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Although research on high-density lipoprotein (HDL) has historically focused on

atherosclerotic coronary disease, there exists untapped potential of HDL biology for

the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective

properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such

as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium,

in part by modulating signal transduction pathways and sphingosine-1-phosphate

biology. Furthermore, because heart failure is a complex syndrome characterized

by multiple comorbidities, there are complex interactions between heart failure, its

comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss

the effects of heart failure and associated comorbidities on HDL, explore potential

cardioprotective properties of HDL, and review novel HDL therapeutic targets in

heart failure.
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INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of mortality worldwide (1). Heart failure (HF)
is a common result of cardiometabolic disease and a major contributor to CVD mortality (2).
The prevalence of HF in the developed world is rising and is estimated to be at 2%, while the
incidence approaches 5–10 per 1,000 persons per year (3). HF is a clinical syndrome, typically
presenting with symptoms of dyspnea, fluid retention, and decreased exercise tolerance. It usually
follows structural or functional disorders of the endocardium, myocardium, or pericardium and
is divided into three categories: HF with reduced ejection fraction (HFrEF), HF with preserved
ejection fraction (HFpEF), and HF with mid-range ejection fraction (4, 5).

Multiple rationale suggest a mechanistic link between lipoproteins and HF. Interestingly, in
HF patients, plasma cholesterol concentrations are inversely associated with mortality (6, 7). This
observation, termed the “cholesterol paradox,” could be related to malnutrition, cachexia (8, 9),
and inflammation (10–14) observed in HF patients, as well as direct effects of lipoproteins on the
myocardium. Moreover, recent Mendelian randomization studies support a causal effect of low-
density lipoprotein cholesterol (LDL-C) and triglycerides on LV mass and myocardial remodeling
(15). Analogously, a clinical trial showed that reconstituted high-density lipoprotein (HDL)
infusion shortens cardiac repolarization, demonstrating the capability of HDL to alter cardiac
electrophysiological properties (16). Both studies exemplify a direct role of lipoproteins on the
myocardium. Furthermore, lipoproteins can function as a fuel source, an important consideration
in HF patients, where the energy-starved myocardium primarily consumes ketone bodies and fatty
acids (17).
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Based on two large randomized trials, a case could even
be made for statin use in HF patients, thus LDL-C lowering
via statins is unlikely to exacerbate HF outcomes (18, 19).
We hypothesized that decreased HDL or HDL-associated
apolipoproteins could be a driver of adverse HF outcomes (18,
19). High-density lipoprotein cholesterol (HDL-C) is inversely
associated with CVD risk, as large epidemiological studies, such
as the Framingham Heart Study have shown (20). Nonetheless,
multiple randomized trials have failed to show a decrease in CVD
risk or major adverse cardiac events when increasing HDL-C
levels as a therapeutic target (21, 22). One interpretation of these
findings is that, rather than the steady-state cholesterol mass,
HDL or its associated apolipoproteins could exert beneficial
effects in the setting of HF (or even CVD or other cardiac
inflammatory disorders). For instance, our group has shown
that reduced pre-transplant HDL cholesterol efflux capacity is
associated with the progression of cardiac allograft vasculopathy,
a major cause of mortality for cardiac transplant recipients (23).
This example served as a proof-of-paradigm that HDL functions
may be relevant outside of traditional atherosclerosis. The
cardioprotective role of HDL may be related to its anti-oxidant
and anti-inflammatory properties, endothelial protection, as well
as its reverse cholesterol transport capacity (24).

Many pre-clinical studies performed mainly in rodents focus
on the effect of HDL in cardiac pathophysiology and have shown
positive effects on the myocardium. For instance, HDL can
reduce infarct size in the setting of cardiac ischemia/reperfusion
injury, attenuate apoptosis, preserve mitochondrial function, and
protect the myocardium against oxidative stress (25–31).

Although a broad range of anti-atherogenic properties have
been attributed to HDL, many are independent of its cholesterol
content and reverse cholesterol transport. The heterogeneous
properties of HDL particles are relatively complex, due to
the wide variety of proteomic and lipidomic cargo of the
particles. These characteristics lead to specific cardioprotective
functions, such as increased endothelial nitric oxide (NO)
production, reduced inflammation in endothelial cells and
macrophages, stimulation of insulin-independent glucose uptake
in the myocardium, among others. For example, the anti-
oxidative capacity of HDL is mainly attributed to its ability to
protect LDL from oxidation by free radicals. Of note, antioxidant
components of HDL, such as the HDL-associated enzyme
Paraoxonase 1 (PON1), metabolize lipid hydroperoxides and
prevent their accumulation in LDL particles, decreasing LDL
endocytosis by macrophages and formation of foam cells, thus
averting the formation of atherosclerotic plaque (32–37).

