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Background: Left ventricular (LV) volume overload (VO), commonly found in patients

with chronic aortic regurgitation (AR), leads to a series of left ventricular (LV) pathological

responses and eventually irreversible LV dysfunction. Recently, questions about the

applicability of the guideline for the optimal timing of valvular surgery to correct chronic

AR have been raised in regard to both adult and pediatric patients. Understanding how

VO regulates postnatal LV development may shed light on the best timing of surgical or

drug intervention.

Methods and Results: Prepubertal LV VO was induced by aortocaval fistula (ACF)

on postnatal day 7 (P7) in mice. LV free walls were analyzed on P14 and P21.

RNA-sequencing analysis demonstrated that normal (P21_Sham vs.P14_Sham) and

VO-influenced (P21_VO vs. P14_VO) LV development shared common terms of Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in the

downregulation of cell cycle activities and the upregulation of metabolic and sarcomere

maturation. The enriched GO terms associated with cardiac condition were only

observed in normal LV development, while the enriched GO terms associated with

immune responses were only observed in VO-influenced LV development. These results

were further validated by the examination of the markers of cell cycle, maturation, and

immune responses. When normal and VO-influenced LVs of P21 were compared, they

were different in terms of immune responses, angiogenesis, percentage of Ki67-positive

cardiomyocytes, mitochondria number, T-tubule regularity, and sarcomere regularity

and length.

Conclusions: A prepubertal LV VO mouse model was first established. VO has an

important influence on LV maturation and development, especially in cardiac conduction,

suggesting the requirement of an early correction of AR in pediatric patients. The

underlying mechanism may be associated with the activation of immune responses.
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GRAPHICAL ABSTRACT | A prepubertal LV VO mouse model was first established. VO has an important influence on LV maturation and development, especially in

cardiac conduction, suggesting the requirement of an early correction of AR in pediatric patients.

CLINICAL PERSPECTIVE

Novelty: To our knowledge, this study is the first to induce a
prepubertal left ventricular volume overload mouse model and
to reveal the molecular changes in prepubertal left ventricular
development under volume overload.
Clinical implications:A platform for the study of left ventricular
volume overload conditions, such as aortic or mitral valve
regurgitation, is introduced. Volume overload has an important
effect on left ventricular maturation and development, and this
highlights the necessity of early correction of aortic regurgitation
or the need for advanced drugs to support left ventricular
maturation under the influence of volume overload.

INTRODUCTION

Aortic regurgitation (AR), which produces left ventricular
(LV) volume overload (VO), is documented in up to 15% of
patients and ranks third in prevalence among valvular heart
diseases (1–4). Children with mild or moderate AR may remain
asymptomatic with normal LV systolic function for many years.
However, a series of pathological responses occur in AR, and
by the time patients become symptomatic, many have already
developed irreversible myocardial dysfunction (5–7). In the
current guidelines for the management of patients with AR,
surgical intervention is recommended at the onset of symptoms

Abbreviations: VO, Volume overload; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; AR, Aortic regurgitation; RNA-seq, RNA
sequencing; ACF, Aortocaval fistula; H&E, Hematoxylin and eosin; FPKM,
Fragments Per Kilobase of transcript sequence per Million; PBS, Phosphate
buffer saline; DAPI, 4′,6-diamidino-2-phenylindole; LV, Left ventricle; CM,
Cardiomyocyte; CHD, Congenital heart disease; Mito, Mitochondrion; AoV,
Aortic valve; AA, Abdominal aorta; IVC, Inferior vena cava; VTI, Velocity time
integral; PCR, Polymerase chain reaction; DEG, Differentially expressed gene.

or in the presence of LV systolic impairment (8–10). Thus,
the applicability of this guideline in pediatric patients is now
under questioning (11, 12). In addition, how VO affects pediatric
LV remodeling is largely unknown (13, 14). Understanding
the molecular mechanisms regulating pediatric LV development
under the influence of VO may offer insights for the optimal
timing of surgical intervention for AR.

