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The heart is a highly metabolically active organ that predominantly utilizes fatty acids

as an energy substrate. The heart also derives some part of its energy by oxidation of

other substrates, including glucose, lactose, amino acids and ketones. The critical feature

of cardiac pathology is metabolic remodeling and loss of metabolic flexibility. Sirtuin 3

(SIRT3) is one of the seven mammalian sirtuins (SIRT1 to SIRT7), with NAD+ dependent

deacetylase activity. SIRT3 is expressed in high levels in healthy hearts but downregulated

in the aged or diseased hearts. Experimental evidence shows that increasing SIRT3 levels

or activity can ameliorate several cardiac pathologies. The primary deacetylation targets

of SIRT3 are mitochondrial proteins, most of which are involved in energy metabolism.

Thus, SIRT3 improves cardiac health by modulating cardiac energetics. In this review,

we discuss the essential role of SIRT3 in regulating cardiac metabolism in the context

of physiology and pathology. Specifically, we summarize the recent advancements that

emphasize the critical role of SIRT3 as a master regulator of cardiac metabolism. We also

present a comprehensive view of all known activators of SIRT3, and elaborate on their

therapeutic potential to ameliorate energetic abnormalities in various cardiac pathologies.
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INTRODUCTION

The heart has one of the highest metabolic rates of any organ (1). In the physiological state,
an adult heart exhibits metabolic flexibility and derives large proportion of its energy from
fatty acids (70%), glucose and lactose (20–30%) (2, 3). Amino acid and ketone metabolism also
contribute to the ATP pools in the heart (4). Heart failure is a pathological condition marked
by reduced cardiac output and impaired cardiac energetics (5). Various cardiac pathologies serve
as the underlying cause of heart failure, including hypertension, diabetic cardiomyopathy, and
ischemic heart disease. These conditions are characterized with changes in cardiac metabolism
that contribute to the development of an energy deficit and culminate in heart failure (6). In
conditions of idiopathic dilated cardiomyopathy and pressure overload-induced heart failure, fatty
acid metabolism is reduced due to downregulation of enzymes involved in fatty acid metabolism
and imbalance in intracellular triglyceride turn over. Under such conditions the heart exhibits
enhanced glycolysis as a compensatory mechanism (7–9). Conversely, in diabetic cardiomyopathy,
the heart relies extensively on fatty acids, due to increased plasma fatty acid levels and develops
insulin resistance which renders the heart more susceptible to ischemia (10). Studies also suggest
that the post translational modification of proteins involved in cellular metabolism is emerging as
a key regulatory step in modulating cardiac physiology and pathology (11).
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TABLE 1 | SIRT3 targets and their biological functions.

Molecular targets Biological function References

FOXO3a, OPA1 Mitochondrial dynamics (43, 44)

OGG1 Mitochondrial DNA

repair

(40)

MnSOD ROS homeostasis (45)

Ku70 Cell Survival (26)

CypD Mitochondrial structure

and function

(46)

p53 Glucose metabolism (47)

PDC Glucose metabolism (48)

TCA enzymes (citrate synthase,

aconitase, isocitrate dehydrogenase,

succinate dehydrogenase, malate

dehydrogenase)

Glucose metabolism (39, 49–52)

ETC enzymes (succinate

dehydrogenase, NDUFA9 subunit of

complex I)

ATP production (37)

HMG Co-A synthase Ketogenesis (53)

Glutamate dehydrogenase Amino acid metabolism (36)