Recent advances in proteomic characterization have led to
the identification of novel HDL subclasses that will, in all
likelihood, eventually supersede the historical size and density-
based characterization system (38, 39). For historical reference,
larger HDL2 particles are inversely associated with CVD risk,
while smaller, denser HDL3 subclass exerts anti-atherogenic,
anti-oxidant, and anti-inflammatory functions (40, 41), and these
subclasses are also associated with mortality in acute HF patients.
Total and small HDL particles (diameter < 8.8 nm, mostly
HDL3), measured by nuclear magnetic resonance spectroscopy,
were inversely associated with 3-month mortality in patients

with acute HF, while both large HDL and HDL-C demonstrated
no significant association (42). Similarly, in HFrEF and HFpEF
patients, total and small HDL were inversely associated with
adverse outcomes (43).

To the best of our knowledge, the rigorous analysis of HDL
proteomics has yet to be performed in advanced HF cohorts.
Nonetheless, multiple preclinical and human epidemiological
studies support the concept of pleiotropic effects of HDL-
associated apolipoproteins (44, 45), which may play a significant
role in the pathogenesis of HF. These observations led us to
hypothesize that specific apolipoproteins and enzymes associated
with HDL particles may potentially explain the cholesterol
paradox and the underlying cardioprotective effects of HDL,
which could be relevant therapeutic targets in HF. In this review,
we will discuss the effects of HF and associated comorbidities on
HDL, explore potential cardioprotective properties of HDL, and
review novel HDL therapeutic targets in HF.

EFFECTS OF HEART FAILURE AND
ASSOCIATED COMORBIDITIES ON HDL

Advanced HF is a multisystem syndrome often identified in
patients with multiple cardiometabolic comorbidities; hence,
both HF and its associated comorbidities can have complex
effects on lipoprotein biology. Hepatic, renal, and gastrointestinal
malperfusion secondary to reduced cardiac index and increased
filling pressures all contribute to a vicious cycle of decreased
nutritional intake, increased inflammation, metabolic stress,
perturbations that can have important effects on lipoprotein
homeostasis (Figure 1).

Effects of Chronic Inflammation on HDL
HF is characterized by a chronic inflammatory state. While the
increase in pro-inflammatory cytokines in HF has been well-
documented, there is still debate regarding the extent to which
increased cytokines are directly responsible for deleterious results
or are simply a reflection of the ongoing pathophysiological
processes (46–49). Nevertheless, chronic inflammatory states,
such as that observed in HF, can affect plasma HDL levels,
composition, and overall function. For instance, plasma HDL
contains lower cholesterol ester levels, higher free cholesterol,
triglycerides, and fatty acids under inflammatory states (50).
Moreover, inflammation strips HDL from key proteins that
are important for its normal function (e.g., lecithin-cholesterol
acyltransferase (LCAT), cholesteryl ester transfer protein,
and transferrin), as well as certain important apolipoproteins
(e.g., apolipoproteins A-I and M) (51–55). Apolipoprotein A-I
(ApoA-I) is the primary mediator of cholesterol efflux, the
key rate-limiting step of reverse cholesterol transport, and the
main protein component of HDL particles (56–59). In the
same context, apolipoprotein M (ApoM), a cardioprotective
apolipoprotein (45), is a negative acute response protein, levels
of which decrease in response to inflammation and infection
(52, 60, 61). The decrease in HDL levels and alteration of its
structural composition in inflammatory states impair the reverse
cholesterol transport process and HDL’s anti-inflammatory
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FIGURE 1 | Apolipoproteins role in heart failure progression. Heart failure causes reduced cardiac index and increased filling pressures, which subsequently leads to

hepatic injury that can affect apolipoprotein production. In addition, heart failure-induced kidney injury may increase renal excretion of apolipoprotein M (ApoM).

Co-morbidities such as diabetes and obesity are also known to reduce circulating apolipoproteins, contributing to inflammation, thus exacerbating kidney and hepatic

injury, and provoking further cardiac dysfunction.

and anti-oxidant properties. In the long run, this can lead to
the development of atherosclerosis and increased risk of CVD
and HF.

How inflammation affects HDL particle number and
composition is not very well-understood. In mice, endotoxin
directly impairs active cholesterol efflux by ATP-binding
cassettes A1 and G1 (ABCA1 and ABCG1) transporters, as well
as scavenger receptor class B type I (SR-B1) mediated passive
diffusion (62–64). Meanwhile, inflammatory cytokines, such
as tumor necrosis factor alpha (TNF-α) and interleukins 1
and 6 (IL-1β, IL-6), upregulate the expression of endothelial
lipase (EL), which exhibits an inverse association with HDL
levels (65, 66). Badellino et al. showed that experimental
administration of low-dose endotoxin in humans decreases HDL
phospholipid, corresponding with EL peak concentration (67).
Tietge et al. (68) reported that mice that overexpress secretory

phospholipase A2 have changes in HDL composition, and under
inflammatory conditions, exhibit increased HDL catabolism.
Interestingly, in a murine model of pressure overload-induced
HF, EL knockout exacerbated cardiac dysfunction compared
to wild-type controls, consistent with the hypothesis that EL
provides an alternative pathway for free fatty acid uptake as a
source of energy and protects the failing myocardium (69). Thus,
it is plausible that chronic inflammation may be upregulating the
expression of EL, which leads to HDL catabolism to release fatty
acids to the energy-starved myocardium at the expense of other
cardioprotective components of the HDL particle.

