR also suppressed the formation of hepatic lipid
and stimulated FAβ-oxidation to limit lipid accumulation. At
present, BA-derivative OCA (FXR agonists) has been studied in
patients with NAFLD, and further studies are needed to better
define the clinical usefulness of OCA in NASH (123).

LXR regulated liver cholesterol homeostasis, inflammation,
and fibrosis in vitro and in patients with NAFLD (124, 125). LXRα

is responsible for lipid metabolism mainly in the liver, whereas
LXRβ expressed ubiquitously (126). Higuchi et al. observed that
the expression of LXRαincreased in patients with NAFLD (127).
Morin, a dual antagonist of LXRα and LXRβ, alleviated hepatic
steatosis and metabolic disorders via the suppression of LXR
signaling (128). Namely, LXR antagonism may be productive for
attenuating hepatic steatosis and ensuing fibrosis.

PXR and CAR are xenobiotic-sensing nuclear receptors that
modulated the expression of genes such as CYPs, UGTs, and
OATPs (129). More recently, PXR and CAR participated in
regulating glucose, lipid, and bile acid metabolism, and highly
expressed in the liver and gut (130). Previous studies have shown
that activated PXR and CAR worsen the hepatic steatosis and
insulin resistance in NAFLD by suppressing gluconeogenesis and
β-oxidation and increasing hepatic fatty acids uptake (131, 132).
Indeed, PXR also regulated SREBP1 and PPARα involved in
metabolic homeostasis (133, 134), and CAR targeted CYP2B6
(99). For example, a study demonstrated that SREBP-1 inhibited
drug-mediated induction of CYP2B and CYP3A via activating
PXR and CAR in rodents, which indicated that PXR and CAR
respond to lipid accumulation through direct interaction with
SREBP-1 (135).

Due to its progressive nature and its significant impacts
on hepatic histopathology, NAFLD is expected to significantly
affect transporters and metabolic enzymes such as CYPs, UGTs,
and SULTs. The expression and function of transporters such
as OATPs and MRP changed with NAFLD progressing in
humans and animals. This change affected the plasma and
tissue disposition of endogenous and exogenous compounds
(136). It seems to be that the CYP2E1 and CYP3A have been
identified as the most relevant enzyme due to the vital role of
oxidative stress in NAFLD (137). The induction of CYP2E1 is
an adaptive response, which prevented lipid overload in NAFLD.
While the increased CYP2E1 and improved insulin resistance
appear to stimulate each other, that may ultimately worsen
the process of steatosis with the increase in oxidative stress
(138). However, the mechanism is not clarified yet. CYP3A
genes appear to be regulated by various signaling pathways
such as CCAAT-enhancer-binding proteins (C/EBP), HNF, PXR,
and CAR, Janus kinase/signal transducers and activators of
transcription (JAK/STAT), and mitogen-activated protein kinases
(MAPK) pathway (19). However, few study have been reported
that elucidating the shifts in the drug metabolism and bile
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FIGURE 3 | The mechanisms of major metabolic targets regulating the progression of NAFLD. PPARs: The FGF21 directly targeting PPARs key pathogenesis of
NASH are hepatic free fatty acids. And activated PPARα may negatively interfere with the activity of pro-inflammatory transcription factors AP-1, STATs, and NF-κB.
PPARγ attenuates inflammation via inhibiting NF-κB activity and elevating FGF21 in adipose tissue. FXR: FXR regulates hepatic bile salt synthesis through stimulating
FGF15 (FGF19 in humans) expression in the intestinal and repressing CYP7A1 in the liver. LXR: Inhibition of LXRα via SREBP-1c contributes to alleviate progress of
hepatic steatosis. PXR and CAR: PXR and CAR regulates SREBP1 involved in metabolic homeostasis.

acid associated with UGTs and SULTs enzymes in NAFLD
to date. Hardwick et al. showed minimal alterations in the
activity of UGTs while several changes in the expression and
function of specific SULT during human NAFLD progression
(101). The bile acid-related enzymes UGT and SULT2A1
were strongly suppressed in high-fat-cholesterol-fed males (139,
140). Expression and functional of transporters changed in
NASH patients. OATP1B1 and OATP1B3 downregulated, MRP3
and MRP4 upregulated and MRP2 mislocalized in NAFLD
(141). The mechanism is that the loss of glycosylation of the
transporters (142).