Current studies have demonstrated that from postnatal day
1 (P1) to P7, rodent cardiomyocytes (CMs) are immature, with
a strong proliferative potential, using glycolysis as their primary
energy source (15–19). At P7, rodent CMs begin the maturation
process. At P21, the CMs are fully mature, with oxidative
phosphorylation as their primary energy source (15–19). From
P7 to P21, the rodent heart undergoes metabolic and cardiac
muscle maturation; therefore, there is an increase in sarcomere
length, mitochondria (Mito) number, and T-tubule regularity
(15–19). Previously, we first created a prepubertal VO model
by aortocaval fistula (ACF) at P7, and using the model, we
demonstrated that postnatal right ventricular (RV) maturation
and development were partly altered by VO, and that the
underlying mechanisms were associated with the replacement of
the peroxisome proliferator–activated receptor (PPAR) signaling
pathway by the cell cycle pathway (13, 18, 20). However, owing to
the huge differences in embryonic origin, anatomical structure,
and physiologic function between the LV and RV (21–23), the
RV results cannot be applied directly to the LV, and whether VO
affects LV maturation is still unexplored.

In adult animals, ACF not only induces RV VO but also
produces LV VO (24, 25). In past studies, we demonstrated
that ACF induces RV VO at neonatal and prepubertal animals
(13, 18, 20, 26), and VO induces different responses among
neonatal, prepubertal, and adult RVs (13, 26, 27), highlighting
the importance of developmental stage-specific analysis of the
effect of VO on RV remodeling. How ACF induces prepubertal
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LVVO is unknown. In the current study, we investigated whether
ACF was able to induce a prepubertal LV VO, then demonstrated
that the common and unique developmental processes between
normal and VO-influenced LVs. Finally, the normal and VO-
influenced LVs at P21 were compared to understand whether and
how LV maturation is affected by VO.

MATERIALS AND METHODS

All of the RNA sequencing (RNA-seq) data have been deposited
in the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo) under the accession number GSE186968.

Information on reagents and antibodies is provided in
Supplemental Table S1.

Data generated in this study are available from the
corresponding author upon reasonable request.

All of the procedures conformed to the principles outlined
in the Declaration of Helsinki and were approved by the
Animal Welfare and Human Studies Committee at Shanghai
Children’s Medical Center (Institutional Review Board Approval
Number: SCMCIRB-Y2020094).

Animal Experiments
Pregnant C57/BL6 mice were purchased from Xipu’er-bikai
Experimental Animal Co., Ltd. (Shanghai, China). At P7, the
prepubertal mice (both male and female) were randomized into
two groups—an experimental group (VO group) and a control
group (Sham group)—that underwent the same procedure
except for the puncture step. Male and female prepubescent
mice were equally used throughout the study. The fistula
surgery protocol was performed according to our previous
publications (13, 18, 20, 26). Briefly, the abdominal aorta (AA)
and inferior vena cava (IVC) of the prepubertal mice were
exposed by a midline laparotomy under general anesthesia (4%
isoflurane). A fistula between the AA and IVC was created by
a puncture with a 0.07-mm diameter needle (surgical video
is provided on the website: https://www.ahajournals.org/doi/
suppl/10.1161/JAHA.121.020854). After the puncture, a 2-min
hemostatic compression with the surrounding connective tissue
was executed, and the abdominal wall was closed with pain relief
(local lidocaine treatment).

Abdominal Ultrasound and
Echocardiography
At P14, the ACF and aortic valve (AoV) flow of mice
were analyzed with a Vevo 2100 imaging system (Visual
Sonics, Toronto, Ontario, Canada) under general anesthesia
with isoflurane (isoflurane/oxygen: 1.5–2.0% maintenance). For
confirmation of an ACF, the waveform in the fistula was recorded
using pulse-wave mode. To confirm the VO, the velocity-time
integral (VTI) of the AoV (AoV-VTI) blood flow, the AoV-
velocity, LV end-diastolic volume (LVEDV), LV end-systolic
volume (LVESV), and ejection fraction (EF) were calculated
from the mean of three consecutive measurements using two-
dimensional and pulse Doppler echocardiography.

Histology
Hematoxylin and eosin (H&E) staining was performed with a kit
according to the manufacturer’s instructions (C0105M; Beyotime
Biotech, Shanghai, China).

Total RNA Preparation
Total RNA was extracted from the LV free wall and purified
using a PureLink RNA micro scale kit (Catalog No. 12183016;
Life Technologies, Carlsbad, CA, USA). Reverse-transcription
polymerase chain reaction (PCR) was performed using the
PrimeScript reagent kit (Takara Bio, Kusatsu, Japan).