Effects of Renal Dysfunction on HDL
Normal renal function is crucial for proper HDL function (70).
Renal dysfunction induces pathologic alterations in lipoprotein
metabolism in general, and HDL in particular (71). HF can
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induce renal dysfunction, which is a strong independent
predictor of poor cardiovascular outcomes (72, 73). Cardiorenal
syndrome is a term that describes the mutual interaction between
the heart and kidneys, considering that injury to one of the organs
usually causes dysfunction of the other (74).

Renal dysfunction and the associated chronic inflammatory
state present in cardiorenal syndrome correlate with increased
oxidative stress across multiple systems (75). Oxidized HDL
(ox-HDL) is a modified HDL observed during conditions of
increased oxidative stress and reduced anti-oxidant capacity
present in cardiorenal syndrome (76, 77). Various HDL and
ApoA-1 post-translational modifications can result in ox-HDL
formation (76, 78, 79), which has been linked to an increased
risk of cardiovascular events (80). Myeloperoxidase (MPO) can
modify ApoA-I leading to ox-HDL that is less avid in its
ability to bind SR-BI receptors and dysfunctional for normal
cholesterol efflux activity (81, 82). Conversely, hypochlorite-
generated ox-HDL exhibits increased affinity toward SR-BI,
albeit with less cholesterol efflux capacity than normal HDL
(83). We propose that various post-translational modifications
(for example, MPO adducts) might alter specific ox-HDL
characteristics (for example, higher vs. lower affinity toward
SR-BI); nonetheless, renal dysfunction can contribute toward
“dysfunctional” HDL particles. Moreover, ox-HDL exhibits
diminished endothelial nitric oxide synthase (eNOS) mediated
endothelial protective function as well as anti-apoptotic activity,
which leads to impaired endothelial repair and increased pro-
inflammatory activation (84–86).

In a proteomic analysis of HDL in uremic patients, isolated
HDL particles lost their anti-inflammatory properties and
induced the production of inflammatory cytokines (87). HDL
isolated from these patients contained high levels of serum
amyloid A (SAA), a protein known to promote inflammatory
cytokine production and impair the anti-inflammatory capacity
of HDL (87). Furthermore, HDL from uremic patients may
contribute to the systemic inflammatory state in chronic kidney
disease patients by decreasing apoptosis of polymorphonuclear
leukocytes (88).

Effects of Diabetes on HDL
Diabetes is a pathophysiological process that can significantly
impact the biogenesis of HDL, and cause alterations in
myocardial metabolism, impairing metabolic flexibility and
leading to diabetic cardiomyopathy (89). Oxidative stress,
intramyocardial inflammation, cardiac fibrosis, and cardiac
apoptosis all contribute to diabetic cardiomyopathy (90), which
can in theory be mitigated by the anti-inflammatory and anti-
oxidative functions of HDL.

In diabetes, hyperglycemia-induced advanced glycation end
products, oxidative stress, and inflammation can negatively
affect normal HDL function and composition, potentially
contributing to an increased risk of HF (91). Glycated HDL loses
atheroprotective properties and cholesterol-accepting capacity,
leading to the acceleration of atherosclerosis (92). HDL isolated
from diabetic patients is also rendered ineffective concerning
endothelial protective function (93). Many of the pleiotropic

effects of HDL are attributed to ApoM-bound sphingosine-1-
phosphate (S1P), which is diminished in diabetic patients mainly
due to glycation of ApoM that results in the impaired binding
capacity to S1P (94).

Effect of Obesity on HDL
Obesity has been established as a major risk factor for
hypertension, CVD, and left ventricular hypertrophy, all risk
factors for the development of HF (95). Obesity is associated
with reduced HDL-C. In a large cross-sectional study, HDL-C is
inversely associated with body mass index (BMI) (96). Obesity
can also affect HDL subclasses and metabolism likely reflecting
an underlying change in key HDL proteins and lipids (97, 98).
Plasma ApoA-I exhibits a linear inverse correlation with BMI
(99), while ApoM is also reduced in obese individuals (100)
and is inversely associated with non-alcoholic fatty liver disease
(NAFLD) (101), another comorbidity associated with obesity and
an emerging risk factor for HF, in particular HFpEF (102).

Proteomic studies of HDL in patients with obesity and other
comorbidities have also been informative. In NAFLD patients,
quantitative changes occur in the HDL proteome, relative to
morbidly obese patients without steatosis (103). One challenging
aspect of studying comorbidities related to obesity is selecting
the best control or reference population. Comparing obese
patients with comorbidities of obesity vs. more metabolically
healthy obese patients will likely minimize differences between
groups. Another challenge is that many unmeasured confounders
might be associated with obesity. Further prospective studies are
required to unravel the complex interactions between obesity
and its comorbidities, including HF, and how these interactions
might be mediated by lipoproteins. In particular, the need
for prospective studies is highlighted by the focus of older
literature on HDL subclasses, and new studies suggesting that
meals of various fat compositions can acutely affect the HDL
proteome (104). Altogether, obesity itself, or its comorbidities,
may alter HDL proteomic and lipidomic contents, impairing
potential cardioprotective functions. This area is both complex
and rapidly evolving.