Sirtuins are Class III histone deacetylases (HDACs)
characterized by NAD+ dependent enzymatic activity. The
first sirtuin, silent mating type information regulator (Sir2),
was identified in yeast and has since been shown to mediate
longevity benefits of calorie restriction in several organisms,
including C. elegans and D. melanogaster (12–14). In mammals,
seven orthologs of Sir2 (SIRT 1-7) are identified (15). Each
mammalian isoform of sirtuins is known to differ in its
subcellular localization, target and activity. While SIRT1,
SIRT6 and SIRT7 are predominantly nuclear among the seven
sirtuins, SIRT2 is cytosolic. In mitochondria, SIRT3, SIRT4,
and SIRT5 are predominant sirtuin isoforms. However, SIRT1,
SIRT2, and SIRT7 are known to shuttle between cytoplasm and
nucleus based on their activation status and regulate various
histone and non-histone proteins (16–23). Similarly, SIRT3 and
SIRT5 are also found in the cytoplasm and nucleus (24–27).
SIRT6, although predominantly nuclear, has been observed to
localize to cytoplasmic stress granules in response to stress (21).
Besides well-characterized, classical deacetylase activity, some
sirtuins exhibit deacylase (SIRT1, SIRT2, SIRT4, SIRT6) (28),
lipoamidase (SIRT4), ADP-ribosyltransferase (SIRT4, SIRT6),
depalmitoylase (SIRT6), desuccinylase (SIRT5), demalonylase
(SIRT5) and deglutarylase (SIRT5) activity (29–35).

SIRT3 is a mitochondrial deacetylase expressed at high levels
in metabolically active organs such as the brain, kidney, liver,
heart and brown adipose tissue (36). SIRT3 regulates several
cellular processes, including mitochondrial DNA damage repair,
gene expression, bioenergetics, redox balance, autophagy and
apoptosis (26, 37–42) (Table 1). SIRT3 regulates mtDNA repair
by interacting with the DNA repair enzyme 8-oxoguanine-
DNA glycosylase 1 (OGG1) and positively regulating its
incision activity and turnover. This has been proposed to blunt
genotoxicity-induced apoptosis in γ-irradiated cells (40). In
addition to mtDNA repair, SIRT3 also regulates mitochondrial

dynamics, a mitochondrial process that is key to overall
mitochondrial function, including mitochondrial metabolism.
During pathological cardiac stress, the inner mitochondrial
membrane fusion protein OPA1 is hyperacetylated. In this state,
it is characterized with reduced GTPase activity. SIRT3-mediated
deacetylation of OPA1 has been shown to promote its GTPase
activity and augment mitochondrial fusion (44). Furthermore,
under oxidative stress, SIRT3 modulates mitochondrial mass
by upregulating mitochondrial fission proteins dynamin-
related protein 1 (DRP1) and fission protein 1 (Fis1) via
FOXO3 deacetylation (43). In addition to this, SIRT3 mediates
the longevity benefits of caloric restriction by deacetylating
molecular targets involved in mitochondrial maintenance and
metabolism (54, 55). Furthermore, clinical studies show that
exercise-mediated rescue of metabolic disorder is associated with
SIRT3 upregulation (56). In mice, swimming exercise results in
increased levels of SIRT3 short form and physiological cardiac
hypertrophy, characterized by increase in cardiomyocyte size
without fibrosis or pathological remodeling (38). However,
mice subjected to chronic infusion of isoproterenol or 6 weeks
of aortic banding show marked reduction in SIRT3 short
isoform and develop severe pathological hypertrophy with
increased fibrosis (38). While SIRT3 knock-out (KO) mice show
severe adverse remodeling, SIRT3 overexpressing mice show
protection against adverse remodeling induced by hypertrophic
agonists (26).

