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Chemotherapy and targeted therapies have significantly improved the prognosis of
oncology patients. However, these antineoplastic treatments may also induce adverse
cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction.
These common cardiovascular complications, commonly referred to as cardiotoxicity,
not only may require the modification, suspension, or withdrawal of life-saving
antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly
impact the quality of life and overall survival, regardless of the oncological prognosis.
The onset of cardiotoxicity may depend on the class, dose, route, and duration of
administration of anticancer drugs, as well as on individual risk factors. Importantly,
the cardiotoxic side effects may be reversible, if cardiac function is restored upon
discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac
muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may
also subsequently evolve in symptomatic congestive heart failure. Hence, there is
an urgent need for cardioprotective therapies to reduce the clinical and subclinical
cardiotoxicity onset and progression and to limit the acute or chronic manifestation of
cardiac damages. In this review, we summarize the knowledge regarding the cellular
and molecular mechanisms contributing to the onset of cardiotoxicity associated
with common classes of chemotherapy and targeted therapy drugs. Furthermore, we
describe and discuss current and potential strategies to cope with the cardiotoxic side
effects as well as cardioprotective preventive approaches that may be useful to flank
anticancer therapies.

Keywords: cardiotoxicity, cardioncology, cardiomyocyte death, cardiomyocyte dysfunction, cardiomyocyte
survival, chemotherapy, targeted therapy, cardioprotection

INTRODUCTION

The introduction of antineoplastic drugs has been a turning point for prognosis improvement
in oncology patients. However, a large number of chemotherapeutic agents have adverse
cardiovascular effects, leading to acute or delayed onset of cardiac dysfunction, commonly referred
to as cardiotoxicity. Although the definition of cardiotoxicity is not universally accepted, in clinical
practice, cardiotoxicity commonly indicates a decline in patients’ cardiac function measured as
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left ventricle ejection fraction (LVEF). Various organizations
and clinical committees defined cardiotoxicity using different
threshold changes in LVEF [reviewed in (1)]. Treatment with
anthracyclines, namely the chemotherapy class of drugs that
generated the most concerns about cardiotoxicity, is associated
with an incidence of cardiac dysfunction ranging between
2% and 48% [reviewed in (2–7)]. The Cardiac Review and
Evaluation Committee (CREC), a retrospective study aiming
at the evaluation of the cardiotoxicity of the anti-HER2
agent trastuzumab with or without concomitant anthracycline
treatment, defined cardiotoxicity as a reduction in LVEF of at
least 5% to below 55% with concomitant signs or symptoms of
congestive heart failure (CHF), or a decrease in LVEF of at least
10% to below 55% without associated signs or symptoms (8).
Although the assessment of LVEF is a well-established clinical
procedure for the early recognition of cardiotoxic side effects
to prevent irreversible cardiac damage and heart failure (HF), a
reduction in LVEF may not be an effective parameter to detect a
subclinical myocardial dysfunction that subsequently evolves in a
symptomatic CHF (9) [reviewed in (1, 10)].

During the last decades, the cardiotoxic effects of
several classes of chemotherapy drugs (anthracyclines,
fluoropyrimidines, taxanes, and alkylating agents) and
targeted therapies (targeting monoclonal antibodies and
kinase inhibitors) were documented, and the underlying
molecular mechanisms were investigated to suggest and develop
potential strategies to avoid or reduce these effects (Table 1).
Based on retrospective pathophysiological analysis of cancer
patients with HF after chemotherapy, cardiotoxic side effects
can be defined as irreversible (type I) or reversible (type II)
[reviewed in (11, 12)]. Irreversible cardiotoxicity (type I) is
usually observed in anticancer regimes causing injury and loss
of cardiac myocytes. These effects are mainly observed after
administration of anthracyclines and alkylating drugs, and
to a lesser degree with fluoropyrimidines. According to the
class of anticancer agents, the underlying mechanisms may
involve cardiomyocyte-intrinsic and/or indirect mechanisms.
For example, anthracyclines are associated with a high incidence
of HF as consequence of irreversible cardiac damages through
impairment of cardiomyocyte-intrinsic mechanisms leading to
cell death [reviewed in (5, 7, 13–15)]. Despite administration
of alkylating drugs and fluoropyrimidines may also cause
cardiomyocyte death and thus irreversible cardiac damage,
the main mechanism appears to be mediated by a vasculature
dysfunction and/or thromboembolic ischemia. However,
anticancer agents may also impair cardiomyocyte function
without inducing cell death. This type of cardiac dysfunction
is typically reversible and is associated with a lower incidence
of HF (type II cardiotoxicity). Mechanistically, it has been
suggested that reversible cardiotoxicity may be consequent to
the deregulation of cardiomyocyte-intrinsic mechanisms and/or
alteration of other cardiac populations and extracellular factors,
in particular paracrine factors, in turn influencing cardiomyocyte
function [reviewed in (4)]. Targeting monoclonal antibodies or
tyrosine kinase inhibitors (TKIs) are typically associated with
reversible cardiac damages, and their adverse effects derive
by the signaling impairment of cardioprotective factors for

cardiomyocytes, such as Neuregulin-1 (NRG1), or for other
cardiac cell populations, such as vascular endothelial growth
factor (VEGF), and platelet-derived growth factor (PDGF)
[reviewed in (13, 16)].

Importantly, the comprehension of different cellular
and molecular mechanisms by which common classes of
chemotherapy and targeted therapy drugs induce cardiotoxic
effects is critical for developing efficient strategies for prevention,
early detection, and treatment. Several therapeutical approaches
have already been proposed to cope with the cardiotoxic side
effects of anticancer therapies, including iron-chelating drugs,
β-blockers, renin-angiotensin-aldosterone system inhibitors,
sodium-glucose cotransporter-2 (SGLT2) inhibitors, late inward
sodium current (INaL) selective inhibitors, phosphodiesterase-
5 inhibitors, metabolic agents, statins, and growth factors.
As future therapeutic goal, moving toward a protective
chemoprevention approach, we need well-tolerated drugs that
may flank chemotherapy to reduce clinical and subclinical
cardiotoxic side effects, without interfering with the action of the
antineoplastic treatments (17).

CARDIOTOXICITY MECHANISMS
ASSOCIATED WITH COMMON CLASSES
OF CHEMOTHERAPY DRUGS AND
TARGETED THERAPY

Chemotherapy Drugs
Anthracyclines
The anthracyclines, such as doxorubicin, daunorubicin, and
epirubicin, are a class of broad-spectrum anticancer drugs
extracted from Streptomyces bacterium. These compounds are
used to treat different adult and pediatric hematologic cancers,
such as leukemia and lymphomas, as well as many solid tumors,
including breast, stomach, uterine, ovarian, bladder and lung
cancers. However, anthracyclines are associated with a dose-
dependent risk of cardiomyopathy and HF [reviewed in (2–
7)]. Specifically, in the absence of risk factors, doxorubicin
is tolerated up to a cumulative dose of 300 mg/m2, with a
rate of HF of less than 2% (18). Retrospective studies have
shown that an estimated 3–5% of patients, without other risk
factors, would experience doxorubicin-related HF at a cumulative
dose of 400 mg/m2, increasing at 7–26% and 18–48% for a
dose of 550 and 700 mg/m2, respectively (18, 19). Based on
these evident cardiotoxic effects, high-dose treatments with
anthracycline are no longer administrated, but sub-acute and
chronic cardiac effects are still a clinical problem. The use of
second-generation analogs of doxorubicin, namely epirubicin or
idarubicin, exhibits improvements in their therapeutic index,
but the risks of inducing cardiomyopathy are not abated
[reviewed in (6)]. Mitoxantrone, which is an anthracenedione, an
anthracycline analog, can also damage the cardiac muscle cells,
thus resulting in cardiac dysfunction (20) [reviewed in (21, 22)].

Importantly, a large body of evidence indicates that
cardiomyopathy develops at lower doses of anthracyclines in the
presence of risk factors, including hypertension, arrhythmias,
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TABLE 1 | Main features and mechanisms of cardiotoxic side effect of chemotherapies and targeted therapies along with mitigating strategies.

Anti-cancer agent Epidemiology of the cardiotoxicity Cardiotoxic effect Cellular and molecular mechanisms
of cardiotoxicity

Mitigating strategies

Anthracyclines (e.g., doxorubicin,
daunorubicin, epirubicin, idarubicin)
and anthracycline analogs (e.g.,
mitoxantrone)

Patients without risk factors: <2% of
doxorubicin-related heart failure for a
cumulative dose of 300 mg/m2; 3–5%
for a cumulative dose of 400 mg/m2;
7–26% for a dose of 550 mg/m2;
18–48% for a dose of 700 mg/m2 (18,
19). In patients with risk factors
cardiomyopathy may occur at low
doses of anthracyclines [reviewed in
(23, 24)].

Permanent damage due to
cardiomyocyte death [reviewed in (34)].

Mitochondrial dysfunction in
cardiomyocytes induced by formation
of reactive oxygen species (ROS),
iron-catalyzed formation of free radicals,
lipid peroxidation, and cardiolipin
sequestration (44, 45) [reviewed in (6,
14, 34, 38)]. Alteration of mitochondria
structural integrity in cardiomyocytes
(55). DNA double-strand breaks (DSBs)
in cardiomyocytes induced by
topoisomerase 2 (Top2) (45, 56)
[reviewed in (4, 6)].