Library Preparation
Sequencing libraries were generated using the NEBNext R©

UltraTM RNA library prep kit for Illumina R© (New England
Biolabs, Ipswich, MA, USA) following the manufacturer’s
recommendations. Briefly, messenger RNA was purified from
total RNA using poly-T oligo-attached magnetic beads. First-
strand complementary DNA (cDNA) was synthesized using
random hexamer primers and M-MuLV reverse transcriptase
(RNase Hminus). Second-strand cDNA synthesis was performed
using DNA polymerase I and RNase H. In order to select cDNA
fragments of preferentially 250–300 bp in length, the library
fragments were purified with the AMPure XP system (Beckman
Coulter, Beverly, MA, USA). Then, 3 µl of USER Enzyme (New
England Biolabs, Ipswich, MA, USA) was used with size-selected,
adaptor-ligated cDNA at 37◦C for 15min, followed by 5min
at 95◦C. Then, PCR was performed with Phusion high-fidelity
DNA polymerase, universal PCR primers, and an index (X)
primer. Finally, PCR products were purified (AMPure XP system,
Beckman Coulter, Indianapolis, IN, USA), and library quality was
assessed on an Bioanalyzer 2100 system (Agilent Technologies,
Santa Clara, CA, USA).

Clustering and Sequencing
The clustering of the index-coded samples was performed on
a cBot cluster generation system using a TruSeq PE cluster kit
v3-cBot-HS (Illumina, San Diego, CA, USA) according to the
manufacturer’s instructions and then sequenced on an Illumina
NovaSeq platform.

Quality Control and Read Mapping
Raw data (raw reads) in fastq format were first processed through
in-house Perl scripts to generate clean data (clean reads), which
were used for the downstream analyses. The paired-end clean
reads were aligned to the reference genome using Hisat2 v2.0.5.
FeatureCounts v1.5.0-p3 was used to count the number of reads
mapped to each gene. Then, fragments per kilobase of transcript
sequence per million (FPKM) of each gene were calculated based
on the length of the gene and the read counts mapped to
each gene.

Differential Expression and Enrichment
Analysis
Differential expression analysis was performed using the DESeq2
R package (version 1.16.1).
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Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis was
implemented by the clusterProfiler R package, which was used
to correct the gene length bias. GO and KEGG terms, with
corrected P values of less than 0.05 were considered to be
significantly enriched.

Immunofluorescence
Slides were fixed with 4% paraformaldehyde for 10min,
permeated with 0.5% Triton X-100 for 15min, blocked
with 10% donkey serum for 30min, stained with primary
antibodies (Ki67/CD31, 1:200 dilution; Abcam, Cambridge, UK)
overnight at 4◦C, and incubated with secondary antibodies
and 4’,6-diamidino-2-phenylindole (DAPI) for 30min. The
immunofluorescence images of the slides were analyzed using
ImageJ software (National Institutes of Health, Bethesda,
MD, USA).

Transmission Electron Microscopy
Mito morphology and sarcomere alignment were determined by
transmission electron microscopy. The LVs were removed from
the chest when the mice were anesthetized with 1.5% isoflurane
and cut into 1-mm3 pieces, and then fixed with fresh and
cold 2.5% glutaraldehyde solution overnight at 4◦C. The fixed
samples were dehydrated, embedded in paraffin, and sectioned
into 70-nm slices. Finally, the slices were scanned with JEM-1230
(80 KV).

Flow Cytometry Analysis
To evaluate the immune cells in LVs, the LVs were minced
into small fragments and dissociated with 1:1 type II collagenase
(1,000 U/mL in PBS; Worthington, Lakewood, NJ, USA) and
dispase (11 U/mL in PBS; Gibco Laboratories, Gaithersburg, MD,
USA) at 37◦C for 30min. The dissociated cardiac cells were
removed from the contaminating erythrocytes by incubation
with red blood cell lysis buffer (eBiosciences, Waltham,
MA, USA) for 5min and then subsequently stained with
fluorochrome-conjugated antibodies against CD4 (eBiosciences)
at a dilution of 1:100 at 4◦C for 30min. Propidium iodide (PI;
Becton, Dickinson, and Co., Franklin Lakes, NJ, USA)-positive
dead cells were excluded for live cell analysis, and FACS data
were then analyzed with the FlowJo software (FlowJo LLC,
Ashland, OR).