Whole-body SIRT3-KO mice show signs of cardiac
hypertrophy and interstitial fibrosis by 8 weeks and exhibit
a 19% reduction in lifespan (38, 57). Although these mice
appear normal under physiological conditions, they are
predisposed to multiple pathologies upon aging or under
stress conditions—indicating that SIRT3 may be involved in
preserving cardiac function by restoring cardiac energetics and
conserving metabolic flexibility of the heart. Upon aging, whole
body SIRT3-KO mice show adverse cardiac remodeling, with
subtle abnormalities in the liver, kidney and brain (57). While
tissue-specific SIRT3 ablation in liver, muscle or brown adipose
tissue does not recapitulate the germline SIRT3-KO phenotype
(58, 59), the hearts of cardiac-specific SIRT3-KO mice resemble
aged hearts (41). Typical characteristics of an aging heart include
cardiac hypertrophy, insulin resistance, myocyte loss and cardiac
fibrosis. SIRT3 has been shown to regulate each of these processes
(Table 2). The hearts of whole body SIRT3-KO mice exhibit
cardiac hypertrophy, interstitial fibrosis, contractile dysfunction
and inflammation (42). In response to haemodynamic stress
such as pressure overload, the hearts of SIRT3-KO mice display
adverse cardiac remodeling and enhanced cardiomyocyte
apoptosis (26, 38, 41, 68). Further, post myocardial infarction,
these mice suffer from impaired angiogenesis (69–71). Under
high fat diet or diabetic conditions, SIRT3-KO mice show
increased susceptibility to insulin resistance (67, 72). At the
cellular level, these mice are characterized with redox imbalance,
impaired metabolism, mitochondrial dysfunction and defective
autophagy, recapitulating key features of an aged heart (41).
At the molecular level, SIRT3-KO mice are characterized by
hyperacetylation of mitochondrial proteins (36, 73). Most of
these proteins are involved in energy metabolism. These mice
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TABLE 2 | SIRT3 targets in aging-associated cardiac pathophysiology.

Aging-associated

phenotype

Model system SIRT3 Molecular

target

Downstream effect References

Hypertrophy Whole body SIRT3-KO mice FOXO3a Catalase activity (↑)

MnSOD activity (↑)

(38)

Pressure overload by abdominal aortic

banding in Wild type mice

LKB1 mtUPR response (↑);

Fatty acid metabolism (↑);

Ketone metabolism (↑)

(60)

Cardiac fibrosis Rat neonatal cardiomyocytes; Whole body

SIRT3-KO mice

H3K27 FOS expression (↓);

Inflammatory and fibrotic response (↓)

(42)

HFD-fed whole body SIRT3-KO mice Not known ROS levels (↓),

NFKb-MCP-1 activity (↓),

Macrophage infiltration (↓),

Cardiac fibrosis (↓)

(61)

AngII-treated whole body SIRT3-KO mice;

SIRT3 transgenic mice

GSK3β Phosphorylation and degradation of Smad 3

and β-catenin (↑),

Cardiac fibrosis (↓)

(62)

Neonatal rat fibroblasts Not known PPARγ expression and activity (↑),

β-catenin degradation (↑),

Cardiac fibrosis (↓)

(63)

Fibroblasts from whole body SIRT3-KO

mice

STAT3 NFATc2 expression (↓),

Cardiac fibrosis (↓)

(64)

Cardiomyocyte loss SIRT3 overexpressing cardiomyocytes OPA1 L-OPA to S-OPA form conversion (↓),

Apoptosis (↓)

(44)

H9C2 cardiomyocyte overexpressing

SIRT3

Not known H2O2 levels (↓),

NFkB activity (↑),

Bcl2/Bax ratio (↑),

Apoptosis (↓)

(65)

SIRT3 overexpressing rat neonatal

cardiomyocytes

Ku70 Bax sequestration (↑),

Apoptosis (↓)

(26)

Cardiac-specific SIRT3-KO mice p53 Parkin activity (↑),

mitophagy (↑)

(41)

Neonatal mice cardiomyocytes Not known AMPK activity (↑),

Mitochondrial biogenesis (↑)

(66)

Insulin resistance HFD-fed whole-body SIRT3-KO mice;

Human umbilical vein endothelial cells

Not known mtROS production (↓),

eNOS activity (↑),

NO production (↑),

Insulin sensitivity (↑)

(67)

also show more than 50% reduction in ATP pools (37, 68). It is
a general understanding that SIRT3’s deacetylase activity plays a
major protective role against heart failure by regulating cardiac
ATP levels (74). However, a recent study employing a carnitine
acetyltransferase/Sirt3 double knock-out model argues that
hyperacetylation of the mitochondrial proteome alone does not
culminate in heart failure (75). This is an unexpected finding that
may indicate the presence of other compensatory mechanisms
for regulation of metabolic flexibility in the heart.