Iron-chelating drug: dexrazoxane (56, 202, 203,
206) [reviewed in (14, 204, 207)]. β-Blockers
[reviewed in (16, 37)]: metoprolol (216, 217)
carvedilol (220–226) nebivolol (228, 230, 231).
RAAS inhibitors: ACE-Is such as enalapril,
captopril, lisinopril, and ramipril (235–237,
239–241), ARBs such as candesartan and
telmisartan (216, 242–245), aldosterone
antagonists (251). Combination of RAAS
inhibitors and β-blockers (33, 247). SGLT2
selective inhibitors: empagliflozin (256–259).
INaL inhibitor: ranolazine (261, 262, 264).
Phosphodiesterase-5 inhibitors: sildenafil,
tadalafil (267–269). Metabolic agents: butyric acid
(273), β-hydroxybutyrate (276). Statins (279–282).
Growth factors: neuregulins (134, 284, 285, 287),
G-CSF (289), erythropoietin (290). PPARα

activators: fenofibrate (292). Remote ischemic
preconditioning (293).

Maladaptive effects on fibroblasts,
endothelial cells, vascular smooth
muscle cells and immune cells, leading
to pathological left ventricular
remodeling [reviewed in (67)].

Increased transforming growth factor
beta (TGF-β) signaling and
myofibroblasts activation [reviewed in
(67)]. Increased endothelial cell
permeability [reviewed in (67)].
Activation of immune cells [reviewed in
(67)].

Fluoropyrimidines (e.g.,
5-fluorouracil, capecitabine)

1–19% cardiotoxic events [reviewed in
(69, 73, 75)].

Generally reversible coronary artery
spasm, although cardiomyocyte death
and loss may occur as consequence of
coronary artery thrombosis and
myocardial infarction [reviewed in (69,
75, 76)], as well as directly through
cardiomyocyte-intrinsic mechanisms
(77).

Protein kinase C-mediated
vasoconstriction in
vascular smooth muscle cells (78)
[reviewed in (69)]. Reduced oxygen
transport capacity of erythrocytes,
inducing relative ischemia of the
myocardium (79). Increased ROS
production in endothelial cells, leading
to cell senescence and death, in turn
triggering a procoagulant state (77)
[reviewed in (69)]. ROS production and
induction of cardiomyocyte apoptosis
and autophagy (77).

β-Blockers, together with calcium channel
blockers, nitrates, and aspirin [reviewed in (68,
71, 213)].
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TABLE 1 | (Continued)

Anti-cancer agent Epidemiology of the cardiotoxicity Cardiotoxic effect Cellular and molecular mechanisms
of cardiotoxicity

Mitigating strategies

Taxanes (e.g., paclitaxel) 3–20% cardiotoxic events (81, 82)
[reviewed in (84)].

Mild, primarily QT interval prolongation,
followed by bradycardia and atrial
fibrillation (82).

Hypersensitivity reaction with massive
histamine release with consequent
disturbance of the conduction system
and arrhythmia (82). Increased ROS
production by cardiomyocyte
mitochondria, collapse of mitochondrial
membrane potential and opening of
mitochondrial permeability transition
pore (91).

Anti-inflammatory: glucocorticoids [reviewed in
(37, 88, 90)]. Anti-histamine drugs: histamine
receptor blockers [reviewed in (37, 88, 90)].

Exacerbate anthracycline-induced
toxicity (93).

Increment of anthracycline-induced
congestive heart failure (92).

Pharmacokinetic interference of
doxorubicin elimination by paclitaxel
[reviewed in (94)].

Alkylating drugs (e.g., cisplatin,
cyclophosphamide, ifosfamide,
mitomycin)

7–32% of patients (96) [reviewed in
(97)].

Permanent damage due to
thromboembolic events and vascular
damage, in turn inducing
cardiomyocyte degeneration and
necrosis (99) [reviewed in (87)].

Increased platelet reactivity by
activation of arachidonic pathway
[reviewed in (87)]. Oxidative stress and
direct endothelial capillary damage with
resultant extravasation of proteins,
erythrocytes, and toxic metabolites, in
turn causing a damage to the
myocardium [reviewed in (99)].

Amino acids: taurine (102). NADPH oxidase
inhibitors: apocynin (101).

Pro-inflammatory effects leading to
pathological left ventricular remodeling
(101).

Expression of proinflammatory
chemokines and cytokines driven by
increased NFkB activation (101, 102).

ERBB targeting monoclonal
antibodies (e.g., trastuzumab,
pertuzumab) and tyrosine kinase
inhibitors (e.g., lapatinib, tucatinib)

Cardiotoxicity in 2–5% of
trastuzumab-treated patients, leading
to heart failure in 1–4% of the cases
(151–153) [reviewed in (155, 156)].
Limited data regarding the sole
pertuzumab cardiotoxicity [reviewed in
(37, 297)]. The risk of heart failure is
increased by the addition of
pertuzumab to trastuzumab plus
chemotherapy regimes (171). 2–5%
LVEF reduction in patients treated with
lapatinib, and in 1% of patients treated
with tucatinib [reviewed in (173)].
Combination of lapatinib with
trastuzumab does not increase
cardiotoxicity (175).

Generally reversible alteration of
cardiomyocyte contractile function
{trastuzumab [reviewed in (8, 158)] and
pertuzumab [reviewed in (174)].

Inhibition of the signaling activated by
Neuregulin-1 (NRG1), a paracrine
growth factor released by cardiac
endothelial cells [reviewed in
(110–112)].

β-Blockers: bisoprolol (215). RAAS inhibitors:
ACE-Is such as perindopril (215). Combination of
RAAS inhibitors (ACE-Is) and β-blockers (248,
249). INaL inhibitor: ranolazine (265, 266).
Statins (283).
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TABLE 1 | (Continued)

Anti-cancer agent Epidemiology of the cardiotoxicity Cardiotoxic effect Cellular and molecular mechanisms
of cardiotoxicity

Mitigating strategies

May exacerbate anthracycline-induced
toxicity, reaching 28% of heart failure
incidence when trastuzumab is
combined with anthracyclines (165).

Exacerbation of anthracycline-induced
permanent damage through increased
cardiomyocyte death (140).

Increase in anthracycline-induced ROS
accumulation and consequent
cardiomyocyte death (167).

β-Blockers (214): bisoprolol (216), carvedilol (226).
RAAS inhibitors: ACE-Is such as lisinopril (226).
Statins (283).

VEGFR/PDGFR tyrosine kinase
inhibitors (e.g., sunitinib, sorafenib)

Up to 47% of patients receiving
sunitinib treatment experienced
hypertension, up to 28% showed LV
dysfunction, and 8% developed
congestive heart failure [reviewed in
(15)].

Generally reversible [reviewed in (37,
76, 193)].

Sunitinib- or sorafenib-induced VEGFR
inhibition reduces the production of the
vasorelaxant nitric oxide (NO) by
endothelial cells, in turn resulting in
hypertension. In turn, hypertension may
lead to capillary rarefaction, which may
cause LV dysfunction [reviewed in (15,
194)]. Sunitinib- or sorafenib-induced
VEGFR inhibition reduces angiogenesis
resulting in LV dysfunction [reviewed in
(15, 194)]. Sunitinib- or
sorafenib-induced PDGFR inhibition
induces the loss of pericytes, leading to
coronary microvascular dysfunction and
LV dysfunction [reviewed in (15, 194)].

SGLT2 selective inhibitors: empagliflozin (260).

BCL-ABL tyrosine kinase inhibitors
(e.g., imatinib, ponatinib)

Despite initial fears (196), the rate of
cardiotoxicity upon imatinib treatment
was shown to be extremely low, with
less than 1% of the patients developing
heart failure [reviewed in (37, 197)].
More than 20% of patients receiving
ponatinib treatment experienced
adverse cardiovascular event, 5%
developed congestive heart failure
[reviewed in (181, 197)].

Generally reversible (181). Ponatinib-induced cardiotoxic effects
were suggested to be consequent to
thrombotic microangiopathy and
consequent ischemia (199).

Growth factors: neuregulins [proof-of-principle
study in (200), reviewed in (197)].
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coronary disease, combination with other anticancer agents as
well as genetic predisposition to cardiotoxicity [reviewed in (17,
23, 24)]. In this regard, among the genetic factors increasing
the susceptibility to anthracycline-induced cardiotoxic effects,
the role of specific single-nucleotide polymorphisms (SNPs) is
emerging [reviewed in (24, 25)]. Indeed, heritability analysis
on multiple cell lines unveiled SNPs from 30 genes giving a
greater predisposition to daunorubicin-induced cardiotoxicity
(26). Specifically, several SNPs associated with anthracycline
cardiotoxicity affect genes involved in anthracycline metabolism,
transport, or downstream cytotoxic effects. For example, studies
on pediatric cohorts enlightened polymorphisms in CBR1 and
CBR3 genes (encoding for carbonyl reductases) associated
with enhanced cardiotoxicity susceptibility in children with
cancer (27), polymorphisms in ABCC1 and ABCC5 genes
(encoding for ATP-binding cassette transporters) associated
with increased anthracycline-induced cardiac dysfunction in
acute lymphoblastic leukemia patients (28, 29), polymorphisms
in SLC22A gene (encoding for a solute carrier) (30), as well
as polymorphisms in genes playing a role in iron homeostasis
(31), and others [reviewed in (25, 32)]. Oppositely, SNPs
in endothelial nitric oxide synthase (NOS3) gene have been
reported to be cardioprotective in patients upon a high dose of
doxorubicin (29).