The Pharmacological Activity of Danshen
in the Management of Non-alcoholic
Fatty Liver Disease
Concerning the therapy for NAFLD, we focus mostly
on risk factors such as metabolic syndrome, including
overweight, hyperglycemia, insulin resistance, dyslipidemia,
and hypertension (143). Conversely, the NAFLD may strengthen
some features and comorbidities of the metabolic syndrome.
Especially, cardiovascular diseases are the main causes of
mortality of the patients with NAFLD (5). Thus, effective
treatment of NAFLD and metabolic syndrome could have
mutual benefits for each other. Danshen is a highly versatile
and multi-activity herb that can significantly limit the processes
of liver diseases. Clinical trials of Danshen effectively treat
NAFLD and metabolic syndrome (9, 10, 144). More evidence
indicated that Danshen and their derived compounds limited
the progression of hepatic steatosis of NASH in animals
and in vitro (145–147). For example, Danshen tablets combined

with Alovastatin significantly alleviated fatty liver cirrhosis
and cardiovascular atherosclerosis caused by abnormal
lipid metabolism in NAFLD treatment (148). Danshen
polysaccharides combined with Probiotics regulated lipid
metabolism disorders and protected the liver in NAFLD mice
(8). Conclusively, the preventive and therapeutic potential
of Danshen for NAFLD is related to reducing the risk of
metabolic disorders.

A variety of mechanisms in inhibiting hepatic steatosis
and modulating lipid metabolism have been shown by the
compounds of Danshen and its preparations (Table 1), including
the regulation of hepatocyte apoptosis via inducing autophagy
in an AMPK-dependent way (149), the modulation of lipid
metabolism via activating ChREBP (146), PPARα (7), PXR (150)
or inhibiting PPARγ (151) and LXR (95), anti-inflammation
through inhibiting Nrf2 (152) and JNK (153), anti-oxidative
stress by activating Nrf2 and suppressing CYP2E1 (154), anti-
fibrosis through inhibiting MAPK (155), regulating NF-κB/IκBα

(156), activating Wnt/β-catenin (157) and SIRT1/HSF1 (158) and
improving the insulin resistance (159). For instance, SAB against
hepatocyte apoptosis by upregulating the mortalin, a protein
of maintaining mitochondrial homeostasis (160). CT exhibits
a hepatoprotective effect by activating Nrf2 and AMPK/SIRT1
and inhibiting CYP2E1 (161). SAB could effectively inhibit liver
fibrosis with 60 patients (162). Potentially, the combination
of Danshen Polysaccharide and Probiotics ameliorated NAFLD
via controlling the gut microbiota and insulin resistance (8).
In particular, the genes including JNKs, SREBP-1c, ChREBP,
PPARs, CYPs, and the others have been highlighted as
crucial molecular targets for Danshen treating patients with
NAFLD (Figure 4).
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TABLE 1 | The metabolic targets involved in treating NAFLD of Danshen.

Herb Animal/cell model Dose Targets/pathways/mechanisms

CT HepG2 and MEF, A549, DU145, AGS, and HCT116 cells 5–10 mM AMPK

Danshen CDAA diet-induced mice 0.093–0.84 g/kg PPARα/JNK

TSIIA Lipopolysaccharide-induced hepatic stellate cells 1–10 mM JNK and JAK/STAT

TSIIA Lipopolysaccharide-induced ATDC5 cells 5–20 µM JNK and JAK/STAT

CT Sodium-nitroprusside-induced neuro-2a cells 10–20 µM ERK1/2 and JNK

Tanshinlactone A Human peripheral blood mononuclear cells 6.25–100 M ERK, p38, and JNK

