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Objective: The management of cardiogenic shock (CS) in the elderly remains a major

clinical challenge. Existing clinical prediction models have not performed well in assessing

the prognosis of elderly patients with CS. This study aims to build a predictive model,

which could better predict the 30-day mortality of elderly patients with CS.

Methods: We extracted data from the Medical Information Mart for Intensive

Care III version 1.4 (MIMIC-III) as the training set and the data of validation sets

were collected from the Second Affiliated Hospital and Yuying Children’s Hospital of

Wenzhou Medical University. Three models, including the cox regression model, the

Least Absolute Shrinkage and Selection Operator (LASSO) regression model, and the

CoxBoost model, were established using the training set. Through the comparison

of area under the receiver operating characteristic (ROC) curve (AUC), C index, net

reclassification improvement (NRI), integrated discrimination improvement (IDI), and

median improvement in risk score, the best model was selected. Then for external

validation, compared the best model with the simplified acute physiology score II (SAPSII)

and the CardShock risk score.

Results: A total of 919 patients were included in the study, of which 804 patients were in

the training set and 115 patients were in the verification set. Using the training set, we built

three models: the cox regression model including 6 predictors, the LASSO regression

model including 4 predictors, and the CoxBoost model including 16 predictors. Among

them, the CoxBoost model had good discrimination [AUC: 0.730; C index: 0.6958

(0.6657, 0.7259)]. Compared with the CoxBoost model, the NRI, IDI, and median

improvement in risk score of other models were all< 0. In the validation set, the CoxBoost

model was also well-discriminated [AUC: 0.770; C index: 0.7713 (0.6751, 0.8675)].

Compared with the CoxBoost model, the NRI, IDI, and median improvement in risk score

of SAPS II and the CardShock risk score were all < 0. And we constructed a dynamic

nomogram to visually display the model.

Conclusion: In conclusion, this study showed that in predicting the 30-day mortality

of elderly CS patients, the CoxBoost model was superior to the Cox regression model,

LASSO regression model, SAPS II, and the CardShock risk score.
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BACKGROUND

Cardiogenic shock (CS) is an extremely serious clinical condition
and occurs as a consequence of cardiac pump failure, which has a
high mortality (1, 2). In recent decades, the prevalence of CS has
increased from 4.1 to 7.7%, and themortality rate is up to 40% (3–
5). Age itself increases the risk of CS associated with myocardial
infarction, and advanced age itself is an independent risk factor
for CS (6). This suggested that for the elderly, the risk of CSwill be
higher. The WHO defines the elderly as over 65 years old; as this
aging population continues to grow, it is crucial to pay attention
to issues related to this group. Therefore, the management of
CS in the elderly is a huge clinical challenge (7, 8). Finding an
efficient method to early evaluate the prognosis is helpful for
clinicians to identify high-risk patients in time, and make better
medical decisions in clinical practice.

However, in the elderly population, information on the
prevalence, determinants, and prognostic factors of CS is scarce.
Some researchers have constructed risk prediction models to
facilitate risk assessment and predict the mortality of CS, such as
the CardShock risk score (9, 10), but these models still have some
shortcomings, such as the calculation methods are complicated,
or the included predictors of some models are not all objective
data. For example, in the CardShock risk score, the evaluation of
the patients’ consciousness depends on the subjective judgment
of clinicians. Besides, they are not completely built for the elderly
population, the evaluation effect of the prognosis of the elderly
needs further assessment.

Compared with traditional forecasting methods, novel
machine learning techniques can process high-dimensional data,
identify complex relationships between variables and develop
precise clinical prediction models, which have received more and
more attention and recognition from clinicians (11, 12). There
are many studies that apply machine learning to the evaluation
of a variety of diseases and with good results (13–15). It has also
been used in other medical auxiliary disciplines, such as imaging
and anesthesiology (16, 17). Hou et al. (18) used XGboost
machine learning to predict 30-days mortality of patients with
sepsis. Weyer and Binder (19) developed a weighting approach
for judging the effect of patient strata on high-dimensional risk
prediction signatures using CoxBoost. Therefore, we hope to use
the CoxBoost method to help us better predict the prognosis of
elderly patients with CS.