Effect of Atrial Fibrillation on HDL
Metabolic disease, obesity, and HF can also result in arrhythmias.
The most common arrhythmia observed in patients is atrial
fibrillation (AF). Low baseline HDL-C is associated with an
increased risk of AF (105–108). AF is associated with reduced
HDL quality as AF was associated with reduced HDL cholesterol
efflux capacity, HDL-particle number, ApoA-I levels, and
reduced LCAT activity; interestingly, all these indices improved
following the restoration of sinus rhythm (109). Further
validation of these findings would be encouraging, especially
because the mechanistic link between AF and HDL remains
unclear, particularly in the acute setting. One possible theory is
the role HDL plays in myocardial membrane stabilization (110).
In the more chronic setting, other HDL attributes including
anti-inflammatory, anti-oxidant, and anti-atherogenic properties
could interact with AF development and severity.
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Effect of Aging on HDL
Aging is a well-established risk factor for the development and
progression of HF, resulting from the deterioration of both
cardiac structure and function, as well as the high risk of co-
morbidities. Elderly patients have increased HDL oxidation,
which can impair the normal protective capacity against LDL
oxidation, and lead to the acceleration of atherosclerosis and
CVD, both risk factors for HF (111).

Holzer et al. (112) compared HDL isolated from healthy
young and elderly patients and found that aging alters HDL
composition and function. HDL from elderly subjects had higher
SAA and sphingomyelin, while levels of total cholesterol were
reduced (112). Furthermore, HDL isolated from older patients
demonstrated reduced cholesterol efflux capacity, principally
through the ABCA1 pathway (113). In the same context,
aged murine models have exhibited reduced ApoM secretion
from the liver, with consequent impairment of S1P signaling,
which reduces resistance to injury-induced vascular leak and
precipitates organ fibrosis (114).

Oxidative stress is one of the main pathophysiological
processes associated with aging (115) and is involved in the
development of HF (116). PON1 is one of the most prominent
antioxidant components of HDL (112, 117, 118). In elderly
patients, it has been shown that PON1 activity and ApoE levels,
both having important antioxidant properties, are diminished
(112, 119). Overall, these studies suggest that aging may alter
HDL structure and properties, resulting in reduced antioxidant
capacity and cholesterol efflux, which can contribute to higher
susceptibility to CVD and advance processes associated with
HF mortality.

Inflammation, renal dysfunction, diabetes, obesity, atrial
fibrillation, and aging can either occur antecedent to HF or
comorbid with it. These HF comorbidities, and others, can have a
tremendous impact on lipid metabolism andHDL biology, which
in turn may impact disease progression. In the next section, we
discuss how changes in HDLmay alter the development of HF or
HF outcomes.

SALUTARY EFFECTS OF HDL ON
PREVENTION AND OUTCOMES IN HEART
FAILURE

Atheroprotective Functions of HDL
Atherosclerotic CVD can lead to ischemic cardiomyopathy,
which is a major clinical cause of HF (120). LDL-C is a critical,
causal factor in the pathogenesis of CVD (121). In animal
models, HDL has been shown to have a protective role against
the development of atherosclerosis and CVD (122). HDL exerts
its protective effect on vascular endothelium mainly through
stimulation of eNOS increasing NO production (123, 124).
HDL is critical for the reverse cholesterol transport process,
which removes excess cholesterol from the atherosclerotic
plaques, reducing the risk and progression of CVD (125,
126). Additionally, HDL has anti-apoptotic, anti-inflammatory,
and antithrombotic protective properties on the vascular
endothelium (34, 124, 127).

Cardioprotective Functions of HDL
Both in vitro and in vivo models have repeatedly demonstrated
multiple cardioprotective properties of HDL particles on
many levels. HDL has shown a direct protective effect on
cardiomyocytes and endothelial cells, independent of its effect
on the coronary vasculature or atherosclerosis (16, 26, 128–
131). It has been proposed that HDL mediates direct action on
cardiomyocytes through its different array of apolipoproteins
(e.g., ApoA-I and ApoM), which interact with different receptors
expressed on cardiomyocytes regulating various intracellular
signaling pathways. Furthermore, HDL could also indirectly
protect cardiomyocytes through its systemic and local anti-
inflammatory and anti-oxidative effects (132, 133).