T-Tubule Imaging and Analysis
In situ T-tubule imaging and AutoTT analysis of T-tubule
patterns were performed as described previously (28). Intact
mice hearts were Langendorff-perfused with Tyrode’s solution
containing 2.5µM of FM 4-64 (InvitrogenTM, Paisley, UK)
for 20min. The hearts were placed in the perfusion chamber
attached on the stage of a confocal microscope and perfused
with indicator-free/Ca2+-free solution. The membrane structure
of epicardial myocytes was analyzed in situ with confocal
microscope with a 63× oil immersion lens. AutoTT preprocessed
confocal images, and then extracted and analyzed T-tubule
system morphological features.

Sarcomere Imaging and Analysis
CMs were isolated with a Langendorff perfusion system as
described previously (29, 30). After perfusion, only the LV
free wall was removed and CMs from the LV were used
for sarcomere imaging. Isolated CMs were fixed with 4%
paraformaldehyde for 10min, permeated with 0.5% Triton X-
100 for 15min, blocked with 10% donkey serum for 30min,
stained with sarcomeric α-actinin (SAA, 1:200 dilution; Abcam)
overnight at 4◦C. The images were acquired through confocal
scanning using a 60× objective and analyzed by AutoTT
as described previously (28). AutoTT preprocessed confocal
images by background subtraction and local noise removal;
extracted sarcomere morphological features; and completed the
morphological feature analysis, including sarcomere length and
regularity analysis.

Statistical Analysis
Continuous data were expressed as mean ± standard deviation
values. Differences were tested using the Student’s t-test if the
data were normally distributed; otherwise, they were tested
with the rank-sum test. P-values of <0.05 were considered to
be statistically significant. Statistical analyses were performed
using the SAS software version 9.2 (SAS Institute Inc., Cary,
NC, USA).

RESULTS

Creation of ACF Mice
As shown in Figure 1A, we conducted ACF and sham procedures
on P7, and performed analyses at P14 and P21. Under normal
conditions, at P14, there was no pulsatile blood flow at IVC, while
with a pulsatile blood flow at the AA, the peak flow velocity up to
300 mm/s (Figures 1B,C). The average of peak velocity in the AA
was 268.2± 48.9 mm/s (Figure 1D). At the puncture point, there
was a pulsatile blood flow (Figure 1E), with a peak flow velocity
up to 602 mm/s (Figure 1F). After punctuation, a pulsatile blood
flow appeared in IVC, and the peak flow velocity reached up to
280 mm/s (Figure 1G). The average of peak velocity in the fistula
was 574.8± 36.4 mm/s (Figure 1H). These results suggested that
ACFmice were successfully created, consistent with our previous
publications (13, 18, 20).

Verification of LV VO in ACF Mice
To verify there was LV VO in the ACF mice, we performed
echocardiography on the ACF mice at P14. The results
showed that the AoV-velocities in the Sham and VO groups
were 257.4 ± 30.81 mm/s and 453.3.4 ± 42.22 mm/s,
respectively (p < 0.0001, n = 6), and the AoV-VTIs in the
Sham and VO groups were 14.56 ± 2.325mm and 24.98 ±

3.156mm, respectively (p < 0.0001, n = 6) (Figures 2A–C).
The LVEDVs in the Sham and VO groups were 12.18 ±

0.4051 µl and 17.08 ± 2.464 µl, respectively (p = 0.0007,
n = 6) (Figure 2D). The LVESVs in the Sham and VO
groups were 2.504 ± 0.7104 µl and 5.968 ± 2.342 µl,
respectively (p = 0.006, n = 6) (Supplementary Figure 1A).
There was no significant difference between the Sham and
VO groups (Supplementary Figure 1B). To confirm the results,
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FIGURE 1 | Establishment of the aortocaval fistula (ACF). (A) Top panel: experiment protocol; bottom penal: schematic diagram of the ACF model. (B) No pulsatile

blood flow appears in the inferior vena cava (IVC). (C) Pulsatile blood flow is shown in the abdominal aorta (AA), with a peak blood flow velocity of 250 mm/s. (D)

Quantification of peak velocity in the AA. (E) A representative image of blood flow through the fistula. (F) The representative image of pulsating blood flow at the fistula,

with a peak blood flow velocity of 602 mm/s, which is higher than that of the AA. (G) Pulsatile blood flow appeared in the IVC after fistula establishment, with a peak

blood flow velocity of 280 mm/s. (H) Quantification of peak velocity in the fistula. n = 6 mice.