Cardiac injury after anthracycline administration occurs with
every dose, as documented by the analysis of cardiac-biopsy
specimens a few hours after a single dose of anthracycline
[reviewed in (7)]. Although the vast majority (98%) of cases
of anthracycline cardiotoxicity being detected within the
first year after completing the treatment (33), anthracycline-
induced cardiotoxicity can also manifest months to years after
completing chemotherapy (33). From a pathophysiological point
of view, anthracyclines were suggested to induce cardiotoxicity
through cardiomyocyte-intrinsic mechanisms as well as other
mechanisms involving other cardiac cell types (Figure 1).
Importantly, anthracycline-induced cardiac damage may
be permanent due to cardiomyocyte death through several
biological processes, including apoptosis, autophagy, necrosis,
necroptosis, pyroptosis, and ferroptosis [reviewed in (34)]. In
this regard, the alteration of mitochondrial function and integrity
emerged as a distinctive feature of anthracycline-induced
cardiomyopathy [reviewed in (7, 34–39)]. Mitochondria network
is well developed in the cardiac muscle, occupying 36–40% of the
cardiomyocyte volume and producing around 90% of the cellular
energy [reviewed in (40–43)]. Among the complex underlying
molecular mechanisms involved in anthracycline-induced
mitochondrial dysfunction is worth to mention the formation
of reactive oxygen species (ROS), iron-catalyzed formation of
free radicals, lipid peroxidation, and cardiolipin sequestering
(44, 45) [reviewed in (6, 14, 34, 38)]. In this regard, in cardiac
mitochondria, anthracyclines can be reduced by NAD(P)H-
oxidoreductases and converted to unstable metabolites, such
as doxorubicin-semiquinone radicals, which can react with
molecular oxygen (O2), producing superoxide anion-free
radicals and hydrogen peroxide (O−2 and H2O2) (46) [reviewed
in (37)]. ROS generated by anthracyclines affect the activity
of many mitochondrial enzyme complexes, such as NOSs,

NAD(P)H oxidases, catalase, and glutathione peroxidase (GPx),
leading to DNA, protein, and lipid damage, and consequently
to cardiomyocyte death [reviewed in (39, 47, 48)]. Moreover,
anthracyclines, such as doxorubicin, have been reported to
impair cardiac iron homeostasis, resulting in its overload in
the cardiac tissue [reviewed in (14, 49, 50)]. Accordingly,
patients with anthracycline-induced cardiac dysfunction exhibit
higher iron levels in cardiac mitochondria, compared to healthy
individuals or patients suffering from anthracycline-independent
cardiac dysfunction (44). Doxorubicin can, in fact, chelate the
free intracellular iron and form iron-doxorubicin complexes,
which, in turn, are able to react with O2, further increasing the
generation of ROS [reviewed in (4, 14, 49, 50)]. In addition,
anthracyclines can directly interfere with the main iron-
transporting/-binding proteins. For example, doxorubicin can
impair cellular iron mobilization, resulting in its accumulation
within ferritin (51), and can reduce the expression of the
mitochondrial iron exporter ABCB8 (44). Recent studies have
also focused on the detrimental role of mitochondrial iron-
doxorubicin complexes triggering cardiomyocyte ferroptosis,
a kind of programmed cell death dependent on iron and
induced by lethal lipid peroxidation (52) [reviewed in (50)].
In this regard, doxorubicin-induced cardiotoxicity in mouse
models was shown to be consequent to a decrease in the
expression levels of glutathione peroxidase 4 (GPx4), which is
a scavenger for lipid peroxides, in turn inducing peroxidation
of unsaturated fatty acids and lipids (52). Anthracyclines are
also linked to mitochondria damage because of their high
affinity to cardiolipin, a mitochondrial membrane phospholipid
that is involved in apoptotic pathways [reviewed in (35, 53)].
Mechanistically, doxorubicin sequesters cardiolipin avoiding
its anchorage to cytochrome C or lipid-protein interfaces,
thus contributing to mitochondrial dysfunction and ROS
formation (54) [reviewed in (35, 53)]. Along with the impaired
cardiac mitochondrial function, anthracyclines have been
demonstrated to alter the structural integrity of mitochondria.
Indeed, it has been reported that doxorubicin stimulates the
receptor-interacting protein 3 (RIPK3)-induced activation
of Ca2+-calmodulin-dependent protein kinase (CaMKII),
thus triggering the opening of mitochondrial permeability
transition pore (MTPT), and ultimately inducing necroptotic
cardiomyocyte death (55).

Several lines of evidence have suggested that nuclear damage
induced by topoisomerase 2 (Top2) is another pivotal event
in anthracyclines’ cardiotoxic effects (45, 56) [reviewed in (4,
6)]. Specifically, doxorubicin intercalates into DNA and interacts
with both Top2-alpha (Top2α) and Top2-beta (Top2β), which
are enzymes responsible for managing DNA tangles and super-
coils. Top2α is highly expressed in proliferating cancerous
cells but not in quiescent tissues; therefore, it is considered
one of the key molecular targets of anthracycline anti-tumoral
effect (56). Cardiomyocyte toxicity stems from the fact that
doxorubicin interacts with cardiac Top2-β, the only isoform
expressed by adult mammalian cardiomyocytes. Consequently,
the Top2β-doxorubicin-DNA complex induces DNA double-
strand breaks (DSBs), ultimately promoting cardiomyocyte death
(45, 56).
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FIGURE 1 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by anthracyclines. Schematic diagram showing the impact of anthracyclines on a
multitude of cardiomyocyte-intrinsic mechanisms leading to mitochondrial dysfunction and structural damage and/or DNA damage by topoisomerase activity, in turn
leading to cardiomyocyte death and heart failure. Additional mechanisms of anthracycline-induced cardiotoxicity include deregulation of fibroblasts, endothelial, and
immune cells, in turn concurring to cardiac remodeling.

Tumor protein P53 (p53) has also been implicated in
anthracyclines’ cardiotoxic response, although its involvement is
currently controversial. Indeed, it has been reported that DNA
breaks, induced by acute doxorubicin administration, lead to
activation of the DNA damage response (DDR) network, in turn
activating p53, which ultimately promotes the apoptotic cascade
(57) [reviewed in (58)]. Moreover, in response to cell stress,
p53 was shown to accumulate in the cytosol and to localize
in mitochondria, triggering a series of death-events related
to mitochondrial dysfunction, such as the permeabilization of
the mitochondrial outer membrane (MOMP), the release of
cytochrome C, the opening of the mitochondrial permeability
transition pore (PTP), the impairment of mitochondria, and
the production of ROS (59–63). Mice depleted for p53 exhibit
a less impaired mitochondrial integrity and reduced cardiac
dysfunction following doxorubicin treatment [reviewed in (5)].
In addition, doxorubicin-activated p53 has been shown to
contribute to metabolic derangement by inhibiting mitophagy
events (45) [reviewed in (4)]. As a result of cytosolic
accumulation, p53 binds Parkin and abrogates its translocation
to damaged mitochondria and their subsequent clearance by
mitophagy (64) [reviewed in (5)]. These results support p53 as
a key player in anthracycline-related cardiomyopathies (61, 62)
[reviewed in (4)]. Nevertheless, other studies unveiled opposite
effects depending on the dosage and timing of doxorubicin-
induced cellular stress. Indeed, upon low doses of doxorubicin,
which more closely recapitulate the clinical settings, it has been
reported a protective role of p53, counteracting the late-onset
cardiomyopathy and without activation of p53-dependent cell
death cascades (65, 66).

In addition to cardiomyocyte-intrinsic mechanisms,
anthracyclines exhibit a wide range of maladaptive effects
on other cardiac populations, including fibroblasts, endothelial
cells, vascular smooth muscle cells, and immune cells [reviewed
in (67)]. In particular, doxorubicin administration was shown

to increase endothelial cellular permeability, in turn causing
edema formation [reviewed in (67)], to induce ROS-dependent
activation of transforming growth factor beta (TGFβ) signaling,
in turn triggering myofibroblast activation and collagen
deposition [reviewed in (67)], and to induce the activation of the
innate immune system and inflammatory response [reviewed in
(67)]. Overall, these events were suggested to lead to pathological
left ventricular remodeling [reviewed in (67)].

Fluoropyrimidines
Fluoropyrimidines exert the second most common cause of
chemotherapy-induced cardiotoxicity [reviewed in (68–74)].
This antimetabolite drug class, which includes 5-fluorouracil (5-
FU) and its prodrug capecitabine, is incorporated into DNA or
RNA, thus acting as cytostatic agent for the clinical treatment
of colorectal, breast, gastric, pancreatic, prostate, and bladder
cancers [reviewed in (74)]. Fluoropyrimidines are generally
well tolerated; nevertheless, 1–18% of the patients receiving
fluoropyrimidines experiences cardiovascular toxicity [reviewed
in (69–71, 73–75)]. Cardiovascular side effects associated with
fluoropyrimidines include a generally reversible coronary artery
spasm and myocardial ischemia, although cardiomyocyte death
and loss may occur as consequence of coronary artery thrombosis
and myocardial infarction [reviewed in (69, 75, 76)], as well
as directly through cardiomyocyte-intrinsic mechanisms (77).
These adverse effects were suggested to be mediated by vascular
smooth muscle cells, erythrocytes, endothelial cells as well
as directly by cardiomyocytes (Figure 2). From a molecular
point of view, 5-FU was reported to induce protein kinase
C-mediated vasoconstriction in vascular smooth muscle cells
(78) [reviewed in (69)]. 5-FU was also shown to reduce the
oxygen transport capacity of erythrocytes, inducing relative
ischemia of the myocardium (79). 5-FU administration was also
suggested to induce increased ROS production in endothelial
cells, leading to cell senescence and death (77), in turn
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triggering a procoagulant state and acute thrombotic events
[reviewed in (69)]. Finally, direct cardiomyocyte toxicity after
fluoropyrimidine administration has also been suggested. Indeed,
5-FU has also been demonstrated to favor ROS production and to
induce cardiomyocyte apoptosis and autophagy (77).