In murine models, HDL inhibited mechanical stress-
induced myocardial cell hypertrophy and autophagy through
downregulation of the angiotensin II type 1 receptor (129).
Angiotensin II receptors are upregulated on cardiomyocytes
exposed to mechanical stress, and blockade of the renin-
angiotensin pathway is a sine qua non of HF therapy.
Downregulation of these receptors by HDL would be an
important mechanism by which this particle may improve
HF outcomes. Further, multiple in vitro studies show that
HDL also protected against doxorubicin-induced cell injury on
cultured cardiomyocytes (26, 134, 135), mostly through reducing
doxorubicin-induced apoptosis. These studies are clinically
important given that anthracyclines, such as doxorubicin,
remain an important cause of cardiotoxicity and clinical HF.

HDL has also been associated with the preservation of
endothelial barrier integrity. HDL increases NO production
in endothelial cells, which enhances endothelial vasodilation
and preserves endothelial integrity mainly through an SR-
BI-dependent mechanism (136–140). It also modulates the
contractile state of subjacent myocytes via paracrine mechanisms
(141). Additionally, HDL contributes to endothelial repair by
increasing the number and function of endothelial progenitor
cells at sites of endothelial injury (128). Moreover, HDL-carried
glycosphingolipids have demonstrated an anti-apoptotic capacity
against stress-induced endothelial death (142). Van Linthout et al.
(130) reported that HDL protects against myocardial dysfunction
and hyperglycemia-induced cardiomyocyte apoptosis in diabetic
murine models mainly via the phosphoinositide 3-kinase /
protein kinase B (PI3K/Akt) pathway. Altogether, these studies
suggest multiple mechanisms by which HDLmay directly protect
cardiomyocytes in the failing myocardium.

HDL Anti-inflammatory Properties
It has previously been established that systemic inflammatory
mediators (e.g., C reactive protein (CRP), TNF-α) can contribute
to the development of HF, and inflammation can induce
cardiomyocyte apoptosis and endothelial dysfunction (143).
Multiple studies have demonstrated anti-inflammatory
properties of HDL. For instance, HDL inhibits endothelial
activation and decreases the expression of adhesion molecules
(e.g., VCAM-1 and ICAM-1), which prevents the recruitment
of leukocytes in response to myocardial cell injury, and can
attenuate the insult due to reduced chemokine secretion
and impede further recruitment of inflammatory cells. HDL
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also blocks T-cell binding and activation of monocytes,
which results in diminished production of pro-inflammatory
cytokines (144–146).

Moreover, recent studies suggest that the NOD-, LRR- and
pyrin domain-containing protein 3 (NLRP3) inflammasome
plays a role in the development of atherosclerosis, and it has also
been tied to post-ischemic remodeling, and HF (147–149). HDL
can suppress the activation of the NLRP3 inflammasome, likely
by simultaneous downregulation of IL-1β, and reduced activation
of caspase 1 (150). Other anti-inflammatory properties of HDL
are promoting the expression of anti-inflammatory cytokines,
such as transforming growth factor-β2 (TGF-β2) in endothelial
cells (151, 152) and neutralizing pro-inflammatory activity of
both, IL-6 and CRP (153). In summary, these and other anti-
inflammatory properties of HDL merit further exploration and
offer a variety of targets for developing pharmacologic therapies.

HDL Anti-oxidative Properties
One of the hallmarks of HF pathophysiology is stress-induced
myocardial cell death with subsequent proliferation, fibrosis,
and remodeling (154, 155). HDL has demonstrated many
antioxidant properties that may combat these processes. Treating
cultured cardiomyocytes with HDL protects against stress-
induced cell death (156). This effect has been suggested to
be mediated by the anti-oxidative enzyme PON1 (157–160).
Another antioxidant enzyme present on HDL is the platelet-
activating factor acetylhydrolase that induces the hydrolysis of
fatty acids and phospholipids peroxides (161, 162). Furthermore,
HDL blocks eNOS uncoupling in myocardial cells, reducing the
formation of reactive oxygen species (163–166). In addition,
HDL-associated lipoproteins (ApoA-I, ApoA-II, ApoA-IV, ApoE,
etc.) neutralize the remaining phospholipid hydroperoxides
transferred to HDL (167). Finally, HDL can also indirectly reduce
oxidative stress secondary to its anti-inflammatory properties
discussed previously (168).

HDL Anti-fibrotic Properties
HDL can protect against myocardial fibrosis through inhibition
of the pro-fibrotic transforming growth factor-β1 (TGF-β1),
which induces collagen production and deposition in the
myocardium of murine models (169, 170). In a study on
aortic endothelial cells in vitro, HDL reduced TGF-β1-induced
endothelial-mesenchymal transition and attenuated fibrosis
of the vascular wall in response to various insults (171).
Alternatively, HDL may exhibit anti-fibrotic properties by
binding and potentially sequestering S1P (through ApoM).
Although this mechanism has not been directly demonstrated
in the myocardium, this type of biology has been demonstrated
in the retina, where ApoM can act as a negative regulator of
S1P (172).