FIGURE 2 | Left ventricular (LV) volume overload (VO) increased in the ACF model. (A) The representative echo image showed that, 2 weeks after the creation of

fistula, the aortic valve (AoV) velocity and the velocity–time integral (VTI) in the VO group were increased. (B) Quantification of AoV–velocity in the Sham and VO

groups, n = 6, Student’s t-test. (C) Quantification of AoV–VTI in the Sham and VO groups, n = 6, Student’s t-test. (D) Quantification of LV end-diastolic volume

(LVEDV) in the Sham and VO groups, n = 6, Student’s t-test. (E) Hematoxylin and eosin staining showed that, two-weeks after the creation of the fistula, the free wall

of the LV was thickened in the VO group. (F) Quantification of the thickness of the free wall of the LV, n = 6, Student’s t-test. **p < 0.01, ***p < 0.001, ****p < 0.0001.

hematoxylin and eosin staining was performed, revealing
an increased thickness of LV free wall in the VO group
(Figures 2E,F). No difference between sexes was observed in any

cardiac phenotype. These results confirmed that the LV VO was
successfully established in ACF mice, consistent with previous
publications (24, 25).
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FIGURE 3 | Transcriptomic changes in postnatal left ventricular (LV) development. (A) Volcano map of differentially expressed genes (DEGs) of postnatal LV

development in the normal condition (P21_Sham vs. P14_Sham). (B) Volcano map of DEGs of postnatal LV development under the influence of volume overload (VO)

(P21_VO and P14_VO). (C) The principal component analysis (PCA) of DEGs of the VO and Sham groups at P14 and P21. (D) The PCA of DEGs of the VO and Sham

groups at P21.

Postnatal LV Developmental Track Is
Changed by VO
To investigate how VO alters gene expressions in postnatal
LV development from P7 to P21, we selected the LVs
of the hearts from ACF and sham-operated mice at P14
and P21 and performed RNA-seq. Our results showed that,
during normal postnatal LV development, there were 5,528
differentially expressed genes (DEGs) between P21_Sham and
P14_Sham, among which 2,664 were upregulated and 2,864 were

downregulated (Figure 3A), respectively. Under the influence
of VO, there were 5,330 noted DEGs between P21_VO and
P14_VO, among which 2,681 were upregulated and 2,649 were
downregulated (Figure 3B). The principal component analysis
(PCA) showed that VO caused greater changes in gene expression
profiles at P14 than at P21 (Figure 3C). Although VO led to fewer
changes in the transcriptome at P21 than at P14, the individual
mice in the VO group were differed noticeably from the mice in
the Sham group at P21 (Figure 3D). These results indicate that
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LVs are more sensitive to VO at P14 than at P21, and, at P21, the
VO-influenced LVs are still quite different from normal LVs in
terms of gene expression.

Common Developmental Processes
Between Normal and VO-Influenced LVs at
the Prepubertal Stage
To further understand the common and different developmental
processes between normal and VO-influenced LVs, we
performed Venn analysis. The results showed that there
were 377 downregulated and 180 upregulated genes in common
between the Sham comparison (P21_Sham vs. P14_Sham)
and VO comparison (P21_VO vs. P14_VO)—that is, 309
upregulated genes and 506 downregulated genes appeared only
in the Sham comparison, and while 306 upregulated genes and
302 downregulated genes appeared only in the VO comparison
(Figure 4A).

When these common downregulated genes were subjected
to GO and KEGG pathway enrichment analysis, they were
mainly associated with cell cycle regulation (Figure 4B,
Supplementary Figure 2A). Cell cycle marker-Ki67 examination
confirmed the results of GO and KEGG pathway enrichment
analysis, revealing significant downregulation of Ki67-positive
CMs in both comparisons (Figures 4C,D). It should be noted
that the percentage of Ki67-positive CMs was higher in the VO
than in the Sham group, either at P14 or P21, suggesting that VO
contributes to cell cycle activities in the LV. These results were
similar to those found in the RV, but the degree of VO-induced
cell cycle activities in the LV was less than in the RV (13, 18).

The enriched analysis of the common upregulated genes
demonstrated that they were mainly associated with metabolic
maturation and cardiac muscle development (Figure 4E,
Supplementary Figure 2B). Although cardiac maturation
continued under VO, there were fewer Mito in the VO group
than in the Sham group, either at P14 or P21 (Figures 4F,G).
In addition, the proximity of Mito to sarcomere seemed less in
the VO group than in the Sham group. These results suggest
that VO affects the LV maturation, similar to as seen in the
RV (5, 7).