Taxanes
Taxanes, such as paclitaxel, are antimitotic agents that stabilize
microtubules in the mitotic spindle, thus blocking cell cycle
progression. These chemotherapy drugs are widely employed in
cancer treatment, including breast, lung, and ovarian cancers.
However, significant toxicities limit the effectiveness of taxane-
based treatment regimens (80). Taxane administration is reported
to induce cardiotoxic events in 3–20% of the patients (81, 82)
[reviewed in (83–85)]. Taxane-induced cardiotoxic effects include
QT interval prolongation, followed by bradycardia and atrial
fibrillation (82). Because taxane-induced cardiotoxicity appears
to be mild in most cases and reversible upon discontinuation
of the therapy, no specific agents are recommended for their
management [reviewed in (86, 87)].

The underlying cellular and molecular mechanisms of
taxane-induced cardiotoxicity are unclear; however, a few
hypotheses have been proposed (Figure 3). Among them,
hypersensitivity reaction with a massive histamine release
and consequent disturbance of the conduction system and
arrhythmia has been proposed (82). Hence, the administration
of anti-inflammatory (glucocorticoids) and anti-histamine drugs
(histamine receptor blockers), is suggested as prophylactic
therapy for the management of cardiac anaphylaxis induced
by taxanes [reviewed in (37, 88–90)]. Another hypothesis is
cardiomyocyte damage through the drug’s actions on subcellular
organelles (82). In this regard, taxanes were suggested to increase
ROS production by cardiomyocyte mitochondria, the opening of
mitochondrial permeability transition pore and the collapse of
mitochondrial membrane potential (91).

Among taxanes, paclitaxel has been shown to exacerbate
anthracycline-induced toxicity. Indeed, combined treatment with
paclitaxel and doxorubicin augmented HF events (92) and
increased histopathological alterations of cardiac tissue, with
extensive necrosis (93). This effect was suggested to derive from
a pharmacokinetic interference of doxorubicin elimination by
paclitaxel [reviewed in (94)]. No interaction between doxorubicin
and other taxanes (such as docetaxel) has been reported; in line,
docetaxel showed no increase in cardiac toxicity when combined
with doxorubicin [reviewed in (94)].

Alkylating Drugs
Alkylating drugs, such as cisplatin, cyclophosphamide,
ifosfamide, mitomycin, are crosslinking agents inducing
ROS production, DNA damage and apoptosis in cancer cells
[reviewed in (95)]. Cisplatin is mostly used in combination with
other chemotherapy drugs to overcome drug-resistance and
reduce toxicity [reviewed in (95)]. Cisplatin-based chemotherapy
has been reported to cause cardiovascular diseases, particularly
myocardial infarction and angina, in a range of 7–32% of patients
(96) [reviewed in (97)]. In patients treated with cisplatin, a
long-term unfavorable cardiovascular risk profile was observed,

with hypercholesterolemia, hypertriglyceridemia, hypertension
and insulin-resistance evaluated after more than 10 years from
remission (98). The cardiotoxic effects of alkylating agents may
be permanent and a few cellular and molecular mechanisms were
suggested to contribute to these processes (Figure 4). Indeed,
cisplatin administration has been linked with thromboembolic
events associated with platelet aggregation and vascular damage
(99) [reviewed in (87)], in turn resulting in cardiomyocyte
degeneration and necrosis. The increased platelet aggregation
was suggested as a direct consequence of cisplatin on the
activation of the arachidonic pathway in platelets [reviewed in
(87)]. The endothelial capillary damage was suggested to derive
from a cisplatin-dependent increase in oxidative stress (99).
Indeed, cisplatin has also been shown to induce oxidative stress
in myocardial tissue, with decreased activity of glutathione and
antioxidant enzymes (100, 101). The consequence of cisplatin-
induced endothelial injury was suggested to be the extravasation
of proteins, erythrocytes, and toxic metabolites, in turn causing
damage to the myocardium (99). Finally, cisplatin has also
been suggested to activate NF-κB in the cardiac tissue (101), in
turn increasing the expression of proinflammatory chemokines
and cytokines (102). This mechanism was proposed to result
in cardiac remodeling (101), and extensive degeneration and
fragmentation of cardiac muscle fibers (102).

The alkylating agent cyclophosphamide at high doses can
cause hemorrhagic cell necrosis and may lead to HF; however,
with the lower doses currently used, these side effects are
infrequent (103).

Targeted Therapy
ERBB Targeted Therapies
Growth factor receptors of the ERBB family (EGFR/ERBB1,
ERBB2, ERBB3, and ERBB4) play a key role in the development
and progression of a variety of solid cancers [reviewed in
(104–106)]. After the binding of soluble ligands, ERBB kinase
receptors arrange in homo- or heterodimer complexes, which
activate the tyrosine kinase activity and the consequent signaling
events leading to the modulation of cell survival, proliferation,
migration, and differentiation [reviewed in (104–107)]. ERBB2
(also known as HER2) receptor is a proto-oncogene frequently
amplified and overexpressed in many human cancers. Unlike
the other ERBB receptors, ERBB2 is unable to bind ligands
but heterodimerizes with other ERBB receptors, stabilizing
the ligand interaction with the coupled receptors, enhancing
and diversifying the ligand-induced receptor signaling (108)
[reviewed in (107)]. Several strategies have been developed to
target the key role of ERBB2 signaling in tumor development and
progression. Successful approaches are represented by treatment
with humanized ERBB2-targeting antibodies (e.g., trastuzumab
and pertuzumab) and tyrosine kinase multi-HER inhibitors
(e.g., lapatinib, tucatinib, afatinib, neratinib, and dacomitinib),
which effectively showed ERBB2 inhibition and tumor regression,
particularly in the treatment of mammary carcinomas [reviewed
in (109)].

The cardiotoxicity of ERBB2-directed therapeutics is
consequent to the inhibition of the signaling activated by

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 April 2022 | Volume 9 | Article 847012

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-847012 April 11, 2022 Time: 16:47 # 9

Morelli et al. Cardiotoxicity Mechanisms

FIGURE 2 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by fluoropyrimidines. Schematic diagram showing the impact of fluoropyrimidines
on cardiac dysfunction due to myocardial ischemia induced by deregulation of vascular smooth muscle cells and erythrocytes. Additional mechanisms of
taxane-induced cardiotoxicity include heart failure, consequent to cardiomyocyte death induced by cardiomyocyte-intrinsic mechanisms (increased ROS production)
or myocardial infarction consequent to coronary artery thrombosis caused by endothelial cell senescence and death.

Neuregulin-1 (NRG1), a paracrine growth factor released by
cardiac endothelial cells featuring pivotal functions in the
heart (Figure 5) [reviewed in (110–112)]. NRG1, together
with its tyrosine kinase receptors ERBB4, ERBB3, and ERBB2,
is essential for heart development (113–115) [reviewed in
(110, 116, 117)] and tunes heart regenerative, inflammatory,
fibrotic, and metabolic processes (118, 119) [reviewed in (110,
117, 120–122)]. In cardiomyocytes, the most prominently
expressed NRG1 receptors are ERBB4 and ERBB2 (123) and
NRG1 stimulates fetal/neonatal cardiomyocyte proliferation,
hypertrophy, sarcomerogenesis, and survival (114, 115, 124–
127) [reviewed in (110, 116, 117, 120, 121)]. ERBB2 forms
heterodimers with ERBB4 and is necessary for NRG1-elicited
cardiomyocyte proliferation during embryonic and neonatal
stages (122, 124). However, cardiac ERBB2 expression levels
decline soon after birth in mice, as part of the mechanism leading
to cardiomyocyte terminal differentiation, cell cycle withdrawal
and loss of cardiac regenerative ability (124) [reviewed in (122)].

Despite low levels described in adulthood, ERBB2 appears to
play a role in the prevention of dilated cardiomyopathy. Indeed,
mice with ventricular-restricted deletion of ERBB2 exhibited
multiple independent parameters of dilated cardiomyopathy,
such as chamber dilatation, wall thinning, and decreased
contractility (128). Decreased NRG1 signaling in postnatal life
is associated with adverse cardiac function and susceptibility to
stress [reviewed in (110, 116)]. The expression and activation of
ERBB4 and ERBB2 receptors were found lower in myocardium
from HF patients (129). In mice subjected to pressure overload,
ERBB4 and ERBB2 undergo relevant reduction at mRNA and
protein levels with the progression to HF (130).

Conversely, enhanced activity of NRG1 counteracts cardiac
remodeling and HF progression [reviewed in (110, 116)].
Systemic administration of NRG1 improves cardiac function
following various types of cardiac injuries in adult mice (115, 127,
131, 132) [reviewed in (110, 133)] and HF patients (117, 134–136)
[reviewed in (137)].