Cardioprotective Role of ApoA-I/SR-BI Axis
ApoA-I, the most abundant protein constituent of HDL, is
involved in the systemic anti-inflammatory and anti-oxidative
cardioprotective properties of HDL (173). ApoA-I is the
main ligand of SR-BI and thus is very important for the
cardioprotective functions of HDL previously described. Low

ApoA-I levels are associated with left ventricular dysfunction and
adverse outcomes in patients with non-ischemic HF (173, 174).
Gombos et al. have shown that ApoA-I is inversely associated
with NT-proBNP and mortality in HF (175). Similarly, Florvall
et al. (176) have suggested that serum ApoA-I can predict CVD
and mortality in elderly men.

ApoA-I’s cardioprotective properties may be related to
its anti-inflammatory and antioxidative properties. ApoA-I
attenuates inflammation and is inversely correlated with CRP
and fibrinogen levels (173). In addition, it blocks neutrophil
activation and expression of the surface adhesion proteins
that regulate leukocyte migration (177, 178). Bursill et al.
(144) showed that when mice were injected with ApoA-I,
the expression of chemokine receptors involved in leukocyte
migration was significantly reduced. ApoA-I can also enhance
the proliferation of endothelial progenitor cells and stimulate
angiogenesis through the cell surface F1-ATP synthase, a high-
affinity receptor of ApoA-I (179). Moreover, ApoA-I accelerates
endothelial regeneration and prevents transplant vasculopathy in
murine models (132, 180).

ApoA-I binds to SR-BI, which is mainly expressed in
the liver. SR-BI mediates selective uptake of cholesterol, as
well as HDL lipid hydroperoxides, and plays a major role
in modulating HDL composition and therefore its function
(Figure 2A). Muthuramu et al. described a cardioprotective
role of SR-BI (181). They performed a study using SR-BI
knockout mice that received either adeno-associated virus 8
(AAV8) expressing SR-BI (via a hepatocyte-specific promoter)
or a control AAV8. Notably, when SR-BI knockout mice are
exposed to pressure overload, they develop worse pathological
ventricular hypertrophy, interstitial and perivascular fibrosis,
and myocardial apoptosis than control mice. Interestingly, in
mice that received AAV8-SR-BI, the plasma lipoprotein profile
normalizes, attenuates cardiac dysfunction, and mortality is
lower compared to mice that received Null injection. In addition,
mice that underwent SR-BI gene transfer had lower oxidative
stress than those that did not (181). Similarly, Durham et
al. demonstrated that pretreatment with HDL protects against
myocardial cell necrosis via the PI3K/Akt pathway (131). This
finding was not observed in SR-BI knockout cells, suggesting
that SR-BI is the upstream mediator of the PI3K/Akt signaling
in cardiomyocytes and that HDL could be mediating this effect
through interaction with SR-BI via ApoA-I (131). These studies
suggest that ApoA-I, via SR-BI, may be an important mediator of
the cardio-hepatic axis.

Cardioprotective Role of the
ApoM/S1P/S1PR Axis
ApoM is an apolipoprotein that binds S1P via its hydrophobic
binding pocket, is secreted mostly by hepatocytes, and to a lesser
extent by renal proximal tubular cells (182, 183). Although ApoM
is only found in 5% of HDL particles, it exerts many of the
beneficial effects of HDL through S1P signaling (Figure 2B).
ApoM acts as a chaperone for S1P carrying about 70% of plasma
S1P in the circulation, as well as increasing its efflux from
erythrocytes to HDL (184). ApoM that is secreted from the
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FIGURE 2 | Apolipoprotein-dependent signal transduction pathways (A) Apolipoprotein A-I (ApoA-I) is the major component of high-density lipoproteins (HDL), and it

binds scavenger receptor class B type I (SR-BI), which mediates selective uptake of cholesterol. SR-BI may also stabilize HDL particles allowing access to S1P

receptors or activate other signaling cascades. (B) HDL and apolipoprotein M (ApoM)-dependent activation of S1P receptors (S1PR) leads to downstream G-protein

coupled receptor signaling in both endothelial cells and cardiomyocytes. This signaling promotes diverse physiological responses including maintenance of endothelial

barrier integrity, promotion of cell survival, and anti-inflammatory effects. Modified from (240–242).

proximal tubular cells in the kidney also prevents renal excretion
of S1P (185).

Recent studies indicate a potential protective role of ApoM
on atherosclerosis and CVD (186–188). ApoM has a protective
effect on vascular endothelium as ApoM transgenic LDL receptor
knock out mice developed smaller atherosclerotic lesions than
control mice (189, 190). Atheroprotective functions of ApoM on
vascular endothelium are likely mediated by S1P through S1P
receptor 1 (S1PR1) signaling (191). ApoM also has a significant
anti-inflammatory effect in vivo and in vitromainly mediated by
the S1P/S1PR axis (192).