SIRT3 overexpression has been noted to rescue a range
of cardiopathology phenotypes by improving the metabolic
flexibility of cardiomyocytes (47, 76). In this review, we
summarize the molecular targets of SIRT3 involved in energy
metabolism and elaborate on the underlying regulatory
mechanisms observed in physiological and pathological cardiac
metabolism. We also present a comprehensive view of all known
modulators of SIRT3 activity and elaborate on their therapeutic
potential to ameliorate energetic abnormalities in various
cardiac pathologies.

REGULATION OF SIRT3 EXPRESSION IN
THE HEART

The human SIRT3 gene is located in chromosome region 11p15.5.
It shares a bidirectional promoter with 26S proteasome non-
ATPase subunit 13 (PSMD13) (77, 78). Haplotype studies have
revealed that both the genes are located in the chromosomal
region that is associated with the longevity. Furthermore, the
common promoter region contains Sp1 sites for transcriptional
regulation of the two genes. Together these results indicate
that SIRT3 and PSMD13 may be functionally linked and co-
regulated (78). The shared promoter region also contains
binding sites for GATAs, NF-kB, ZF5, Activator protein (AP-
1), and specificity protein-1 (Sp-1) (78). However, their role
in the transcriptional regulation of SIRT3 expression remains
to be established conclusively. On the other hand, coactivator
peroxisome proliferator-activated receptor γ coactivator 1-α
(PGC-1α) has been well explored as a transcription regulator of
SIRT3 (79). During energetic stress, PGC-1α co-localizes with
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estrogen-related receptor-α (ERRα) on the ERR binding element
(ERRE) in the mSirt3 promoter (79). PGC-1α also binds with and
co-activates the transcription factor, nuclear respiratory factor 2
(NRF2). An in vitro study reported NRF2 as a positive regulator
of SIRT3. Since the PGC-1α/NRF2 axis is activated upon dietary
restriction, NRF2-mediated upregulation of SIRT3 is expected
to occur under nutrient stress—where it may be required to
enhance ATP production (80). A post-transcriptional regulator

of SIRT3, microRNA-195 binds to 3
′
untranslated region of

mRNA and downregulates SIRT3 expression (81, 82). At the
post-translational level, cAMP directly binds to and stabilizes
SIRT3. Since cAMP levels are upregulated during starvation, it
may be expected to activate SIRT3 during nutrient stress (83).

Cardiac SIRT3 expression fluctuates with various
physiological factors, including age, diet, and exercise. Notably,
exercise positively modulates SIRT3 expression in the heart
(84, 85). Aging, on the other hand, is reported to have gender-
specific effects on cardiac SIRT3 expression. SIRT3 levels don’t
vary significantly between young and older males. However,
there is a pronounced reduction in SIRT3 expression in female
hearts with age (86). Caloric restriction has been reported
to ameliorate aging dependent decrease in SIRT3 levels (87).
High-fat diet reduces cardiac SIRT3 levels (88). Although the
mechanism is unclear, in vitro studies have demonstrated that
ROS overload is linked with decreased SIRT3 mRNA and protein
expression (65).

The levels of SIRT3 is also decreased in pathological
conditions. For instance, in ischemia or hypoxia, HIF-1α
upregulates the expression of Wnt3a, which in turn negatively
regulates SIRT3 expression (89). In contrast, during diabetes, the
initial stages of cardiac hypertrophy are marked with elevated
SIRT3 expression. However, the levels eventually decline when
the pathological state progresses to diabetic cardiomyopathy or
heart failure (88, 90–92). In addition to these factors, metabolites
have also been shown to function as regulators of SIRT3
expression. For instance, ketone body induced upregulation of
SIRT3 has been observed in cultured human fibroblasts under
oxidative stress (93). Interestingly, SIRT3 is also regulated by
other sirtuins. Studies in several cell lines, including HeLa, HEK,
C2C12, show that SIRT1 negatively regulates the transcription
of SIRT3 by deacetylating ZF5, a transcriptional repressor
that sequesters the SIRT3 transcription factor, SP1 (94). In
contrast, other studies report SIRT1 as a positive regulator of
SIRT3 in rat hearts, where it deacetylates and activates PGC-1α
(95). Most recently, the SIRT1-PGC-1α-NRF1-SIRT3 signaling
axis has been implicated in amelioration of mitochondrial
dysfunction, and insulin-resistance in high fructose diet-fed
rats (95). Additionally, SIRT3 is also a direct deacetylation
target of SIRT1. In aged and obese mice, SIRT1 expression is
reduced, and SIRT3 is hyperacetylated. Acetylation of SIRT3
at K57 culminates in loss of its deacetylation activity, and
triggers proteasomal degradation. The authors propose that
SIRT1-mediated deacetylation of SIRT3 can restore its activity
and rescue metabolic dysfunction in livers of obese mice (96).
SIRT6 is another sirtuin known to regulate SIRT3. It enhances
SIRT3 expression by downregulating the expression of kelch-
like-ECH-associated protein 1 (Keap1), a protein that binds to