Based on the Medical Information Mart for Intensive Care
III (MIMIC-III) database and the Second Affiliated Hospital
and Yuying Children’s Hospital of Wenzhou Medical University
(WMU), the goal of this study is to build a predictive model
using CoxBoost machine learning, which can predict the 30-day
mortality of elderly patients with CS.

METHODS

Data Source and Research Population
We extracted data from MIMIC-III database version 1.4 as the
training set, which is a public and free intensive care unit (ICU)
database (20). Since the MIMIC-III database was approved by
the Institutional Review Boards (IRB) of Beth Israel Deaconess

Medical Center (Boston, MA) and the Massachusetts Institute of
Technology (Cambridge,MA), IRB approval from our institution
was exempted. Data of validation sets were collected from the
patient data of ICU at the Second Affiliated Hospital and Yuying
Children’s Hospital of WMU. The Medical Ethics Committee of
the Second Affiliated Hospital and Yuying Children’s Hospital,
WMU approved the use of the patient data of the Second
Affiliated Hospital and Yuying Children’s Hospital (Ethical
Review Number: 2021-K-71-01).

The inclusion criteria were as follows: (1) ICU admissions
age ≥ 65 years; (2) CS patients in MIMIC-III database and
the Second Affiliated Hospital and Yuying Children’s Hospital
of WMU. Among them, patients from the MIMIC-III database
were diagnosed according to the International Classification
of Diseases, Ninth Revision (ICD-9) diagnostic code 785.51
or 998.01, and patients from the Second Affiliated Hospital
and Yuying Children’s Hospital of WMU were selected by
unified diagnostic criteria: minimum systolic blood pressure
(SBP) <90 mmHg, or need of vasopressors therapy or signs of
hypoperfusion. Only records of the first ICU visit were selected
for analysis to eliminate duplicate data. The specific process was
shown in Figure 1.

Data Extraction and Outcome
We extracted the following information of patients on the
first day of admission: (1) demographic information such
as age, gender, ethnicity, and pathogeny; (2) vital sign
data including heart rate, SBP, mean blood pressure (MBP),
diastolic blood pressure (DBP), respiratory rate, temperature,
and arterial oxygen saturation (SpO2); (3) laboratory data
including white blood cell (WBC) count, red cell distribution
width (RDW), hemoglobin, hematocrit, platelet, activated partial
thromboplastin time (APTT), international normalized ratio
(INR), prothrombin time (PT), anion gap, bicarbonate, glucose,
blood lactic acid, serum creatinine, serum urea nitrogen, serum
sodium, and serum potassium; (4) comorbidities including
congestive heart failure, atrial fibrillation, coronary heart disease,
renal failure, liver disease, stroke, tumor, chronic obstructive
pulmonary disease (COPD), acute respiratory distress syndrome
(ARDS), and pneumonia; (5) traditional severity scores including
simplified acute physiology score II (SAPSII); (6) As well as
ejection fraction and the use of the vasopressor. If multiple
measurements were made in the first 24 h, the vital signs and the
laboratory data were based on the results of the first examination.
The endpoint was 30-day mortality.

Missing Data
Variables with missing values ≥40% were excluded directly. We
usedmultiple interpolations to deal withmissing variables<40%.
Patients with individual data missing by more than 10% or
outliers [values above the mean of 3 standard deviations (SD)]
were excluded. In the training set and the verification set, we
carried out the above data processing respectively.

Statistical Analysis
The continuous variables were expressed as mean ± SD of the
normal distribution, while the non-normal continuous variables
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FIGURE 1 | Flowchart of patient selection.

were expressed as median (interquartile range). Wilcoxon W test
or Kruskal Wallis test was used to assess the differences among
groups. The variance inflation factor (VIF) was calculated to
verify whether multicollinearity existed.