TSIIA Lipopolysaccharide-induced-RAW 264.7 cells 1–10µg/mL NF-κB, p38, ERK1/2, and JNK

SAC APAP-induced mice 5–20 mg/kg AP-1and JNK

15,16-dihydrotanshinone I U2-OS, HEK293T, HK-2, and MIN6 cells 2.5–20 µM Acetyl-CoA, AMPK

SAB db/db mice 50-100 mg/kg Acetyl-CoA and PPARα of AMPK

TSIIA Hyperlipidemic rats 10 mg/kg miR-33a and SREBP2/Pcsk9

Danshen-Sanqi preparation High calorie food induced mice models 0.4–0.8 g/kg GLUT-1, GK, GLUT-4, and SREBP-1c

Dingxin Recipe ApoE-/- mice 1.8–0.45 g/kg LXRα/SREBP1

TSIIA Lithocholic acid- induced mice 5–20 mg/kg PXR, Cyp3a11, Cyp3a13, and Mdr1

SAA High-fat diet- induced rats 8–16 mg/kg ChREBP and TXNIP

SAB Ethanol induced rats 15–30 mg/kg SIRT1/CRP and ChREBP

Danhong injection High-fat diet rats 1–2 mL/kg acetyl-CoA and PPAR-α

Danshen injection Alcohol-fed rats 3 g/kg PPARα and 4-Hydroxynonenal

TSIIA/ standardized fraction
of Danshen

Lipopolysaccharide-induced RAW 264.7 cells 1–50 µM 1–50 µg/mL RXRα

SAA Prednisone in adriamycin-induced rats 10 mg/kg Nrf2/HO-1 and PPARγ/Angptl4

SAA Prednisone in adriamycin-induced MPC5 cells 50 µmol/l PPARγ/Angptl4

RA Ligation and scission of the common bile duct- induce mice 0.1 mg/25 g Wnts/PPARγ

TSIIA Preadipocyte3t3-L1 cells high-fat diet induced mice 5–50 µM PPARγ

TSIIA Human adipose fibroblast cells 0.1–30 µM PPARγ

SAB High-fat diet mice 100 mg/kg PPARγ, C/EBPα, GATA-2 and GATA-3

SAB High-fat diet mice 100 mg/kg PPARγ/SREBP-1, c/EBPα

CT Preadipocyte3t3-L1 cells 2–10 µM PPARγ/STAT3

Preparation Danshensu
Bingpian Zhi

High-fat diet mice 50–100 mg/kg PPARγ

2-(3-methoxy-4-hydroxy-
phenyl)-6-(3-
hydroxypropyl)-5-
methoxybenzo[b]furan

Preadipocyte3t3-L1 cells 1–25 µM PPARγ, C/EBPα

PCA Human adipose fibroblast cells 10–100 µM PPARγ, C/EBPα, C/EBPβ

SAB Preadipocyte3t3-L1 cells 50 µM PPARγ, PPARα, C/EBPα

Danshen extract Carbon tetrachloride-induced rats 10–100 mg/kg CYP2E1

CT Ethanol- induced mice 20–40 mg/kg AMPK/SIRT1, CYP2E1

Polysaccharides of
Danshen

CCL4-induced primary hepatocytes 100 µg/kg ALT, AST, malondialdehyde, GSH, and CYP450

TSIIA Acetaminophen-induced mice 10–30 mg/kg Nrf2/GCLC, HO-1

POSSIBLE MECHANISMS OF DANSHEN
IN MANAGEMENT OF NON-ALCOHOLIC
FATTY LIVER DISEASE BASED ON
METABOLIC TARGETS

Fatty Acids in the Non-alcoholic Fatty
Liver Disease Control the Activity or
Expression of Key Metabolic Targets
c-Jun N-terminal kinases
JNK is a critical mediator of insulin resistance, which leads to
NASH through dysregulated lipolysis causing excessive transmit