Cardiac upregulation of ERBB2 was documented upon
adverse hemodynamic or other stressful or toxic stimuli,
including anthracycline therapies (138, 139). This increase is

required to sustain cardiomyocyte survival and cardiac function
under stress conditions. Indeed, cardiomyocytes isolated from
mice with ventricular-restricted deletion of ERBB2 were more
susceptible to anthracycline toxicity, revealing a role for ERBB2
in cardiomyocyte survival upon chemotherapy administration
(128). Conversely, cardiac-specific overexpression of ERBB2 in
mice has been shown to decrease cardiomyocyte death upon
doxorubicin administration (140).

EGFR (also known as ERBB1) is associated with cancer
progression and its inhibition via monoclonal antibodies (such
as cetuximab and panitumumab) or TKIs (such as erlotinib and
gefitinib) has been the first strategy evaluated among growth
factor receptors targeting therapies (141, 142). Nowadays, EGFR
inhibitors are clinically used for the treatment of several solid
cancers, including lung, head and neck, colorectal, and pancreatic
cancers (142). Although cetuximab-associated cardiotoxicity has
been reported in the clinical literature, the incidence of cardiac
events in patients remains very low (143, 144).

ERBB Targeting Monoclonal Antibodies
Trastuzumab, the first ERBB2-targeting humanized monoclonal
antibody, binds the extracellular domain IV of ERBB2
receptor leading to the inhibition of ligand-independent
heterodimerization between ERBB2 and other ERBB family
members (145, 146) [reviewed in (105, 147)]. From a clinical
perspective, the cardiotoxicity of monoclonal antibodies
targeting ERBB2, such as trastuzumab, is moderate and
reversible [reviewed in (148–150)]. Trastuzumab monotherapy
is associated with cardiotoxicity in 2–5% of patients, leading
to HF in 1–4% of the cases (151–153) [reviewed in (154–
157)]. The mechanism of trastuzumab-induced cardiotoxicity
appears to be the alteration of cardiomyocyte contractile
function without cardiomyocyte death [reviewed in (8, 158)].
Interestingly, Erbb2 gene polymorphisms that alter the ERBB2
protein sequence have been identified, and two of them (Ile
655 Val and Pro 1170 Ala) were associated with an increased
risk of cardiotoxicity from trastuzumab therapy (32, 159–164).
Importantly, with the concomitant association of trastuzumab
and anthracyclines, HF incidence increased to 28% (165, 166).
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FIGURE 3 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by taxanes. Schematic diagram showing the main cardiotoxic effects of taxanes,
namely atrial fibrillation and cardiac dysfunction, as a result of the disturbance of the conduction system or cardiomyocyte dysfunction, respectively.

Thus, trastuzumab-mediated blockade of ERBB2 signaling
increases anthracycline-induced toxicity. The molecular
mechanism underlying this combinatorial phenomenon may be
due to the key role of ERBB2 in the management of oxidative
stress in the heart: interrupting the neuregulin/ERBB2 axis, which
is responsible for the activation of the glutathione reductase
system, facilitates the anthracycline-induced accumulation
of ROS and subsequent calcium influx, finally leading to
caspase activation and cardiomyocyte death (167). Once anti-
ERBB2 agents inhibit the ERBB2 protective mechanisms in
cardiomyocytes, the doxorubicin oxidative damage was reported
to increase (158) [reviewed in (37)].

Pertuzumab, a new generation of ERBB2-targeting therapies,
is an antibody against domain II specifically designed to inhibit
ligand-induced ERBB2 heterodimerization (168, 169). The data
regarding the sole pertuzumab cardiotoxicity effects are still
limited. Currently, combining trastuzumab/pertuzumab and
trastuzumab/lapatinib, in order to induce a dual blockade of
HER2, is part of the standard of care (170). In this regard, a
recent study reporting a systematic review of eight randomized
controlled trials showed that the risk of HF is increased by
the addition of pertuzumab to trastuzumab plus chemotherapy
therapeutic regimens (171).

ERBB Kinase Inhibitors
Tyrosine kinase inhibitors selectively target and inhibit several
oncogenic relevant receptor-tyrosine kinases (RTKs), inducing
survival benefits in therapies for various hematological and
solid cancers [reviewed in (172)]. TKIs include single-targeted
and multi-targeted TKIs. A small group of small TKIs,
including lapatinib (ERBB2 and EGFR inhibitor), tucatinib
(ERBB2 inhibitor), erlotinib (EGFR inhibitor), gefitinib (EGFR
inhibitor), afatinib (EGFR, ERBB2, and ERBB4 inhibitor),
neratinib (EGFR, ERBB2, and ERBB4 inhibitor), and dacomitinib
(EGFR, ERBB2, and ERBB4 inhibitor), has been developed to
target ERBB receptors. However, these ERBB blockers can also
exert cardiac toxicity in treated patients. In particular, about
2–5% of patients treated with lapatinib displayed a reduced
LVEF, and similar effects were reported in 1% of patients
treated with tucatinib [reviewed in (173)]. The decline in
cardiac function is generally reversible [reviewed in (174)].
Regarding combinatorial anti-ERBB strategies, little is known
about the cardiotoxic potential of ERBB2 double blockade with
trastuzumab plus lapatinib. Although stronger inhibition of the
HER2 pathway using two anti-HER2 drugs was initially expected
to result in greater impairment of cardiomyocytes, preclinical
tests suggested a possible cardioprotective mechanism exerted

by lapatinib. Adjuvant Lapatinib and/or Trastuzumab Treatment
Optimisation (ALTTO), a randomized, multi-center, open-label,
phase III study of adjuvant lapatinib plus trastuzumab treatment
in patients with HER2/ERBB2 positive primary breast cancers
(ClinicalTrials.gov, identifier NCT00490139), as well as other
clinical trials with double ERBB2 blockade, support the safety of
lapatinib plus trastuzumab treatment, since a lower, although not
statistically significant, incidence of cardiac events was detected
in patients in the trastuzumab plus lapatinib arm. This evidence
does not imply that lapatinib has a cardioprotective effect, nor
that it should be a preferred option for patients with an increased
risk of cardiotoxicity (175).

Afatinib, an ERBB family blocker, approved for the first-line
treatment of advanced non-small cell lung cancer (NSCLC) with
EGFR mutations, is one of the few TKIs with a low risk of
cardiotoxicity [reviewed in (176)]. Finally, cardiac side effects of
the irreversible pan-ERBB inhibitor neratinib [reviewed in (177)]
were reported neither in phase I clinical studies in solid tumors
(178, 179) nor in a phase II trial in advanced HER2-positive breast
cancer (179).

Multi-Targeted Tyrosine Kinase Inhibitors
In addition to single- or multi-targeted ERBB family inhibitors
(see the previous paragraph), other multi-targeted TKIs were
developed to effectively block multiple pathways of intracellular
signal transduction. The broad kinase-signaling inhibition of
several TKIs, such as sunitinib, sorafenib, imatinib, and nilotinib,
includes the vascular endothelial growth factor receptors
(VEGFRs), platelet-derived growth factor receptors (PDGFRs),
BCR-ABL, and c-KIT. This wide action results in a strong anti-
malignancy effect of this class of drugs, although correlated
with reversible myocardial dysfunctions with a wide range of
severity (180) [reviewed in (37, 181–183)]. Clinical analysis
of TKI anti-tumoral therapies shows that compounds with
broader off-target effects as kinases inhibitors (lower selectivity
in targeting a specific kinase) correlated to higher degree of
cardiotoxicity, particularly in case the inhibited kinase plays
a role in the maintenance of the cardiovascular system (184–
186) [reviewed in (37)]. In this regard, sunitinib, which targets
VEGFR/PDGFR and interferes with more than 30 tyrosine
kinases; sorafenib, which targets VEGFR/PDGFR and inhibits
at least 15 tyrosine kinases, including RAF/MEK/ERK pathway,
and ponatinib, which targets BCR-ABL and several other
RTKs, are responsible for major clinical concerns related to
cardiotoxicity (172) [reviewed in (37, 187, 188)]. Of note, these
three compounds (sunitinib, sorafenib, and sonatinib) target
VEGF, PDGFR, and c-Kit, namely three tyrosine kinase receptors
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FIGURE 4 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by alkylating drugs. Schematic diagram showing the impact of alkylating agents in
promoting heart failure due to cardiomyocyte death consequent to myocardial infarction. Additional mechanisms of alkylating drug-induced cardiotoxicity include
heart failure consequent to cardiomyocyte death induced by oxidative stress and cardiac remodeling following activation of pro-inflammatory pathways.

involved in multiple key functions in the cardiovascular system,
whose inhibition is likely the cause of the observed cardiotoxic
effects (Figure 6). Particularly, sunitinib, which presents an
effective multi-targeted inhibition of growth-factor receptors able
to reduce the angiogenesis and tumor cell survival/proliferation
(182, 189), is considered more cardiotoxic than other anti-
angiogenic and TKI drugs (182). Based on clinical studies, 47%
of patients receiving sunitinib treatment exhibited hypertension,
up to 28% showed LV dysfunction, and 8% developed CHF
[reviewed in (15)]. Patients with pre-existing cardiovascular
diseases or previous cardio-toxicant exposure show even higher
risks [reviewed in (190–192)]. However, cardiac dysfunctions
induced by sunitinib and other inhibitors of tyrosine kinases
have shown high reversibility; after treatment withdrawal,
hypertension and cardiac dysfunction were alleviated or wholly
restored (193) [reviewed in (37)]. Indeed, the majority of
sunitinib-treated patients were able to carry on with sunitinib
therapy following the resolution of cardiovascular events (193).
Similarly, reversible cardiotoxicity has been reported upon
sorafenib treatment [reviewed in (76)].