Unique Developmental Processes in
Normal or VO-Influenced LVs at the
Prepubertal Stage
When the uniqueDEGs (309 upregulated and 506 downregulated
genes), shown in Figure 4A of normal prepubertal LV
development were subjected to GO and KEGG pathway
enrichment analysis, the upregulated processes were mainly
associated with cardiac conduction, such as the enriched
terms of intercalated disc and T-tubule (Figures 5A,B), and
the downregulated processes were mainly associated with
angiogenesis and immune response (Figures 5A,B). The in situ
T-tubule imaging confirmed an increase in T-element density
and the index of TT integrity during normal LV development
(Figures 5C,D).

The unique DEGs (306 upregulated genes and 302
downregulated genes, as shown in Figure 4A) of VO-induced

prepubertal LV development were enriched in immune
responses (Figures 5E,F), which were confirmed by the increase
in macrophage percentages (Figures 5G,H).

These results suggested that VO may result in conduction
disorders, which may be associated with the increase of immune
responses. These were consistent with recent observations
in human beings, showing that conduction disorders were
associated with atrial VO, which induces sudden death in patients
with AR (31, 32).

Differences Between Normal and
VO-Influenced LVs at P21
Since the postnatal developmental track of LVs was altered
by VO, we compared P21_VO LVs with P21_Sham LVs to
understand how the LVs were changed by VO at the end point
of observation.

The results showed that there were 1,138 DEGs between the
two groups, of which 594 were downregulated and 544 were
upregulated (Figure 6A). When these genes were clustered, a
heat map showed that the individual mice in the same group
were similar to one another, yet differed markedly from those
of the other group (Figure 6B). GO enrichment analysis of these
DEGs demonstrated that the top 30 enriched terms were mainly
associated with immune responses and angiogenesis (Figure 6C,
Supplementary Figure 3A). KEGG pathway enrichment analysis
of these DEGs demonstrated that the top 20 enriched terms
were mainly associated with immune responses (Figure 6D,
Supplementary Figure 3B). These results indicated that immune
responses were activated in the LVs at P21 under the influence
of VO.

Verification of RNA-seq Results of P21 by
Examination of Endothelial Intensity and
Sarcomere Maturation
Our previous publications indicate that angiogenesis is one
of the major RV responses to VO at the prepubertal stage
(13, 18) and the major enriched GO terms at P21 (Figure 6C,
Supplementary Figure 3A). Thus we checked the enriched
terms associated with angiogenesis. As shown in Figure 7A,
there were 20 significantly enriched GO terms associated
with angiogenesis. The average intensity of endothelial cells
significantly increased in P21_VO when compared to in
P21_Sham (Figures 7B,C).

Our previous publications also indicated that RV maturation
is affected by VO (13, 20) and the maturation markers, Mito
and T-tubule, in LV are affected by VO (Figures 4F,G, 5D).
To further confirm that LV maturation was affected by VO,
we checked another maturation marker, sarcomere, at P21. The
results showed that there were couples of significant enriched
GO terms associated with sarcomere (Figure 7D). The sarcomere
regularity and length were reduced in P21_VO when compared
to in P21_Sham (Figures 7E–G, Supplementary Table S2).
One of the major hallmarks of cardiomyocyte maturation
is myofibril maturation, which is characterized by improved
sarcomere alignment and increased sarcomere length (19).
On postnatal day 21, normal myofibrils were mature with
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FIGURE 4 | The common developmental processes between normal and volume overload (VO)-influenced left ventricles (LV). (A) The Venn analysis of differentially

expressed genes (DEGs) in the two comparisons. There were 377 downregulated and 180 upregulated genes in common between the Sham comparison (P21_Sham

vs. P14_Sham) and VO comparison (P21_VO vs. P14_VO), where 309 upregulated genes and 506 downregulated genes only appeared in the Sham comparison, and

306 upregulated genes and 302 downregulated genes only appeared in the VO comparison, respectively. (B) The common 377 downregulated genes were subjected

to Gene Ontology (GO) enrichment analysis. The top 10 terms are displayed. The abscissa is the GO term, and the ordinate is the significance level of GO term

enrichment. The higher the value, the more significant the result. The size of the dots represents the number of genes annotated to the GO term. BP, biological

process; CC, cellular component; MF, molecular function. (C) Representative Ki67-positive cells. Ki67 (green); DAPI (blue); sarcomeric α-actinin (SAA, red). (D)

Quantification of Ki67-positive cardiomyocytes. (E) The common 180 upregulated genes were subjected to GO enrichment analysis. (F) Representative transmission

electron microscopy image of the LV. (G) Quantification of the number of mitochondria (Mito) from 30 fields of six mice in each group.

regular and proper long sarcomeres, while VO group myofibrils
stayed immature with shorter and less regular sarcomeres.
These results indicate that LV maturation is also affected
by VO.