and sequesters the SIRT3 transcription factor, Nrf2. Furthermore,
SIRT6 also binds to and stabilizes Nrf2—ultimately upregulating
the expression of SIRT3 in the heart (97).

SUBCELLULAR LOCALIZATION OF SIRT3

The localization of SIRT3 is heavily debated. The human SIRT3
(hSIRT3) exists as two isoforms. The longer isoform is a
44kDa long, full-length protein localized in the cytoplasm and
nucleus (98). It carries an N-terminal mitochondrial localization
sequence (MLS) which is cleaved by the matrix processing
peptidase (MPP) in themitochondria (77). Proteolytic processing
of the long isoform yields a shorter, 28 kDa long isoform
of hSIRT3 that acts as a functionally active mitochondrial
deacetylase (24, 77).

Similarly, different isoforms for murine SIRT3 (mSIRT3)
are also known. A study in 3T3 fibroblasts showed that
alternative splicing of the murine SIRT3 gene results in three
protein variants, M1, M2, and M3 (99). The variants M1
and M2 are tagged with an MLS. M1 and M2, when in the
cytoplasm and nucleus, are full-length long isoforms. However,
upon translocation into mitochondria, they are truncated by
proteolytic cleavage of theMLS. UnlikeM1 andM2, theM3 splice
variant is originally shorter and does not undergo proteolytic
processing. Further, it lacks an MLS but carries an internal
mitochondrial targeting sequence (MTS) and nuclear localizing
signal (NLS) (99, 100). Reports involvingmSIRT3 overexpression
indicate that M3 is localized exclusively in the cytoplasm and
nucleus of 3T3 fibroblasts. In contrast, more recent studies in
these cells reflect that although it is localized predominantly
in the cytoplasm and nucleus, it also partially localizes in
mitochondria (101).

In murine hearts, endogenous SIRT3 has been reported
in nuclear, cytoplasmic and mitochondrial fractions. Early
reports from adult mouse hearts indicated that the long
isoform (44 kDa) of SIRT3 is localized in the nucleus, cytosol
and mitochondria. Meanwhile, the short isoform (28 kDa)
was observed exclusively in mitochondria (26). Interestingly,
in another study investigating isoform localization in the
cardiomyocyte cell line H9C2, both isoforms were shown to
localize in the mitochondria and the nucleus (102). Further, in
these cells, the long isoform is more abundant in mitochondria
when compared with the short isoform. In the same study,
subcellular localization of the two isoforms was also evaluated
upon SIRT3 overexpression in HEK293 cells. The long isoform
was observed to localize majorly in the mitochondria, and at
higher concentrations, in the cytoplasm. On the other hand, the
short isoform localized exclusively in the cytoplasm. Together,
these studies indicate that the subcellular localization of the
isoforms may be highly cell-type specific (102).