The cellular and molecular details of the observed elevated
blood pressure and cardiac dysfunction in patients treated with
anti-VEGF/PDGFR drugs, such as sunitinib and sorafenib, are
not fully understood. Nevertheless, sunitinib- and sorafenib-
induced VEGFR inhibition was suggested to reduce the
production of the vasodilator nitric oxide (NO) by endothelial
cells, in turn resulting in hypertension [reviewed in (15, 194)].
Hypertension is known to lead to capillary rarefaction, which
may be responsible for the cardiac dysfunction observed in
sunitinib and sorafenib-treated patients [reviewed in (15)].
Indeed, given the high energy dependency, the heart is usually
highly vulnerable to any altered blood supply. However,
the capillary rarefaction potentially responsible for cardiac
dysfunction may also be a direct consequence of reduced
angiogenesis following sunitinib- or sorafenib-induced VEGFR
inhibition [reviewed in (15, 194)]. Further, sunitinib- or
sorafenib-induced PDGFR inhibition was suggested to induce
the loss of pericytes, in turn leading to coronary microvascular
dysfunction (195) [reviewed in (15, 194)]. Sunitinib, as an
off-target effect, has also been suggested to inhibit AMPK
activity, in turn inducing energy depletion in cardiomyocytes
(184). However, another study found that sunitinib treatment
in cardiomyocytes does not affect cellular ATP levels and that

myocytes are not protected from sunitinib by pre-treatment with
AMPK-activating drug metformin (189).

Imatinib, a TKI that inhibits BCR-ABL fusion protein, c-KIT,
and PDGFR, is used to treat chronic myeloid leukemia and
gastrointestinal stromal cancers. Despite initial fears (196), the
rate of cardiotoxicity upon imatinib treatment was shown to
be very low, with less than 1% of the patients developing HF
[reviewed in (37, 197)]. Nevertheless, the inhibition of CaMKII in
adult rat cardiac fibroblasts was shown to reduce the production
of mitochondrial superoxide triggered by sunitinib and imatinib
treatments (198).

Interestingly, ponatinib, a BCR-ABL kinase inhibitor
developed to treat patients with imatinib resistance driven by
T315I “gatekeeper” mutation, has been associated with a high
rate of cardiovascular adverse events. Indeed, more than 20%
of patients receiving ponatinib treatment experienced adverse
cardiovascular events, and 5% developed CHF [reviewed in (181,
197)]. Of note, these cardiotoxic effects are often reversible with
interruption of the therapy (181). The mechanisms of ponatinib-
induced cardiotoxic effects are unclear; however, they were
suggested to be consequent to thrombotic microangiopathy and
consequent ischemia (Figure 6) (199), although cardiomyocyte
death was also reported to occur in the zebrafish model (200).

STRATEGIES TO REDUCE ANTICANCER
DRUG-ASSOCIATED CARDIOVASCULAR
TOXICITY

Several therapeutical approaches already known in clinical
usage have been proposed to reduce cardiotoxicities, such as
iron-chelating drugs, β-blockers, renin-angiotensin-aldosterone
system (RAAS) inhibitors, SGLT2 inhibitors, late inward
sodium current (INaL) selective inhibitors, phosphodiesterase-5
inhibitors, metabolic agents, statins as well as growth factors and
hormones [previously reviewed in (201)]. Here we will discuss
these classes of drugs, focusing on their mechanisms of action and
the therapeutic validity and effectiveness.

Iron-Chelating Drugs
The iron-chelating drug dexrazoxane has been identified as
one of the most promising cardioprotective therapies in
these last years and represents the only FDA-approved drug
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FIGURE 5 | Cellular and molecular mechanisms of the cardiotoxic effect exerted by ERBB targeting monoclonal antibodies and tyrosine kinase inhibitors. Schematic
diagram showing the impact of ERBB targeting therapies on cardiomyocyte dysfunction caused by the impairment of Neuregulin-1 signaling. However, in
combination with anthracyclines, anti-HER2 monoclonal antibody trastuzumab may also induce heart failure as a consequence of cardiomyocyte death induced by
ROS accumulation.

FIGURE 6 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by VEGFR/PDGFR and BCR-ABL and tyrosine kinase inhibitors. Schematic
diagram showing the impact of VEGFR/PDGFR and BCR-ABL inhibition, resulting in a reversible cardiac disfunction. Anti-VEFGR activity impairs cardiac function by
inducing capillary rarefaction consequent to reduced angiogenesis or hypertension derived from reduced NO production. Anti-PDGFR activity induces cardiac
dysfunction by promoting the loss of pericytes, which in turn impairs the coronary vasculature. Anti-BCR-ABL inhibition may results in myocardial ischemia and
cardiac dysfunction consequent to thrombotic microangiopathy.

specific for anthracycline-induced cardiotoxicity (202, 203).
Dexrazoxane is a pro-drug that rapidly turns into its active
form after entering in cardiomyocytes, in turn counteracting the
formation of anthracyclines-iron complexes and the subsequent
adverse cardiac effects [reviewed in (204)]. Importantly, the
development of iron-chelating drugs to prevent anthracycline-
induced cardiotoxicity has emerged as an approach of relevant
clinical importance in the context of the genetic predisposition
of patients suffering from iron-related genetic disorders,
such as hereditary hemochromatosis (31, 205). Initially, the
cardioprotective functions of this iron chelator were ascribed
majorly to its ability to affect iron regulatory proteins and
reduce iron accumulation (206) [reviewed in (14, 207)].
However, additional mechanisms have been suggested to drive
the cardioprotective activity exerted by dexrazoxane following
anthracycline administration. Specifically, dexrazoxane has been
shown to modify the topoisomerase 2 (Top2β) configuration
preventing its interface with anthracyclines, thereby avoiding the
Top2-DNA cleavage complexes (56, 208). Close derivatives of
dexrazoxane lacking the interaction with Top2β were found not
to be protective in relevant chronic anthracycline cardiotoxicity
models (206, 209). Thus, cardioprotective effects of dexrazoxane
in chronic anthracycline cardiotoxicity were suggested to derive
from the inhibition of the interaction between anthracyclines and
Top2β, rather than to its metal-chelating action (209) [reviewed
in (210)].

Recently, a study on the cardioprotective effects of
dexrazoxane, based on seven randomized trials and two
retrospective trials for a total of 2177 patients with breast cancer
receiving anthracyclines with or without trastuzumab reported
that dexrazoxane reduces the risk of clinical HF and cardiac
events in these patients without significantly impacting cancer
outcomes (203). Thus, dexrazoxane represents a therapeutical
strategy to limit anthracycline cardiotoxicity.

β-Blockers
β-blockers, also known as beta-adrenergic blocking agents,
are a class of drugs that blocks the effects of the hormone
epinephrine (adrenaline), causing the heart to beat more slowly
and with less force, thus lowering blood pressure. These
drugs are predominantly used to manage the reduction in left
ventricular ejection fraction (LVEF), preventing symptomatic
HF and protecting the heart from a second heart attack
event after the first one (secondary prevention) [reviewed
in (211, 212)]. The choice of β-blockers as a therapy
for cardiac dysfunctions associated with anticancer drugs
is mostly based on the dual cardioprotective role exerted
by antihypertensive or antiarrhythmic drugs, which preserve
cardiovascular function while inhibiting tumor angiogenesis
[reviewed in (212)]. β-blockers, together with calcium channel
blockers, nitrates, and aspirin are recommended for the
management of fluoropyrimidines-induced cardiotoxicity as
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therapies for angina chest pain, albeit the absence of randomized
controlled trials to support their efficacy [reviewed in (68, 71,
213)]. Furthermore, a large number of observations indicate
β-adrenergic receptor signaling alterations as a feature of
anthracycline-induced cardiomyopathy and in other forms of
dilated cardiomyopathies [reviewed in (16, 37)]. A retrospective
survey between 2005 and 2010 on 920 breast cancer patients who
received anthracyclines and trastuzumab showed an association
of continuous β-blocker treatment with a significantly lower
incidence of HF events (214). Bisoprolol, another second-
generation β-blocker, showed stronger efficacy compared to
angiotensin-converting-enzyme inhibitor (ACE-I) perindopril
in attenuating the LVEF decline in patients who received
trastuzumab, even though it was unable to avoid left ventricular
remodeling (215). However, administration of metoprolol,
a second-generation β-blocker, did not affect LVEF decline
determined by adjuvant, anthracycline-containing regimens
with or without trastuzumab and radiation (216) and showed
a non-statistically significant reduction in the incidence of
anthracycline-induced HF events (217).

In in vitro and ex vivo set-up, carvedilol, a non-selective
β- and α1-AR antagonist with strong antioxidant properties,
reduced doxorubicin-induced ROS release and cardiomyocyte
apoptosis (218) as well as mitochondrial respiration dysfunctions
and calcium overloading (219). In rat models of doxorubicin-
induced cardiomyopathy, carvedilol showed a significant
cardioprotective effect, while atenolol, a β-blocker selective
for β1-AR and without antioxidant properties, did not,
thus suggesting that carvedilol cardioprotective efficacy
relies more on its antioxidant properties than on the β-AR
blocking action (220). In clinical trials of patients undergoing
anthracycline chemotherapy, the prophylactic use of carvedilol
decreased the ventricular dysfunction (221–223). In children
receiving anthracyclines for acute lymphocytic leukemia,
pre-treatment with carvedilol reduced troponin, diastolic
dysfunction, and lactate dehydrogenase levels (224, 225).
Furthermore, a randomized trial on 468 breast cancer patients
treated with anthracyclines with/without trastuzumab showed
reduced cardiotoxicity upon carvedilol administration, hence
recommending carvedilol as a strategy to reduce trastuzumab
interruptions (226).