DISCUSSION

Pediatric AR is a common entity with both preoperative
and postoperative congenital heart disease, such as previous
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FIGURE 5 | The unique developmental processes separating normal left ventricles (LVs) from volume overload (VO)-influenced LVs. (A) Genes uniquely appearing in

the Sham comparison were subjected to GO and KEGG pathway analysis. (B) Circle plot of select genes indicated ontologies of Sham comparison. Gene expression

relative difference (log2 fold change). (C) Left panel: representative of T-tubules from P14_Sham and P21_Sham groups. MM4-64 (T-tubule, white); middle panel:

skeletalization of T-tubule system, T-element (green), and L-element (purple); right panel: merged. (D) Left panel: quantification of T-element density from 30

cardiomyocytes in each group; right panel: quantification of the index of TT integrity from 30 cardiomyocytes in each group. (E) Genes uniquely appearing in the VO

comparison were subjected to GO and KEGG pathway analysis. (F) Circle plot of select genes indicated ontologies of VO comparison. Gene expression relative

difference (log2 fold change). (G) Representative flow cytometry plots of CD45+ cells among singlets and macrophages (CD11b+F4/80+) among CD45+ cells. (H)

Frequency quantification of the percentages of CD45+ cells and macrophages, n = 6, Student’s t-test.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 April 2022 | Volume 9 | Article 850248

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Hu et al. Prepubertal Left Ventricular Volume Overload

FIGURE 6 | The molecular differences between normal and volume overload (VO)-influenced left ventricles (LVs) at P21. (A) Volcano map of differentially expressed

genes (DEGs) between the normal and VO-influenced LVs at P21. (B) Cluster analysis of the DEGs between the normal and VO-influenced LVs. The clusters of genes

in each group were quite different from each other but were similar within the same group. (C) Scatter plots of the enriched GO terms. From the results of the

GO-enrichment analysis, we selected the 30 most significant terms to construct scatterplots for display. The size of the dots represents the number of genes

annotated to the GO term, and the colors from red to purple represent the significance level of the GO term enrichment. (D) Scatterplot of the 20 most significant

KEGG pathways. The abscissa is the ratio of the number of genes in the KEGG pathway analysis to the total number of differentially expressed genes, the ordinate is

the KEGG pathway, the size of the dots represents the number of genes annotated to the KEGG pathway, and the colors from red to purple represent the significance

level of KEGG pathway enrichment.
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FIGURE 7 | The different angiogenesis and sarcomere maturation between normal and volume overload (VO)-influenced left ventricles (LVs) at P21. (A) The

angiogenesis associated GO terms from GO analysis of DEGs between normal and VO-influenced LVs at P21. (B) Representative CD31-positive cells; CD31 (green),

DAPI (blue). (C) Quantification of CD31-positive cells, n = 60 sections from 6 mice in each group, Student’s t-test. (D) The sarcomere associated GO terms from GO

analysis of DEGs between normal and VO-influenced LVs at P21. (E) Left panel: representative of sarcomere organization from normal and VO-influenced LV at P21.

Sarcomeric α-actinin (SAA, white), arrow indicated one sarcomere. Right panel: representative magnitude of fast Fourier transformation (FFT) of cardiomyocytes

present at left panel; arrows indicated the major frequency peak, and the direct current (DC) component was defined as the transformed series at frequency 0, which

represents the summation of signals of all pixels in the image; The major frequency was defined as the second highest peak; regularity is defined as the magnitude of

the major frequency normalized to that of DC component. (F) Quantification of the sarcomere regularity from n = 30 cardiomyocytes in each group, Student’s t-test.