SIRT3 IN FATTY ACID METABOLISM

In the physiological state, nearly 70–80% of the cardiac energy
demand is met by fatty acid metabolism (2). The adult heart
relies primarily on fatty acid oxidation for sustained generation
of ATP (2). Circulating free fatty acids are transported into the
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myocardium, in part, by passive diffusion across the plasma
membrane. In addition to this, fatty acid uptake is regulated by
fatty acid transporter protein (FATP), and fatty acid translocase
CD36 expressed on endothelial cells and cardiomyocytes (103).
Since the heart has a limited reservoir of triacylglycerol,
continuous uptake of fatty acids ensures fuel availability for
β-oxidation based energy generation.

The hypertrophic heart is characterized with diminished fatty
acid metabolism (104). Activation of SIRT3 in hypertrophic heart
has been shown to alleviate cardiac fibrosis, and ameliorate
hypertrophy via SIRT3-mediated deacetylation and activation
of LKB1. This in turn activates anti-hypertrophic LKB1-
AMPK signaling in this hearts (105). Independently, activated
AMPK has been shown to enhance expression of fatty acid
transporters, CD36 and CPT1B in hypertrophic hearts (60,
105). Furthermore, activated AMPK is also known to enhance
β-oxidation by downregulating the expression of malonyl-
CoA, a negative regulator of fatty acid catabolism. AMPK
achieves this by phosphorylating two key enzymes involved in
the malonyl-CoA synthesis, viz. acetyl-CoA carboxylase (ACC)
and malonyl-CoA decarboxylase (MCD) (106). Thus, the net
result of SIRT3/AMPK activation is enhanced β oxidation.
Since impaired energetics contribute to the development of
cardiac hypertrophy, activating SIRT3-AMPK signaling may, at
least in part, ameliorate myocardial metabolic dysfunction in
hypertrophic hearts. On the other hand, the effect of AMPK
activation in ischemic hearts is heavily debated. While few
studies suggest that AMPK activation in ischemia is beneficial
due to increased ATP production during oxygen insufficiency;
others point that activated AMPK-mediated enhancement of β-
oxidation triggers a decrease in glucose oxidation through the
Randle cycle—resulting in uncoupling of glycolysis and glucose
oxidation and ultimately stumping cardiac efficiency during
reperfusion (107, 108). It is important to note that, currently,
the effect of SIRT3-mediated AMPK activation on fatty acid
metabolism in ischemic heart disease remains poorly understood.

One of the earliest known targets of SIRT3 is long-chain Acyl-
CoA dehydrogenase (LCAD), the enzyme that catalyses the first
step of the β-oxidation. SIRT3-KOmice possess high endogenous
levels of acetylated LCAD and reduced fatty acid oxidation
in several tissues, including the heart (96, 109). Furthermore,
increased LCAD acetylation and reduced SIRT3 expression is
also evident in rat models of heart failure (49). Moreover, in
models of SIRT3 overexpression, SIRT3-mediated deacetylation
of LCAD has been shown to increase fatty acid metabolism (110).
Interestingly, under conditions conditions of high fat diet (HFD),
a positive correlation has been reported between acetylation
levels of LCAD and fatty acid oxidation. Notably, SIRT3-KO
mice display increased acetylation and activity of LCAD under
HFD (111). Furthermore, HFD increases the levels of GCN5L1,
a mitochondrial acetyl transferase that increases acetylation and
activation ofmitochondrial enzymes (112). A recent report shows
that under HFD conditions, cardiomyocyte specific GCN5L1-KO
mice have reduced LCAD acetylation and activity in the heart,
with no significant difference in SIRT3 levels between wild type
and GCN5L1-KO mice. Similarly, other studies have also shown
that the maturation of heart after birth to fatty acid metabolism

is dependent on GCN5L1 levels and acetylation of LCAD,
independent of SIRT3 (113, 114). Though SIRT3 and GCN5L1
have opposing effects on the acetylation status of LCAD, SIRT3
and GCN5L1 has been shown independently to have a positive
effect on LCAD activity in heart. It is possible that acetylation
status of specific residues rather than the protein itself influence
its enzyme activity. While studies have characterized LCAD
Lys-318 and Lys-322 as target residues for SIRT3 deacetylation
(115), the LCAD residue targets for GCN5L1 remain to be
characterized. Interestingly, increase in GCN5L1 expression and
acetylation levels are linked with negative regulation of fatty
acid oxidation in the liver (116). This difference between hepatic
and cardiac metabolic regulation may arise due to tissue-specific
fate of fatty acid oxidation. While fatty oxidation in the liver
provides acetyl-CoA substrates for ketogenesis, it is utilized for
oxidative phosphorylation in the heart. Inhibiting fatty acid
enzymes by acetylation in the heart is expected to result in
negative feedback loop disrupting the cardiac energy metabolism
and function (116).