In the model development stage, three models were
established using the training set: the cox regression model,
the Least Absolute Shrinkage and Selection Operator (LASSO)
regressionmodel, and the CoxBoost model. In the Cox regression
model, we used the monofactor analysis to pick out targeted
predictors and screened the predictors twice using multiple
regression analysis. After two rounds of screening, the predictive
factors were finally incorporated into the Cox regression model.
The main idea of LASSO is to construct a first-order penalty
function to obtain a refined model and to carry out feature
screening by finally determining the coefficients of some variables
to be 0. In the LASSO regression model, we determined the
cutoff value based on ten-folds cross-validation to select the most
useful predictive variables to form the LASSO regression model.
CoxBoost (https://github.com/binderh/CoxBoost) is used to fit a
Cox proportional hazards model by componentizing likelihood-
based boosting, which is particularly suitable for models with a
large number of predictors and allows for mandatory covariates
with unpenalized parameter estimates. In contrast to gradient
boosting, CoxBoost is not based on gradients of loss functions
but adapts the offset-based boosting approach for estimating Cox
proportional hazards models (21). According to the CoxBoost
machine learning analysis of the importance of the predictors,
we select targeted variables incorporated into the CoxBoost
regression model.

These three models were evaluated together with the
classic SAPSII score model. The area under receiver operating
characteristic (ROC) curve (AUC), C index, net reclassification
improvement (NRI), integrated discrimination improvement

(IDI), andmedian improvement in risk score were used to choose
the best model. In the validation set, AUC, C index, NRI, IDI, and
median improvement in risk score were also used to evaluate the
CoxBoost model, SAPSII score model, and the CardShock risk
score model for external validation. We constructed a DynNom-
based dynamic nomogram to visually display the final model. R
software version 4.0.3 was used for all statistical analyses. P< 0.05
was considered statistically significant.

RESULTS

Baseline Characteristics
After excluding the patients who did not meet the inclusion
criteria, a total of 919 patients were included in this study. Among
them, 804 were from the training set and 115 were from the
verification set. We divided these patients into two groups based
on their death or survival in 30-day.Table 1 summarizes the basic
distribution of all the target patients’ baseline characteristics, vital
signs, comorbidities, and other indicators. In the training set, the
difference in age, SBP, MBP, DBP, respiratory rate, temperature,
SpO2, WBC count, RDW, INR, PT, anion gap, bicarbonate,
blood lactic acid, serum creatinine, serum urea nitrogen, serum
potassium, tumor, SAPSII score, and length of stay in the
hospital between the two groups was statistically significant. In
the validation set, the difference in temperature, PT, bicarbonate,
blood lactic acid, congestive heart failure, pneumonia, SAPSII
score, and length of stay in hospital between the two groups was
statistically significant.

Model Development
Based on the training set, we developed three models.
In the traditional cox regression model, we first used the
monofactor analysis to pick out 8 predictors (P < 0.05),
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TABLE 1 | Baseline characteristics of the study population of 30-day all-cause death.

Training set Validation set

Survival in 30-day Death in 30-day P Survival in 30-day Death in 30-day P

Number of patients 500 304 53 62

Pathogeny / 0.392

Acute coronary syndrome, n (%) / / 47 (88.68) 56 (90.32)

Valvopathy, n (%) / / 2 (3.77) 1 (1.61)

Cardiomyopathy, n (%) / / 2 (3.77) 4 (6.45)

Heart failure, n (%) / / 0 (0.00) 1 (1.61)

Atrial fibrillation, n (%) / / 2 (3.77) 0 (0.00)

Clinical parameters

Age, years 77.50 ± 7.39 80.01 ± 7.51 <0.001 76.28 ± 6.47 78.56 ± 7.62 0.089

Sex, n (%) 0.623 0.498

Female 223 (44.60) 141 (46.38) 24 (45.28) 32 (51.61)

Male 277 (55.40) 163 (53.62) 29 (54.72) 30 (48.39)

Ethnicity, n (%) 0.279 /

White 346 (69.20) 217 (71.38) / /

Black 31 (6.20) 11 (3.62) / /

Others 123 (24.60) 76 (25.00) 53 (100) 62 (100)

Vital signs

Heart rate, beats/minute 87.09 ± 16.08 89.44 ± 17.29 0.051 99.75 ± 23.97 104.05 ± 19.98 0.299

SBP, mmHg 104.97 ± 13.53 100.44 ± 13.57 <0.001 124.58 ± 33.65 114.49 ± 28.03 0.083