of fatty acids to the liver and intracellular accumulation
of toxic lipid products that impair insulin signaling and
activate inflammatory pathways (163). Several compounds of
Danshen exhibits hepatoprotection and anti-inflammatory and
subsequently against NAFLD through JNK-related signaling
pathways. TSIIA, TSL, and SAB alleviated NAFLD progression
through targeting PPARα and PPARα/JNK signaling pathways.
TSIIA inhibited phosphorylation of JNK on lipopolysaccharide-
induced rat hepatic stellate cells, and TSIIA exhibited stronger
effects of hepatoprotection than SAB (228). Similarly, CT
effectively against apoptosis by blocking the activation of
extracellular signal-regulated protein kinase (ERK)1/2, NF-κB
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FIGURE 4 | The major signaling pathways involved in treating NAFLD of Danshen compounds. SAB, Salvianolic acid B; SAA, Salvianolic acid A; SAC, Salvianolic
acid C; RA, Rosmarinic acid; TSIIA, tanshinone IIA; CT, Cryptotanshinone. FA, fatty acids.

and JNK signaling pathways (165). Additionally, Tanshinlactone
A, a new diterpenoid tanshinone compound from Danshen,
which against inflammatory through inhibiting the ERK, p38
and JNK in cells (166). NF-κB regulated inflammation by
phosphorylation of IκB via activation of the p38, ERK1/2
and JNK (167). TSIIA (168) and SAC (169) presented the
anti-inflammatory activity through the signaling pathways
mentioned above.

Sterol Regulatory Element-Binding Protein-1c
Free fatty acids are central to the pathogenesis of NASH.
The main source of fatty acids from food or synthesized
by acetyl-CoA through complex reactions including glycolysis
and citric acid (170). AMPK is an energy mediator, which
controlled cellular lipid metabolism. Phosphorylation of acetyl-
CoA promoted adipogenesis by deactivating AMPK and
inhibiting lipid oxidation (171). TI potently enhanced acetyl-
CoA phosphorylation which caused decreased lipogenesis (172).
Moreover, PPARα is one of the major downstream targets of
AMPK (173). SAB relieved dyslipidemia and hyperglycemia
partly by modulating the acetyl-CoA and AMPK/PPARα in
db/db mice (174). Moreover, AMPK interacted with SREBP-
1c and SREBP-2 and directly phosphorylated in diet-induced
insulin-resistant mice (175). SREBP-1C, a major transcriptional
regulator of the acetyl-CoA in the process of synthesis, could
benefit the treatment of NASH (12). And signal transducer and
activator of transcription (STAT-3) related to lipid synthesis
by modulating the expression of SREBP-1C (176). Salvianolic
acids significantly balanced the lipid metabolism disorders by

inhibiting STAT-3 via suppressing the expression of SREBP1
(177). Meanwhile, SREBP-2 regulated the expression of Pcsk9
in hepatic cholesterol (178). A miRNA located in the SREBP-
2 gene, microRNA (miR)-33, modulated lipid metabolism
through regulation of ATP-binding cassette transporter A1
(ABCA1) and G1 (ABCG1) (179). TSIIA ameliorated lipid
accumulation in the hyperlipidemic rats via modulating the miR-
33a and SREBP2/Pcsk9 pathway without impacting the lipid
profile serum (180). Besides, the combination of herbs usually
exerted synergistic effects. Danshen-Sanqi prescription increased
the expression of hepatic glycogen synthesis gene, GLUT-1,
GK, and GLUT-4, and reduced SREBP-1c gene related to fat
and cholesterol anabolism (181). Generally, downregulation of
SREBP-1C expression is likely due to the modulate of FXR (12).
Besides, LXRα, SREBP-1c and acetyl-CoA regulated fatty acid
and cholesterol synthesis through the tricarboxylate transport
system (182). For instance, Dingxin Recipe containing Danshen
regulated lipid metabolism by LXRα/SREBP1 but not LXRβ and
SREBP2 in ApoE-/- mice fed with a high-fat diet (95).