From studies in liver, SIRT3 is also known to directly
deacetylate and regulate the mitochondrial trifunctional protein
(TFP). The TFP is anchored to the inner mitochondrial
membrane and comprises of 3 enzymes that catalyse the next
three steps of β-oxidation. These include 2-enoyl coenzyme
A hydratase (ECH), long-chain 3-hydroxy acyl-coenzyme A
dehydrogenase (HAD) and long-chain 3-ketoacyl-CoA thiolase
(KT). SIRT3 overexpression has been reported to rescue
the TFA+/− phenotype in hepatocytes (117). Although post-
translational modification of TFA has not been studied
extensively in the heart, there exists a strong positive correlation
between SIRT3 levels, the deacetylation status of β-oxidation
enzymes and fatty acid oxidation in cardiomyocytes and other
tissues (109, 117).

SIRT3 has also been shown to improve fatty acid metabolism
in calf hepatocytes treated with non-esterified fatty acids (NEFA).
Overexpression of SIRT3 causes transcriptional downregulation
of fatty acid synthesis enzymes acetyl-CoA carboxylase (ACC)
and fatty acid synthase (FAS) in these cells. This is accompanied
by the upregulation of enzymes involved in fatty acid oxidation,
including CPT enzymes CPT1A, CPT2, and acetyl CoA
oxidase (118). Similarly, the hearts of SIRT3-KO mice fed
with HFD have been shown to suffer from lipotoxicity (88).
Together, these results suggest that SIRT3 may ameliorate
cardiac lipotoxicity by modulating de novo fatty acid synthesis
and β-oxidation. Overall, all findings reflect an integral
regulatory role for SIRT3 in fatty acid catabolism in the heart
(Figure 1).

SIRT3 IN GLUCOSE METABOLISM

Under physiological conditions, 20–30% of the cardiac energy
demand is fulfilled by glucose and lactose metabolism (3). At
the molecular level, glucose is transported into cardiomyocytes
by glucose transporters GLUT-1 and GLUT-4. Mice with
cardiac-specific knock-out of the glucose transporter GLUT-4
are characterized with compensatory cardiac hypertrophy,
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FIGURE 1 | Molecular targets of SIRT3 in glucose and fatty acid metabolism. SIRT3 and fatty acid metabolism: SIRT3 deacetylates and activates enzymes

involved in fatty acid oxidation, including long chain aycl-CoA dehydrogenase (LCAD) and trifunctional mitochondrial protein (TFP). Meanwhile it inhibits fatty acid

synthesis by deacetylating and activating its inhibitor, LKB1, which in turn activates AMPK. AMPK further phosphorylates and inhibits Acetyl-CoA carboxylase (ACC)

and Malonyl-CoA decarboxylase (MCD), reducing synthesis of malonyl-CoA, a negative regulator of fatty acid oxidation. In this manner, SIRT3 regulation culminates in

enhanced fatty acid catabolism. SIRT3 and glucose metabolism: SIRT3 attenuates-activation of FOXO3a, which in turn transcriptionally upregulates ROS

detoxification enzymes manganese dependent super oxide dismutase (MnSOD) and catalase. SIRT3 also directly interacts with and activates MnSOD. Attenuation of

ROS inhibits HIF-1α from upregulating glycolytic genes during normoxia. SIRT3 enhances phosphofructokinase 1 (PFK 1) activity and subsequently upregulates

glycolysis by increasing PFKFB3 activity via deacetylation-inactivation of p53 and subsequent suppression of its downstream target TIGAR. SIRT3 further increases

glucose oxidation by activating pyruvate dehydrogenase complex (PDC) and targeting the enzymes involved in the tricarboxylic acid (TCA) cycle. SIRT3 mediated

deacetylation of complex I subunit, NDUFA9 and succinate dehydrogenase (SDH) is necessary for efficient oxidative phosphorylation. In this manner, SIRT3 regulation

culminates in enhanced utilization of glucose. Positively regulated SIRT3 molecular targets are indicated in green; negatively regulated targets are indicated in red.

highlighting the importance of glucose metabolism in
maintaining normal cardiac physiology (119).