MBP, mmHg 72.45 ± 8.99 69.70 ± 9.73 <0.001 89.36 ± 24.28 83.15 ± 21.53 0.150

DBP, mmHg 55.25 ± 8.85 53.21 ± 9.33 0.002 71.75 ± 21.96 67.48 ± 20.81 0.288

Respiratory rate, times/minute 19.50 ± 3.84 20.49 ± 4.27 <0.001 20.51 ± 6.11 23.02 ± 7.94 0.065

Temperature, ◦C 36.73 ± 0.76 36.53 ± 1.08 0.003 36.78 ± 0.88 36.40 ± 0.97 0.034

SpO2, % 96.69 ± 4.09 95.31 ± 6.78 <0.001 95.36 ± 8.62 94.48 ± 7.78 0.575

Laboratory parameters

WBC count, 109/L 12.50 ± 5.69 14.20 ± 7.40 <0.001 15.03 ± 5.52 15.80 ± 5.63 0.466

RDW, % 15.07 ± 1.93 15.62 ± 2.57 <0.001 14.38 ± 1.72 14.03 ± 1.54 0.262

Hemoglobin, g/dl 11.07 ± 2.18 11.08 ± 2.02 0.944 11.71 ± 2.81 11.65 ± 2.14 0.904

Hematocrit, % 33.40 ± 6.37 33.58 ± 6.04 0.704 0.36 ± 0.08 0.36 ± 0.07 0.913

Platelet, 109/L 229.84 ± 110.60 223.86 ± 113.18 0.461 242.68 ± 93.47 210.02 ± 101.88 0.081

APTT, s 53.02 ± 35.10 58.47 ± 49.84 0.069 99.00 ± 65.95 94.00 ± 61.63 0.681

INR 1.78 ± 1.54 2.16 ± 2.20 0.004 1.54 ± 1.59 1.75 ± 1.03 0.403

PT, s 17.49 ± 9.65 20.11 ± 15.97 0.004 16.09 ± 3.00 19.31 ± 7.89 0.006

Anion gap, mmol/L 16.44 ± 4.47 18.84 ± 5.34 <0.001 15.99 ± 5.96 19.41 ± 6.41 0.070

Bicarbonate, mmol/L 22.11 ± 4.69 20.40 ± 6.08 <0.001 18.96 ± 5.20 15.67 ± 6.09 0.003

Glucose, mg/dl 181.99 ± 94.06 183.43 ± 106.79 0.842 181.27 ± 91.40 205.57 ± 71.03 0.212

Blood lactic acid, mmol/L 3.09 ± 2.68 4.27 ± 3.64 <0.001 4.34 ± 4.09 7.64 ± 5.73 <0.001

Serum creatinine, mg/dl 1.76 ± 1.39 2.14 ± 1.52 <0.001 1.67 ± 1.35 1.86 ± 1.20 0.420

Serum urea nitrogen, mg/dl 35.57 ± 21.61 43.71 ± 27.42 <0.001 31.51 ± 20.86 36.33 ± 23.95 0.262

Serum sodium, mg/dl 137.11 ± 4.81 136.97 ± 5.82 0.705 138.06 ± 7.44 138.96 ± 5.76 0.468

Serum potassium, mg/dl 4.32 ± 0.79 4.46 ± 1.05 0.039 6.09 ± 13.73 4.34 ± 0.78 0.319

Comorbidities

Congestive heart failure, n (%) 109 (21.80) 70 (23.03) 0.685 3 (5.66) 14 (22.58) 0.011

Atrial fibrillation, n (%) 258 (51.60) 146 (48.03) 0.326 9 (16.98) 18 (29.03) 0.129

Coronary heart disease, n (%) 151 (30.20) 84 (27.63) 0.437 44 (83.02) 53 (85.48) 0.717

Renal failure, n (%) 118 (23.60) 77 (25.33) 0.579 19 (35.85) 27 (43.55) 0.401

Liver disease, n (%) 7 (1.40) 7 (2.30) 0.343 8 (15.09) 10 (16.13) 0.879

Stroke, n (%) 14 (2.80) 4 (1.32) 0.168 17 (32.08) 15 (24.19) 0.347

Tumor, n (%) 41 (8.20) 42 (13.82) 0.011 2 (3.77) 2 (3.23) 0.873

(Continued)
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TABLE 1 | Continued