Carbohydrate Response Element–Binding Protein
Theoretically, ChREBP induced the expression of the acetyl-CoA
involved in DNL in NAFLD conditions (183). SAA alleviated
hepatic lipid accumulation of high-fat diet-induced NAFLD rats
partially due to the cross-talk mechanism between ChREBP and
Thioredoxin-interacting protein (TXNIP) (146). SAB played a
critical role in antisteatotic and anti-inflammatory by activating
SIRT1-mediated suppression of CRP (C-reactive protein, HNF-
1α promoter) and ChREBP expression in rats (184). However,
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Benhamed et al. observed that ChREBP expression is increased
in patients with NASH, 50% decreased in livers of severe insulin
resistance patients, which suggested that ChREBP-mediated
steatosis is not strongly associated with high insulin resistance
(185), so it is uncertain whether ChREBP would be a viable target
for therapeutics of NASH patients with severe insulin resistance.

Peroxisome Proliferator-Activated Receptors
Diversion of fatty acids away from liver into other tissues such
as peripheral adipose tissue that reduced their transport to
liver. PPARs have emerged as lipid sensors that transcriptionally
modulated the metabolic process (104). PPARα and PPARγ are
PPAR isotypes, which exhibited distinct functions.

PPARα is activated by fibrates and modulated the adaptive
response to nutritional inputs by regulating fatty acid delivery in
the liver. Furthermore, the mRNA level for PPARα progressively
reduced as NASH progresses in humans (102). Hence, PPARα

activation is central to the remission of hepatic steatosis
and NAFLD progression. Recent studies demonstrated that
the active constituents of Danshen and related preparations
enhanced PPARα in the livers of rodents and thus reduced lipid
accumulation. For instance, a pharmacological network analysis
suggested that the mechanism of hepatoprotective effects of
TSIIA, TSL, and SAB may involve modulating lipid metabolism
and anti-fibrogenesis via PPARα, CYP1A2, and MMP2 (7).
Besides, Danhong injection significantly enhanced lipolysis and
diminished fatty acids’ synthesis in the liver by increasing the
mRNA transcription of PPARα in hyperlipidemia rats (186).
Of note, cellular protection is associated with activated PPARα

involvement in 4-Hydroxynonenal metabolism (187). Ding et al.
found that Danshen injection played a mechanistic role in
hepatoprotection in mice via inducing the activation of PPARα

and subsequent degradation of 4-Hydroxynonenal (188). Worth
the whistle, 4-Hydroxynonenal degradation promoted by PPARα

activation is likely to relate with multiple enzyme systems, which
deserves further study. In addition, the action of RXRα as
a heterodimer partner with PPARα promoted the expression
of RXRα that mediated fatty acid transport to mitochondria
and oxidation (189). Yin et al. found that TSIIA reversed
lipopolysaccharide-induced the decreased gene expression of
RXRα (190). Nevertheless, the proof of other ingredients of
Danshen has not been brought yet.

In contrast to PPARα, the expression of PPARγ in the
liver increased as steatosis develop in rodents. SAA combined
with prednisone exhibited therapeutic and antiproteinuric effects
on adriamycin-induced minimal change disease rat model
through PPARγ/Angptl4 and Nrf2/Heme oxygenase-1 (HO-1)
pathways (191). Further, PPARγ is considered as a downstream
transcriptional target of Nrf2 in adipocytes differentiation (192).
Hence, the influence of SAA modulated PPARγ/Angptl4 pathway
is directly associated with Nrf2 could be studied in future.
Wnt10b is a direct target of necdin, and necdin-Wnt pathway
induced trans-differentiation of hepatic stellate cells through
epigenetic inhibition of PPARγ (193). RA against liver fibrosis via
inhibiting the expression and signaling of canonical Wnts/PPARγ

in hepatic stellate cells (151). Similarly, it has been shown
that SAB moderated lipid disorders by suppressing PPARγ-
mediated adipogenesis in mice with high-fat diet-induced obesity

(194). TSIIA inhibited adipogenesis as a natural antagonist
of PPARγ in high-fat diet-induced obese mice (195). CT
was demonstrated as an effectively anti-adipogenesis candidate
through a multimodal signaling pathway- related to PPARγ

(196). Moreover, PCA,2-(3-methoxy-4-hydroxy-phenyl)-6-(3-
hydroxypropyl)-5-methoxybenzo[b]furan (an active compound
identified from Danshen) and Danshensu Bingpian Zhi are
efficient natural PPARγ agonists that exhibited excellent effects
on insulin resistance, antiadipogenic, hepatic steatosis and
inflammation (197, 198).