Nebivolol is a cardio-selective β-blocker with mild
vasodilating effects due to its interaction with the arginine/NO
pathway [reviewed in (227)]. In isolated perfused rat hearts
model of anthracycline-induced cardiotoxicity, treatment with
nebivolol increased NO levels and significantly reduced
oxidative stress, and improved cardiac function (228).
Mechanistically, experiments in the rat model suggested that
nebivolol administration reduces alterations in cardiomyocyte
histomorphometry induced by doxorubicin through modulation
of caspase-3, NO synthase (NOS), and TNF-α (229). In
randomized placebo-controlled studies, the prophylactic use of
nebivolol preserved the cardiac diastolic and systolic function
from anthracycline-induced toxicity (230, 231).

To date, the cardioprotective efficacy of β-blockers needs to
be further validated in large clinical trials. In addition, in clinical
practice, the usage of β-blockers is hampered by their adverse

effects in fragile patients, indicating their possible application
only in patients with a high cardiotoxicity risk.

Renin-Angiotensin-Aldosterone System
Inhibitors
Several studies showed that alteration of the RAAS has a
crucial role in modulating anthracycline-induced cardiotoxicity
[reviewed in (232)]. Therefore, the development of RAAS
inhibitors, including ACE-Is, angiotensin receptor type 1
blockers (ARBs), as well as aldosterone antagonists, may be
effective in the prevention and treatment of anthracycline-
induced cardiotoxicity [reviewed in (232, 233)].

Angiotensin-converting-enzyme inhibitors, such as
enalapril, captopril, lisinopril, and ramipril, impair the
conversion of angiotensin I to angiotensin II, with a consequent
decrease of angiotensin II receptor type 1 (AT1R) stimulation
and its downstream signaling. These compounds have been
demonstrated effective in the treatment of hypertension, as
well as in reducing mortality in left ventricular dysfunction
after myocardial infarction and CHF (234). Preclinical studies
in animal models have demonstrated that ACE-Is, such as
enalapril, captopril, and lisinopril, can effectively counteract the
cardiotoxic effects after single high-dose, multiple low-doses or
chronic exposure of anthracyclines (235–238). Mechanistically,
ACE-Is’ therapy has been shown to result in the neutralization
of ROS damage, reduction of interstitial fibrosis, limitation
of intracellular calcium overload, along with improvement
of mitochondrial respiration and cardiomyocyte metabolism
(235, 236) [reviewed in (232)]. In retrospective clinical analysis,
enalapril administration to doxorubicin-induced HF children
increased cardiac hemodynamic parameters; however, these
parameters declined after a few years (239). ACE-I therapy
with ramipril or enalapril was also shown to induce the
recovery of cardiac parameters in patients with doxorubicin-
induced cardiac function decline (240). However, no significant
improvement in exercise ability or contractile state of pediatric
cancer patients receiving anthracyclines was also reported upon
enalapril administration, albeit with reduction of left ventricular
end-systolic wall stress (241). Clinical trials on HER2-positive
breast cancer patients under anthracycline-trastuzumab therapy
enlightened cardioprotective effects upon the administration of
the ACE-I lisinopril (226).

Angiotensin receptor type 1 blockers, such as candesartan
and telmisartan, inhibit angiotensin II binding to AT1R. In
preclinical rat models, candesartan significantly reversed the
daunorubicin-induced myocardial pathological changes and
cardiac dysfunction (242). Candesartan administration was
shown to significantly alleviate the decline in LVEF occurring
during adjuvant, anthracycline-containing regimens with or
without trastuzumab and radiation (216). Furthermore, in a
small prospective study of 49 patients free from cardiovascular
diseases and affected by solid cancers, telmisartan treatment
starting before chemotherapy was able to reduce epirubicin-
induced ROS damage by antagonizing the pro-inflammatory
signals and reversing the early myocardial impairment (243).
Telmisartan administration was also associated with long-lasting
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(up to 18 months) protection from early and acute myocardial
dysfunction in patients treated with epirubicin (244, 245). In
contrast, the administration of candesartan was unable to protect
against the decrease in left ventricular ejection fraction during or
shortly after trastuzumab treatment (246).

Importantly, clinical trials have also shown that a combination
of ACE-Is or ARBs and β-blockers has beneficial effects in
treating cardiotoxicity induced by anthracyclines and/or
anti-HER2 agents. Indeed, the combination of ACE-Is
(enalapril) and β-blockers significantly reduced the incidence
of cardiac dysfunction along with prevention of the onset
of late cardiotoxicity in patients receiving anthracyclines
(33, 247). A small phase I trial conducted on 20 women
suffering from breast cancer assessed the safety of continuing
trastuzumab treatment despite cardiotoxicity onset if patients
received ACE-Is and β-blockers following a staggered protocol
(248). Another study unveiled the combination of ACE-Is,
β-blockers and close cardiac monitoring as an effective strategy
for cardioprotection in patients receiving HER2-targeted
therapies (249).

Further studies focused on the cardioprotective role of
aldosterone antagonists, which inhibit the last step of the
RAAS and are already known for their beneficial effects on
injury-induced cardiac remodeling and fibrosis [reviewed in
(250)]. In a small clinical trial, spironolactone has been reported
to prevent anthracycline-related cardiac dysfunction in breast
cancer patients (251).

Sodium-Glucose Cotransporter-2
Inhibitors
Sodium-glucose cotransporter-2 selective inhibitors
(empagliflozin, canagliflozin, and dapagliflozin) are a group
of compounds that have been shown to have protective effects on
the progression of HF [reviewed in (252)]. Indeed, EMPA-REG
OUTCOME trial demonstrated that empagliflozin reduces
major adverse cardiovascular events, cardiovascular death,
and hospitalization rates for HF (253). Similarly, EMPEROR-
Preserved trials found a reduced risk of HF hospitalization
for 9718 patients with HF treated with empagliflozin (254).
In a new systematic review meta-analysis of seven studies,
for a total of 5,150 HF patients, empagliflozin was effective in
reducing cardiovascular death or hospitalization for worsening
HF condition (255). Therefore, SGLT2 inhibitors represent a
promising treatment for chronic HF patients.

Recently, the potentially protective effects of SGLT2 inhibitors
on the cardiac dysfunction induced by chemotherapies and
targeted therapies were also investigated in preclinical studies in
animal models. In this regard, protective effect by empagliflozin
against anthracycline-induced cardiac impairment, diastolic
dysfunction, and maladaptive cardiac remodeling has been
documented (256–259). Mechanistically, empagliflozin was
suggested to reduce ferroptosis, inflammatory response (NF-κB
signaling), apoptosis, and fibrosis induced by doxorubicin
through the involvement of NLRP3 and MyD88-related
pathway (257, 258). A recent pre-clinical study reported
that empagliflozin can also improve the cardiac dysfunction

induced by anti-VEGFR/PDGFR multi-TKI sunitinib, via
regulation of cardiomyocyte autophagy, in turn mediated by the
AMPK-mTOR signaling pathway (260).

Late Inward Sodium Current Inhibitors
Selective inhibitors of late inward sodium current (INaL), such
as ranolazine, have proven effective in treating experimental
HF in several experimental models of cardiac dysfunction
given its antiarrhythmic, anti-ischemic, and ATP-sparing
features. Experimental evidence suggests that anthracyclines
indirectly induce INaL hyperactivation, resulting in cytosolic
calcium overload (261–263). INaL hyperactivation contributes
to mitochondrial calcium depletion and dysregulation that, in
turn, triggers mitochondrial ROS generation (oxidative stress),
as well as NAD(P)H and ATP depletion (energetic stress); as a
result, these events lead to cardiomyocyte impairment, diastolic
dysfunction, and HF progression (261, 262, 264). Importantly, in
animal models of doxorubicin-induced cardiotoxicity, ranolazine
administration attenuated diastolic cardiac dysfunction and
prevented worsening of systolic function by reducing oxidative
stress and cardiomyocyte functional derangements (261, 262,
264). Moreover, ranolazine limited trastuzumab-induced cardiac
dysfunction in mice by acting as a regulator of cardiac redox
balance (265). In a very small randomized clinical study on
24 low-risk patients with diastolic dysfunction induced by
anthracycline-based or fluoropyrimidine-/platinum-based
therapies, patients were treated for 5 weeks with ranolazine or
standard therapy, observing a complete recovery from diastolic
dysfunction in all subjects in ranolazine group (12 patients)
(266). Thus, the therapeutic use of this drug is promising,
although needs validation in large clinical trials specific for each
type of chemotherapy.