Training set Validation set

Survival in 30-day Death in 30-day P Survival in 30-day Death in 30-day P

COPD, n (%) 6 (1.20) 4 (1.32) 0.886 2 (3.77) 1 (1.61) 0.469

ARDS, n (%) 6 (1.20) 7 (2.30) 0.229 1 (1.89) 1 (1.61) 0.911

Pneumonia, n (%) 156 (31.20) 98 (32.24) 0.759 40 (75.47) 27 (43.55) <0.001

Ejection fraction, % / / / 41.74 ± 10.89 42.04 ± 13.93 0.905

Vasopressor, n (%) 416 (83.20) 266 (87.50) 0.099 50 (94.34) 58 (93.55) 0.860

Severity of illness

SAPSII score 47.36 ± 13.29 55.61 ± 14.98 <0.001 42.13 ± 8.00 59.94 ± 15.07 <0.001

Length of stay in hospital, day 14.72 ± 12.54 6.89 ± 6.64 <0.001 21.12 ± 13.23 6.73 ± 11.01 <0.001

The data of the training set came from MIMIC-III database version 1.4; the data of validation set came from the patient data of ICU at the Second Affiliated Hospital and Yuying Children’s

Hospital of Wenzhou Medical University.

SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; SpO2, arterial oxygen saturation; WBC, white blood cell; RDW, red cell distribution width;

APTT, activated partial thromboplastin time; INR, international normalized ratio; PT, prothrombin time; COPD, chronic obstructive pulmonary disease; ARDS, acute respiratory distress

syndrome; SAPSII, simplified acute physiology score II.

TABLE 2 | Cox regression model.

HR (95%CI) P

Clinical parameters

Age 1.0386 (1.0229–1.0545) <0.0001

Vital signs

Heart rate 1.0118 (1.0047–1.0189) 0.0010

Temperature 0.7894 (0.6897–0.9036) 0.0006

Laboratory parameters

WBC count 1.0281 (1.0110–1.0454)

Anion gap 1.0580 (1.0332–1.0833) 0.0012

Blood lactic acid 1.0548 (1.0168–1.0943) <0.0001

WBC, white blood cell.

the results are presented in Supplementary Table 1. Then, we
screened the predictors twice using multiple regression analysis
(Supplementary Table 2). The final Cox regression model was
shown in Table 2, a total of 6 predictors including age, heart
rate, temperature, WBC count, anion gap, and blood lactic
acid. In the LASSO regression model, we determined the cutoff
value based on the Loess smoothing function and the Youden
index. In this way, 36 features were reduced to 4 potential
predictors (Supplementary Table 3), including age, SBP, anion
gap, and blood lactic acid (Table 3). According to the CoxBoost
machine learning analysis of the importance of the predictors
(Supplementary Table 4), we selected 17 predictors (P < 0.05)
to construct the CoxBoost model, considering the existence of
multicollinearity, we removed MBP. The final model was shown
in Table 4, including age, heart rate, SBP, DBP, respiratory rate,
temperature, SpO2, WBC count, RDW, INR, PT, anion gap,
bicarbonate, blood lactic acid, serum urea nitrogen, and tumor.
VIF proved there was no significant multicollinearity in all three
models (VIF ≤ 3).

These three models were evaluated together with the classic
SAPSII score model to choose the best one. The CoxBoost

TABLE 3 | LASSO regression model.

HR (95%CI) P

Clinical parameters

Age 1.0386 (1.0231–1.0544) <0.0001

Vital signs

SBP 0.9846 (0.9765–0.9928) 0.0002

Laboratory parameters

Anion gap 1.0588 (1.0342–1.0840) <0.0001

Blood lactic acid 1.0433 (1.0050–1.0830) 0.0262

SBP, systolic blood pressure.

model had good discrimination (AUC: 0.730) in the training
set, which was better than others (Figure 2A). Besides, using the
CoxBoostmodel as a reference, the Cox regressionmodel, LASSO
regression model, and SAPSII score model did worse in the C
index (cox regression model: 0.6835; LASSO regression model:
0.6786; SAPSII: 0.6490), NRI (cox regression model: −0.0590;
LASSO regression model: −0.1480; SAPSII: −0.1630), IDI (cox
regression model: −0.0040; LASSO regression model: −0.0300;
SAPSII: −0.0530), and median improvement in risk score (cox
regression model: −0.0040; LASSO regression model:−0.0220;
SAPSII: −0.0570) (Table 5). Therefore, we choose the CoxBoost
model as the target model.