The Role of CYP450 Enzymes in the Pathogenesis of
Non-alcoholic Fatty Liver Disease
Patients with NAFLD are more susceptible to drug- induced
toxicity due to altered drug metabolism (19). Previous workers
reviewed the change of human hepatic CYP450 enzymes in
NAFLD, such as CYP2E1,3A4, 1A2, 2A6, 2B6, 2C8, 2C9,
and 2C19 (199). Generally, it seems to be that the alter in
CYP2E1 and 3A4 activity is predominant in clinic studies
(19, 200). CYP2E1 is related to the regulation of oxidant
stress, insulin resistance and fatty acids, and the expression
of hepatic CYP2E1 enhanced in patients with NAFLD (201).
Danshen aqueous extracts containing TSL and SAB protected
hepatocytes from Paracetamol-induced injury via remaining
mitochondrial metabolic activity and suppressing the activity of
CYP2E1 and total glutathione depletion (202). As mentioned
above, CT and SAC reduced the content of CYP2E1 (161, 169).
Previous studies about the expression and function of CYP3A4
associated with NAFLD are a contradiction. Recently, the recent
consensus is more in favor of the protein expressions and
mRNA of CYP3A decreased in NAFLD (203, 204). CYP3A4
is in charge of the oxidative metabolism of over 50% of all
drugs prescribed in NAFLD (203). CT and TSIIA activated PXR
and subsequently induced CYP3A4 (205). CYP1A2 promoted
the generation of ROS to facilitate oxidative damage further.
And the active ingredients of Danshen, isoimperatorin and
oleanolic acid attenuating oxidative stress by modulating the
expression of CYP1A2, 2B6, and 1B1 in the liver (7). TSIIA
protected against lithocholic acid-induced liver cholestasis due
to the upregulation of PXR, as well as CYP3A11, CYP3A13, and
MDR1 (150). Additionally, Danshen polysaccharides exhibited
preventive success on the injury of chicken hepatocytes via
reducing the contents of ALT, AST, and malondialdehyde and
upregulating GSH and CYP450 (206).

The Role of the Other Proteins in the Pathogenesis of
Non-alcoholic Fatty Liver Disease
Similar to CYPs, Phase II drug metabolic enzymes including
UGTs, SULTs, and transporters (e.g., OATPs, MRPs) play various
regulatory roles in NAFLD. UGT1A6, UGT1A9, and SULT1A1,
SULT2A1 protein levels were downregulated in the liver of NASH
patients (101, 139). Literature reports that the tanshinones are the
inhibitors/substrates of UGT1A6 and UGT1A9 (207). However,
whether Danshen treating NAFLD through UGTs and SULTs
remains unclear. Besides, the induction of phase II detoxification
enzymes HO-1 and glutamate-Lcysteine ligase catalytic subunit
(GCLC) plays an antioxidant role in the Nrf2 pathway in NAFLD
(208). TSIIA alleviated acetaminophen-induced liver injury by
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activating Nrf2 and its target genes such as GCLC and HO-
1 (209). Additionally, the expression and function of OATPs
changed with the disease progression of NAFLD, and LA, RA,
SAA, SAB, SAD, and TSL are potent inhibitors of OATP1
and OATP3 (210, 211). It is worth mentioning that the other
metabolizing enzymes and transporters of drugs altered in NASH
patients when compared with healthy human livers, and the
change deserves to explore to prevent adverse drug reactions.