Multiple mechanisms have been invoked for how ApoM may
improve myocardial health or delay disease progression. Recent
studies in murine models have demonstrated that ApoM/S1P
enhances endothelial barrier function and improves cardiac
outcomes through different signaling pathways. For example, in
LPS-treated mice, ApoM attenuated LPS-induced organ injury
as well as cardiomyocyte cell death via PI3K/Akt downstream
of S1PR1/3 (193). Moreover, in vitro studies of human umbilical
vein endothelial cells showed that ApoM/S1P markedly reduced
pro-inflammatory cytokines, including TNF-α, inhibiting the
inflammatory response, and reduced endothelial injury in a
PI3K/Akt and S1PR2 dependent manner (194). Furthermore,

ApoM knockout mice demonstrate impaired endothelial barrier
integrity compared to wild-type mice (195). Reconstitution of
plasma ApoM/S1P or treatment with an S1PR1 agonist rapidly
reversed the vascular leak and restores endothelial integrity (195).
S1P, acting through the receptors 1-3 (S1PR1-3), plays a crucial
role in the regulation of the endothelial cell cytoskeleton, and is
necessary for its proper function as well as new vessel formation.
Multiple studies have demonstrated S1P to be a significant
mediator of angiogenesis due to its potent chemoattractant
properties for endothelial cells (196–198). S1P was found to have
a higher capacity for stimulation of endothelial cell migration
than knownmolecules such as vascular endothelial growth factor
or basic fibroblast growth factor (199). Furthermore, S1P acting
mainly via S1PR1 and S1PR3 have been repeatedly demonstrated
to be crucial for endothelial migration (200, 201), endothelial
integrity (202–204), and normal barrier function (205, 206). S1P
effects on endothelial cells are mainly mediated by pathways
involving Rho GTPases (207–209) as well as the PI3K/Akt
pathway (210).

In addition to its protective role on the endothelium,
S1P has shown multiple cardioprotective properties. Zhang
et al. (211) showed that S1P signaling through S1PR1 in
murine models activated the downstream PI3K/Akt pathway
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and attenuated myocardial cell injury in response to severe
hypoxic stress. Similarly, Means et al. found that stimulation
of S1PR2 and S1PR3 receptor activates PI3K/Akt pathway and
protects against ischemia-reperfusion injury (212). Theilmeier
et al. have also demonstrated that HDL and S1P, both acting
through S1PR3, and NO-dependent mechanisms, protect against
ischemia reperfusion-induced myocardial injury in ex vivo
and in vivo mouse models (25). They also found that S1P
reduced neutrophil recruitment to the site of injury and
decreased cardiomyocyte apoptosis (25). Furthermore, S1PR2
showed some cardioprotective properties as well by activating
signal transducer and activator of transcription 3 (STAT3)
through ERK1/2 and Src-dependent mechanisms (26). STAT3
is important for myocardial adaptation to stress and has been
shown to preserve cardiac function through its anti-apoptotic
and anti-fibrotic effects (213–218). While these data support
multiple mechanisms for S1P-mediated anti-apoptotic effects on
cardiomyocytes through multiple S1P receptors, both in our
experience and others, it is challenging to detect any significant
S1PR2 mRNA expression in the myocardium in mice (219).

These studies support the concept that ApoM, via S1P, can
reduce vascular leak, inflammation, and promote cell survival,
all of which are likely critical targets for multiple organs in
the syndrome of HF. Recently, our group measured circulating
ApoM across 3 major HF cohorts comprising nearly 2,500
patients. In our study, reduced ApoM levels were significantly
associated with the risk of all-cause mortality (45). These
associations were independent of HDL-C andApoA-I, natriuretic
peptide levels, etiology of HF, and a commonly used HF risk
score, and were observed in both HFrEF and HFpEF. Although
we demonstrated a strong correlation between ApoM and S1P
on HDL particles, mediation analysis suggested that ApoM
could also have effects independent of S1P. Pathway analysis
demonstrated that ApoM showed that the acute phase response
was not only the most significant pathway associated with ApoM
but also that ApoM was inversely associated with inflammation,
as predicted by murine studies. In a follow-up study, we screened
the plasma proteome to identify proteins that mediated the effect
of diabetes on HFpEF outcomes. The only protein that fulfilled
the criteria of this a priori analysis was ApoM, which was shown
to mediate an astounding 70% of the effect of diabetes on HFpEF
outcomes (220).

NOVEL HDL THERAPEUTICS IN
CARDIOVASCULAR DISEASES

Multiple studies have shown a promising role for HDL-targeted
therapies in HFrEF (221), HFpEF (221, 222), and diabetic
cardiomyopathy murine models (223). In these animal models,
HDL reversed pathologic features of myocardial hypertrophy,
fibrosis, and stimulating reverse remodeling in pre-established
HF. Multiple synthetic compounds have been designed to
mimic the bioactive molecules of HDL and replicate their
cardioprotective functions.

ApoA-I Milano is an ApoA-I mutant first described in
Northern Italy in 1980 (224, 225). Heterozygous carriers of the

mutation were thought to exhibit increased life expectancy and
believed to develop atherosclerosis at lower rates compared to
the normal population (226, 227). MDCO-216 is a recombinant
HDL formulation of ApoA-I Milano in combination with
phospholipids, which has been used to study ApoA-I Milano’s
potential therapeutic effects (183, 228–230).