Model Comparisons
In the validation set, we further evaluated and validated the
CoxBoost model. The CoxBoost model was well-discriminated
in the external validation set (AUC: 0.770), which was greater
than the SAPSII score model (AUC: 0.724) and the CardShock
risk score (Supplementary Table 5) (AUC: 0.677) (Figure 2B).
In the C index, the CoxBoost model has the best performance
(C index: CoxBoost model 0.7713, SAPSII score model 0.7341,
CardShock risk score 0.6628, Table 5). Using the CoxBoost
model as a reference, the NRI of the SAPSII score model

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 May 2022 | Volume 9 | Article 849688

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Rong et al. Machine Learning Predicts Cardiogenic Shock

and the CardShock risk score were −0.3620 and −0.3480, the
IDI of the two models were −0.1740 and −0.2490, and the
median improvement in risk scores were −0.2380 and −0.1910

TABLE 4 | CoxBoost model.

Variables P

Clinical parameters

Age <0.0001

Vital signs

Heart rate 0.0224

SBP <0.0001

DBP 0.0204

Respiratory rate 0.0020

Temperature 0.0020

SpO2 <0.0001

Laboratory parameters

WBC count <0.0001

RDW 0.0020

INR 0.0143

PT 0.0082

Anion gap <0.0001

Bicarbonate 0.0061

Blood lactic acid <0.0001

Serum urea nitrogen 0.0020

Comorbidities

Tumor 0.0143

SBP, systolic blood pressure; DBP, diastolic blood pressure; SpO2, arterial oxygen

saturation; WBC, white blood cell; RDW, red cell distribution width; INR, international

normalized ratio; PT, prothrombin time.

respectively (Table 5), all of which suggested that the CoxBoost
model was better.

Model Presentation
We constructed a DynNom-based dynamic nomogram to
visually display the final model (Table 4) (https://CoxBoost-
model.shinyapps.io/DynNomapp/), which could directly obtain
the patient’s in-hospital mortality by inputting the values of the
relevant predictors. The final model formula and its regression
coefficients was as follows: survival possibility in 30-day= 0.0339
∗ age + 0.0104 ∗ heart rate – 0.0070 ∗ SBP – 0.0127 ∗ DBP +

0.0126 ∗ respiratory rate – 0.1959 ∗ temperature – 0.0112 ∗ SpO2

+ 0.0250 ∗ WBC count + 0.0422 ∗ RDW + 0.0176 ∗ INR +

0.0021 ∗ PT+ 0.0355 ∗ anion gap – 0.0055 ∗ bicarbonate+ 0.0463
∗ blood lactic acid + 0.0026 ∗ serum urea nitrogen + 0.2125 ∗

(tumor= 1).

DISCUSSION

Based on the data of the training set, we developed three models
altogether: the Cox regression model, the LASSO regression
model, and the CoxBoost model. After extensive evaluation,
the CoxBoost model was chosen as the best model. The model
includes 16 predictors, which can simply and effectively predict
the 30-day mortality of CS patients. In external validation,
the discrimination of the CoxBoost model was better than the
SAPSII and the CardShock risk score. And we developed a
dynamic nomogram.

Over the years, various scoring systems have been widely
used in the ICU (22, 23). However, in order to be suitable for
various types of critical patients, the sensitivity and specificity of
SAPSII are low. And the accuracy of the results of the assessment

FIGURE 2 | (A) Receiver operating characteristic (ROC) comparison of training set models. (B) ROC comparison of validation set models.
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TABLE 5 | Model comparison.