Phosphodiesterase-5 Inhibitors
Phosphodiesterase-5 inhibitors, such as sildenafil and tadalafil,
were demonstrated to induce cardioprotective effects in animal
models affected by doxorubicin cardiac toxicity (267–269).
Sildenafil demonstrated cardioprotective activity against
anthracycline-induced cardiac dysfunction by inducing the
opening of mitochondrial KATP channels, leading to preserving
mitochondrial potential and functions, myofibrillar integrity,
and preventing cardiomyocyte apoptosis (267). The cardiac
effects of sildenafil were also suggested to be dependent on the
NO-signaling pathway since its protective activity was abolished
by both L-NAME (inhibitor of NOS) and 5-hydroxydecanoate
(inhibitor of ATP-sensitive K+ channels) (270). Tadalafil’s
effects on cardiotoxicity reduction, instead, were suggested to be
mainly due to NO-mediated increases of protein kinase G (PKG)
activity and cGMP signaling, which is significantly reduced by
doxorubicin administration (268, 269).

Metabolic Agents
Butyric acid, a short-chain fatty acid produced daily by
the gut microbiota, has proven beneficial in models of
cardiovascular diseases (271) [reviewed in (272)]. A novel
butyric acid derivative, phenylalanine-butyramide (FBA), has
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been shown to protect animal models from doxorubicin-
induced cardiotoxicity by decreasing oxidative stress and
improving mitochondrial function (273). Of note, FBA prevented
doxorubicin-induced cardiomyocyte apoptosis, left ventricular
dilatation, and fibrosis (273).

Another metabolic agent, β-hydroxybutyrate (BHB),
produced by fatty-acid oxidation in the liver under the fasting
state, was shown to play a cardioprotective role in diabetic and
HF with preserved ejection fraction (HFpEF) mouse models,
when administrated as a dietary supplement or directly injected
(274, 275). Interestingly, BHB was also reported to induce
protection against anthracycline-induced cardiac function
decline and partially reverted the maladaptive remodeling,
characterized by increased cardiomyocyte size and decreased
fibrosis (276). In vitro, BHB administration reduces oxidative
stress and ameliorates mitochondrial functions, decreasing
cardiomyocyte cell injury and apoptosis (276).

Statins
Statins reduce cholesterol synthesis by inhibiting the enzyme
HMG CoA reductase. However, statins have emerged as
pleiotropic factors playing a positive role on the cardiovascular
system, including ROS production and oxidative stress, and
the consequent cardiac mitochondrial dysfunction [reviewed in
(277, 278)]. Importantly, the treatment of breast cancer patients
undergoing anthracycline-based therapy with statins has been
reported to be associated with a lower risk for HF and to prevent
the decrease of the left ventricular ejection fraction (279–282).
A similar cardioprotective activity of statins was reported for
trastuzumab-based therapies (283).

Growth Factors
Administration of the growth factor Neuregulin-1 (NRG1β) has
been shown to improve cardiac function following injury in adult
mice (127, 134) [reviewed in (110, 133)] and in HF patients
(135, 136) [reviewed in (137)]. Importantly, administration of
NRG1β has also been shown to protect cardiac myocytes from
anthracycline-induced apoptosis (134, 167, 284, 285) [reviewed
in (286)]. Further, NRG1 administration in the zebrafish model
was reported to reduce cardiomyocyte apoptosis induced by
the multi-TKI ponatinib (200) [reviewed in (197)]. However,
NRG1β is not clinically relevant as a therapy for cardiomyopathy
induced by anticancer drugs because of its well-established
cancer-promoting role. To solve this issue, an engineered
bivalent NRG1 (NN), which preferentially induces ERBB4 homo-
dimer formation in cardiomyocytes, has been developed and
shown to protect against doxorubicin-induced cardiotoxicity,
maintaining the same cardioprotective properties of NRG1
but with reduced pro-neoplastic potential (287). Nevertheless,
although up to now there is no evidence in the literature
about detrimental side effects in response to bivalent NRG1,
NN has not been recruited into a clinical trial yet. Further
studies are therefore recommended to assess if this combinatorial
treatment is sufficient to mitigate the cardiotoxic side effects of
chemotherapeutic agents.

Granulocyte colony-stimulating factor (G-CSF) is a
hematopoietic growth factor that affects proliferation and

differentiation, especially of progenitors of the neutrophil and
granulocyte lineages, therefore it is currently used clinically
in combination with doxorubicin to counteract doxorubicin-
induced myelosuppression (288). Interestingly, a role for G-CSF
has also been suggested in doxorubicin-induced cardiomyopathy.
Indeed, an attenuation of cardiomyocyte atrophic degeneration
and a decrease of myocardial fibrosis have been reported after
G-CSF administration in doxorubicin-treated mice (289).
Intriguingly, G-CSF was suggested to exert an anti-atrophic and
anti-inflammatory activity directly on cardiomyocytes (289).

Among stromal cells, the beneficial role of endothelial
progenitor cells (EPCs) has emerged to counteract the
cardiotoxicity of cancer therapies. For example, erythropoietin
(EPO) has been shown to promote angiogenesis by increasing
the number of EPCs, thereby improving cardiac function after
doxorubicin treatment (290).

Other Strategies
A few other strategies were suggested to reduce the adverse
cardiovascular side effects of common chemotherapies and
targeted therapies. In this regard, the sulfur-containing amino
acid taurine (2-aminoethanesulfonic acid) has been shown
to exert beneficial effects in CHF, ischemic heart disease,
hypertension, atherosclerosis, and diabetic cardiomyopathy
(291). Intriguingly, taurine was also shown to reduce cisplatin-
induced cardiotoxicity by suppressing the generation of ROS, ER
stress, and inflammation (102). Apocynin, a specific NADPH
oxidase inhibitor, has been shown to reduce cisplatin-induced
oxidative stress, inflammation and apoptosis (101).

Preclinical studies demonstrated that fenofibrate, a PPARα

activator, counteracted doxorubicin-induced cardiotoxicity in
mice by increasing circulating EPCs, stimulating cardiac NO
activation and inducing the production of pro-angiogenic factors
such as SDF-1 and VEGF (292).

Besides molecular strategies, remote ischemic
preconditioning (RIPC), which consists of reversible repetitive
interruptions in blood flow, ischemia, and reperfusion, seems a
good approach to reduce anthracycline-induced cardiotoxicity
(293). Indeed, large animals, subjected to RIPC before each
doxorubicin injection, have shown a preserved cardiac
contractility and mitochondrial integrity, concomitantly
with a higher cardiac performance and reduced fibrosis (293).

CONCLUSION AND FUTURE
PERSPECTIVES

Although anticancer therapies greatly improve survival and
quality of life of oncological patients, their negative impact
on cardiac well-being is a very critical issue. In addition to
common risk factors, such as age, hypertension, arrhythmias,
and coronary disease, it has emerged the identification of genetic
variants related to an increased predisposition to cardiotoxicity
of chemotherapies and targeted therapies, in particular for
anthracyclines and anti-HER2 therapies. Thus, the development
of individualized treatments, based on the forecast of the
cardiotoxic side effects, may acquire a considerable clinical
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relevance for the future perspective. Importantly, the cellular and
molecular mechanisms mediating the cardiotoxicity of common
classes of chemotherapy and targeted therapy drugs are emerging,
providing a rationale for the development of novel strategies
for cardioprotection. Recent clinical trials have tested multiple
cardioprotective drugs, highlighting the ability of some of them
in counteracting or limiting the cardiotoxic effects of anticancer
treatments. However, many of these therapeutic strategies still
have certain limits and need some precautions. Among them, the
lack of validation in large clinical trials, the underlying molecular
mechanisms still not fully understood, as well as the risk-benefit
controversies. In this regard, it is extremely important to take into
account the tolerability of the adverse effects that these therapies
may entail, including fatigue and dizziness, in patients already
fatigued by antitumoral therapy.

Despite multiple cellular and molecular mechanisms being
suggested to mediate the cardiotoxic effect of anti-cancer drugs,
cardiomyocyte death has emerged as the major cause of long-
term irreversible cardiac disfunction. These important side effects
have been documented for anthracyclines, fluoropyrimidines,
and alkylating drugs. This is because lost cardiomyocytes cannot
be efficiently regenerated due to the very low ability of the adult
mammalian heart to produce new cardiomyocytes (294, 295)
[reviewed in (296)]. Although the cytotoxic effect of anticancer
treatments resides on a wide range of biological mechanisms,
the development of strategies aiming at increasing cardiomyocyte
survival is thus encouraged to reduce anticancer drug-induced
cardiomyocyte death and the consequent permanent damage. In
the future, the administration of cardiomyocyte survival factors
flanking chemotherapy and targeted therapies should be further
explored. In this regard, a plethora of factors and signaling
pathways has been shown to trigger endogenous cardiomyocyte
proliferation for cardiac regenerative strategies [reviewed in

(296)], thus their modulation may be also explored for cancer
patients with permanent damage by anticancer drugs. Some of
these factors also regulate cardiomyocyte survival, thus their
modulation may be tested as a preventive strategy to reduce
permanent cardiotoxic effect of anticancer drugs. Obviously,
the potential interfering with the action of the antineoplastic
treatments should be carefully evaluated.

In conclusion, cardiovascular adverse effects resulting from
antineoplastic therapies are important concerns for the health
of cancer patients and could question the choice of undertaking
or interrupting treatments. Nowadays, some drugs have been
clinically tested to counteract the cardiotoxicity related to
anticancer care, and we here propose a further evaluation
of factors that up to now are mainly known for their role
in cardiomyocyte proliferation and survival, as promising
strategies for protection and/or regeneration of the cardiac tissue.
Moreover, an increasing synergistic effort would be required
for the oncologic and cardiologic research fields to assure
cancer patients a long-term relapse-free survival and high-quality
cardiovascular health.
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