(G) Quantification of the sarcomere length from n = 30 cardiomyocytes in each group, Student’s t-test.

intervention for congenital aortic valve stenosis or primary
disease of the congenital bicuspid valve and the aortic root
or ascending aorta (33–35). AR generally produces VO, and
our previous studies have demonstrated that VO affects RV
maturation (12, 13, 18). Whether and how VO manipulates LV
maturation remains unexplored. In addition, current guidelines
to guide intervention timing for asymptomatic AR were
developed for adult patients, which is now under controversy
(4, 12, 33). Available information about intervention timing

for asymptomatic pediatric AR is limited (33, 36). The current
study firstly demonstrated that VO affects LV maturation,
suggesting the need for early intervention for pediatric AR
when considering LV maturation as an index. The results
showed that even mild-to-moderate AR in pediatric patients
with no heart failure sign can significantly influence the
heart development and postpone cardiomyocyte maturation.
Although the best time for aortic valve intervention in
pediatric chronic AR is currently controversial, the main

Frontiers in Cardiovascular Medicine | www.frontiersin.org 11 April 2022 | Volume 9 | Article 850248

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Hu et al. Prepubertal Left Ventricular Volume Overload

source of concern is the postoperative complications and
management strategies needed for valve repair or replacement.
The current study suggests that the LV VO condition should
be corrected as soon as possible to prevent an impact on
heart development. The intervention method is being developed,
and it is hoped that researchers will 1 day find a way
to correct the AR with few complications and no need
for coagulation.

An important question awaiting answers is how VO deters
LV maturation. The transcriptome results showed that VO
led to changes in genes associated with sarcomere, Mito,
T tubules, and intercalated disc. The gene changes affected
normal LV function by several following contributions. First,
altered expression of critical sarcomere isoforms modified
the contractile properties of CMs (37). Mito increase in
number and size and became well organized with respect
to sarcomeres, determining the switch of energy metabolism
in CMs from glycolysis to oxidative phosphorylation, which
provides sufficient energy for the contraction of CMs and the
conduction of electrical signals (38). The establishment of T-
tubules and intercalated disc permitted rapid action potential
penetration with enlarged CMs, which was required for proper
conduction of electrical signals (39). As shown in Figure 6D and
Supplementary Figure 3B, the top 20 enriched terms of KEGG
pathway analysis were associated with immune responses. Recent
studies have demonstrated that immune responses underlie
the mechanisms of cardiac regeneration and repair (40, 41),
and VO also initiates an immune response in the neonatal
RV (26). Immune cells, such as macrophages, are required for
Mito homeostasis. Anomalous Mito in cardiomyocytes lead to
metabolic alterations and ventricular dysfunction (42). It has
been reported that metabolic maturation is a key driver of
sarcomeric and electrophysiology maturation (20, 43). Thus, it
is possible that the immune response modulates cardiomyocyte
structure and function by regulating Mito function. In all, the
above results suggest that immune responses may play a critical
role in the regulation of LV maturation under the influence
of VO.

Another important concern of the current study is the
hemodynamic differences between ACF-induced and AR-
induced VO. Do prepubertal LVs respond to these two kinds
of VO similarly, and to what extent can ACF-induced VO
simulate AR-induced VO? Because there is limited space for
surgical creation of AR-induced VO in prepubertal mice or rats,
large animals such as swine may be adopted to answer the
above questions. Additionally, in adult animals, hemodynamic
responses and remodeling in RV between ACF-induced and AR-
induced VO were quite similar (44), and multiple studies have
used ACF modeling to explore the molecular mechanisms of LV
in response to VO (24, 25), providing insights to understand how
LV responds to VO. Thus, the current prepubertal VO mouse
model may be a not bad choice for understanding howVO affects
postnatal LV development.

Another important finding is that VO has a smaller effect
on the LV than on the RV. Our results showed that, at P14,
under the influence of VO, the fold change of Ki67-positive
CMs was 1.67 in the LV (Figures 4C,D), yet the same is 19.7

in the RV (18). Correspondingly, under the influence of VO,
at P21, the fold change of sarcomere regularity was 0.74 in the
LV (Figures 7E,F), but has been reported to be 0.56 in the RV
(13). These results suggest that the RV was more sensitive to VO
than the LV in terms of the cell cycle and maturation. A true
AR model would be preferable to evaluate how VO impacts the
LV and RV, but it is impossible to create with P7 mice using
current equipment.We hope that, in further research, aortic valve
puncture-induced VOwill be created in neonatal large animals to
compare with an ACF-VO model to understand the differences
between these models. The RV is also more sensitive to pressure
overload than the LV in terms of the cell cycle at neonatal stage
(45, 46).

In summary, the current study first demonstrated that VO
poses an effect on LV maturation, suggesting the crucial need
for an early correction of pediatric AR, and the underlying
mechanisms may be associated with immune responses.
Separately the differences between the effects of ACF-induced
and AR-induced VO on prepubertal LVs must be analyzed in
large animals.
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