Model C index (95%CI) NRI IDI Median improvement in risk score

Training set

CoxBoost model 0.6958 (0.6657, 0.7259)

Cox regression model 0.6835 (0.6529, 0.7141)* −0.0590 −0.0040* −0.0040

LASSO regression model 0.6786 (0.6489, 0.7084)* −0.1480** −0.0300** −0.0220**

SAPSII score model 0.6490 (0.6181, 0.6799)** −0.1630** −0.0530** −0.0570**

Validation set

CoxBoost model 0.7713 (0.6751, 0.8675)

SAPSII score model 0.7341 (0.6448, 0.8234)* −0.3620* −0.1740 −0.2380

The CardShock risk Score model 0.6628 (0.5518, 0.7738)** −0.3480* −0.2490* −0.1910*

*Compared with the CoxBoost model P < 0.05; **Compared with the CoxBoost model P < 0.0001.

NRI, net reclassification improvement; IDI, integrated discrimination improvement.

system depends on the experience of practitioners. There are also
some small studies that used SASPAII to predict the prognosis of
patients with CS (24, 25). But the integrated ICU severity score
cannot accurately and reliably predict the mortality of elderly
patients with CS. The CoxBoost model constructed in this study
was targeted at elderly patients with CS, with higher sensitivity
and specificity. In the results of our study, it can be found that
the performance of the CoxBoost model was relatively better than
SAPSII in the both training set and validation set.

In recent years, models have been developed specifically
to assess the prognosis of patients with CS, but also have
some drawbacks (26, 27). For example, the IABP-SHOCK
II study established a scoring system for predicting 30-day
mortality in patients with CS (9), but it is more suitable
for patients with CS after emergency percutaneous coronary
intervention (PCI). The CardShock risk score (10) need
complicated calculation and scoring when it is used and partly
depend on the subjective judgment of clinicians. Hongisto
et al. evaluated the prognostic ability of two models in
elderly patients with CS and the results showed that the
predictive power was not very good (28). The CoxBoost model
was applicable to all types of elderly patients, and external
verification showed that its prediction ability was better than
the CardShock risk score. Last but not least, the CoxBoost
model could evaluate the short-term prognosis of elderly
CS patients by simply collecting patients’ vital signs, simple
laboratory data, and relevant medical history at admission,
all the selected predictors are objective data. The dynamic
nomogram further simplified the use of the model through an
easy-to-use web page.

The 16 factors that made up the CoxBoost model included all
the predictive factors in the cox model and LASSO model, which
showed that the CoxBoost approach has better performance and
accuracy. In the factors that made up the CoxBoost model, blood
lactic acid, WBC count, and anion gap were the three most
important laboratory indicators. Among them, blood lactate was
recognized as an important independent prognostic factor for CS
(29–31).WBC count could assess the prognosis of patients, which
may be related to the systemic inflammatory response caused
by hypoperfusion during CS (32, 33). But the mechanism for
the anion gap’s prediction was unclear. Zhang et al. found that

the anion gap was identified as a significant predictor of poor
prognosis in patients with CS (34). It could be linked to lactic
acid levels and keto, because elevated serum anion gap is usually
associated with excess production of organic acid anions and
reduced anion excretion (35). More experiments are needed to
confirm this.

This research was a multi-center retrospective study, the
main advantage was that the CoxBoost model was used for the
first time to predict the 30-day mortality of elderly patients
with CS. Multiple validation methods were used to compare
the CoxBoost model with traditional regression analysis, LASSO
regression analysis, and clinical scoring systems. The dynamic
nomogram was developed to facilitate users. However, there are
some limitations in this study: first, due to the relatively low
incidence of CS, the sample size of patients selected in our
study was relatively small. Second, there are potential differences
between the training set and the validation set in terms of patient
demography and research years. Third, the objective limitations
of the database may produce bias. Such as the use of diagnostic
codes to select patients may occur selective bias to a certain
extent. Or cause a lack of potential predictors. Fourth, there
was no further exploration of the database, which may make
the model imperfect. We will expand the sample size and refine
the sample data to conduct more in-depth research to validate
our model. Overall, we believe that the model developed in this
studymay be useful in evaluating the prognosis of elderly patients
with CS.

CONCLUSION

In conclusion, this study showed that in predicting the 30-day
mortality of elderly patients with CS, the CoxBoost model was
superior to the Cox regression model, LASSO regression model,
SAPSII, and the CardShock risk score. It is a simple and objective
score that can be applied in clinical practice.
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