Mishra et al. (222) reported that MDCO-216 attenuated
cardiac hypertrophy, increased capillary density, and decreased
interstitial fibrosis in murine models. In a subsequent study,
Mishra et al. showed similar results of MDCO-216 in murine
models of hypertension-associated cardiac hypertrophy (170).
Aboumsallem et al. have demonstrated that MDCO-216
improves systolic and diastolic dysfunction, reduces myocardial
fibrosis, and enhances myocardial vascularity in mice with HF
(221). Further, Aboumsallem et al. showed thatmice with diabetic
cardiomyopathy that were treated with MDCO-216 presented
regression of myocardial dysfunction and pathological cardiac
remodeling (223). Altogether, these studies suggest MDCO-216
might be useful for HFrEF, HFpEF, or diabetic cardiomyopathy.

ApoA-I gene therapy strategies have also been employed in
HF rodent models. Gordts et al. (231) evaluated if selective gene
transfer may protect against the development of HF. In LDL
receptor-deficient subjects to experimental MI, viral-mediated
gene transfer of ApoA-I resulted in reduced infarct expansion and
inhibition of left ventricular dilatation compared with controls.
Similarly, Amin et al. studied the effect of selective AAV8-human
ApoA-I (AAV8-ApoA-I) gene transfer on cardiac remodeling,
induced by transverse aortic constriction in LDL deficient mice
(232). They reported that AAV8-ApoA-I transduced mice had
significantly attenuated septal wall thickness, cardiomyocyte
cross-sectional area, and interstitial cardiac fibrosis compared
to control mice, indicating reduced remodeling, and preserved
systolic function reserve. Diastolic function was also significantly
improved in mice transduced with the ApoA-I AAV8 (232).

ApoA-I mimetic peptides have also shown promise in
preventing or attenuating myocardial dysfunction in murine
models of MI and sepsis. Hamid et al. (233) have demonstrated
that the ApoA-I mimetic peptide L-4F prevents prolonged and
excessive inflammation after MI and improves post-MI LV
remodeling. L-4F suppressed proliferation of myocardial pro-
inflammatory monocytes and macrophages in murine models
of reperfused MI (233). They suggested that L-4F could be
used as a therapeutic adjunct in humans with MI to limit
inflammation and alleviate the progression to HF (233). Another
ApoA-I mimetic peptide D-4F has been also shown to improve
vascular function, decreasemyocardial inflammation, and restore
angiogenic systemic sclerosis in murine models (234). Moreover,
the ability of ApoA-I mimetic peptides to reduce sepsis-
induced myocardial injury was studied by Moreira et al. (235).
They demonstrated that the novel ApoA-I mimetic peptide
D-4F reduced inflammation, attenuated vascular permeability,
preserved myocardial function, and baroreceptor sensitivity in
murine models of sepsis.

The AEGIS-I trial (Apo-AI Event Reducing in Ischemic
Syndromes I), a multi-center, randomized, double-blind,
placebo-controlled 2b trial assessed the safety of CSL112, an
infusible plasma-derived ApoA-I, in patients with myocardial
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infarction (236). CSL112 was generally safe and well-tolerated
(236). Currently, the AEGIS-II trial is underway to evaluate
whether CSL112 can reduce the risk of major adverse
cardiovascular events (237). To our knowledge, there are
no active trials of CSL112 in human HF, although the hypothesis
that CSL112 may benefit patients with acute HF should be
pursued in randomized-controlled clinical trials (238).

Beyond therapeutics targeting only ApoA-I, Swendeman
et al. (239) developed a recombinant ApoM fused to the
constant domain of immunoglobins (ApoM-Fc) to prevent
its rapid degradation. When this novel protein was tested in
multiple systems, ApoM-Fc selectively activated S1PR1, leading
to enhanced endothelial barrier integrity and downstream
eNOS-dependent secretion of NO and subsequent vasodilation,
which could be used therapeutically to control hypertension. In
addition, they demonstrated improved outcomes in murine
models of myocardial ischemia/reperfusion and stroke,
by promoting endothelial function and reducing further
tissue inflammation.

Altogether, apolipoprotein A-I and ApoM based therapeutics
have demonstrated potential in preclinical models of cardiac
dysfunction. Unfortunately, to our knowledge, the human
translation of these therapeutics has not been tested in
randomized controlled clinical trials in HF. In addition,
understanding regarding the synergistic potential of these
apolipoproteins (A-I and M), as well as other functions of HDL,
remains poorly understood.

CONCLUSIONS

HDL apolipoproteins remain a promising therapeutic target
in patients with HF. The advances in proteomic and lipidomic

technologies have permitted the discovery of HDL components,
and assessment of their impact on HF pathophysiology,
predominantly in preclinical models. ApoA-I and ApoM

are especially promising as they have shown multiple
cardioprotective properties in murine models. Further studies
are needed to elucidate the functional properties of HDL
proteomic and lipidomic components and to explore possible
therapeutic targets in patients with HF.
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