Clinic Studies
Clinical trials have shown that Danshen improved NAFLD
therapy. Danshen prescriptions such as Danshen powder
injection, Danning tablet and Sangming Mixture are effective
in patients with NAFLD by improving the symptoms, liver
function and blood lipids with no serious side effects (10,
212, 213, 226). Hu et al. observed that Yindan Xinnaotong
Soft Capsule is effective in the treatment of NAFLD by
regulating lipid and insulin resistance and liver function and anti-
inflammatory (214). Hence, the herbal formula that have proved
to take positive effects on the physiological features of NAFLD.
Clinically, the combination therapy of Danshen and other
agents including probiotics (e.g., Bacillus subtilis enterococcus
dual living bacteria capsule) (164), hepatic protectants (e.g.,
Magnesium isoglycyrrhizinate, Reduced glutathione, Tiopronin)
(215–217), statins (e.g., Alvastatin) (148), and even the apparatus
with liver disease treatment (227) has been already practiced,
which presented better beneficial effects than interference alone.
For instance, compound Danshen dripping pill combined with
polyene phosphatidyl choline exhibited more effective in patients
with NAFLD (218). Although claimed to be hepatoprotective
in NAFLD, the molecular mechanisms of combination therapy
with Danshen have not been clarified, further multicenter large-
sample randomized clinical trials are required to confirm the
therapeutic and safety.

SAB regulated insulin resistance mainly through the
AMPK/GLUT4 and/or SREBP-1/PPARγ signaling pathway,
and modulated fatty acids through PPAR-mediated pathways,
and exerted the effect of anti-inflammatory by STRT1/chREBP.
TSIIA exhibited the role of anti-inflammatory anti-oxidant by
regulating signals such as MAPK, JAK/STAT, and PXR/CYP and
modulated fatty acids through PPARγ and SREBP pathways. CT
exerted the effect of anti-oxidant by CYP2E1 and regulated fatty
acids through AMPK and PPAR-mediated pathways. SalA and
SalC rebalance the lipid metabolism by PPARγ and CYP2E1,
respectively. RA prevented liver fibrosis by PPARγ pathways.
Each color represents a compound, and dotted line indicates
inhibition effects.

FUTURE PROSPECTS

Although steady progress has been made in elucidating
the pathogenesis of NAFLD, determining therapeutic targets
and advancing drug development, there are still unresolved
challenges. To determine the molecular mechanisms, discern
potential therapy targets, and guide the preclinic use of
single or drug combinations, more studies are urgently needed
using in vitro and animal NAFLD models. Many advances in

the development of preclinic models such as in vitro models
and genetic and dietary animal models for NAFLD have
been made that have provided valuable insights on disease
pathogenesis. However, only a few models resemble the key
elements needed to be representative of NAFLD, while there
exists a substantial difference between rodents and humans,
such as the metabolic and transcriptomic characteristics,
including the altered immune system and the altered glycolipid
metabolism (219). Furthermore, no published data indicate
that if drugs are effective in a given model, they consistently
translate into efficacy in humans (220, 221). In addition,
the heterogeneity of NAFLD according to sex, ethnicity
and geographic region should be taken into consideration
by researchers for clinic trials (222). Besides, the poor
bioavailability, the most appropriate doses, the optimal route
of administration, frequency of drug administration and the
duration of treatment by Danshen are needed for various animal
models to study comprehensively. Specifically, it is vital to
focus on the experiment design, such as group size, controls
and animal species.

Moreover, the tendency of this field is moving rapidly
toward combination therapies, likely due to concern about
insufficient ability to attack a single target, as shown that
combining herbal medicine with other interventions presented
better beneficial effects than interference alone (223). Besides,
it is expected that researchers should discover more potent
interplayed targets to increase synergy effects in future, such as
PPARα agonist + PPARγ agonist, FXR agonist + PPARγ agonist,
and PPAR pan-agonist + LXR antagonist (224).

Finally, the verification of predictive biomarkers of disease risk
is lacking and urgently needed. Importantly, genetic risk factors
such as the PNPLA3 gene have been identified that increase the
NASH risk (225).
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