Insulin sensitivity of the vasculature is central to the
physiology of the heart, and is responsible for governing nutrient
delivery to this omnivorous organ (120). Obesity is characterized
with elevated levels of fasting blood glucose and insulin, and is
associated with insulin resistance and endothelial dysfunction
(120, 121). SIRT3 expression is downregulated in obesity. Studies
in models of obesity reflect that SIRT3 can act as a positive
regulator of insulin sensitivity in human and mice endothelial
cells. In palmitate-treated insulin resistant endothelial cells,
overexpression of SIRT3 promotes phosphorylation of key
molecules in endothelial insulin signaling, namely, Akt and its
downstream target endothelial nitric oxide synthase (eNOS).
Consistent with this finding, in vivo experiments reflect
exacerbated impairment of vasodilation, a function of endothelial
NO production in obese SIRT3KOmice. Although the molecular
mechanism for SIRT3 regulation of endothelial insulin sensitivity
remains to be elucidated, this protective role of SIRT3
in obesity has been observed to be linked with reduced

mitochondrial ROS production (67). Further, exploring insulin-
dependent glucose uptake and utilization in this model can
be expected to present interesting metabolic outcomes in
the heart.

In addition to regulating endothelial insulin sensitivity, SIRT3
has also been implicated in the regulation of trans-endothelial
glucose transport—a process that governs the availability
of glucose for uptake and utilization by cardiomyocytes
(122). Endothelial SIRT3-KO impairs expression of hypoxia-
induced apelin, glucose transporters GLUT1 and GLUT4,
and phosphofructokinase-2/fructose-2, 6-bisphosphatase-3
in endothelial cells—thereby disrupting glucose transport
to cardiomyocytes (123). Reduced expression of endothelial
GLUT receptors bears two significant consequences. Firstly,
the reduction impairs endothelial glucose transport—
impacting glucose concentration in the cardiac interstitial
space, reducing glucose availability for cardiomyocytes.
Secondly, impaired glycolysis is compensated with enhanced
oxidative phosphorylation in the endothelium. Such metabolic
reprogramming impairs angiogenesis and the microvascular
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function of endothelial cells, ultimately leading to heart
failure (71).

In addition to glucose transport, mechanistic studies have
revealed several molecular targets of SIRT3 for the regulation
of glycolysis. Studies in cancer cells have revealed that SIRT3
negatively regulates hypoxia-inducible factor 1α (HIF-1α),
a crucial transcription factor that induces glycolytic gene
expression during hypoxia-induced metabolic reprogramming.
In normoxia, SIRT3 suppresses HIF-1α by inhibiting the
production of mitochondrial ROS, thereby attenuating ROS-
mediated stabilization and activation of HIF-1α. Studies using
models of cardiac hypertrophy show that SIRT3 inhibits
ROS production by various means. Primarily, it activates
ROS detoxifying enzyme manganese superoxide dismutase
(MnSOD) via deacetylation. Simultaneously, it also activates
transcription factor FOXO3a, which in turn upregulates
expression of antioxidants manganese-dependent superoxide
dismutase (MnSOD) and catalase (38, 124). In this manner,
SIRT3 negatively regulates glycolysis under normoxic conditions.

SIRT3 is also known to regulate the activity of 2 vital
glycolytic enzymes, hexokinase (HK) and phosphofructokinase
(PFK). Studies in breast cancer have shown that SIRT3
might downregulate glucose metabolism by increasing cytosolic
localization of Hexokinase II (HKII). While localization of
HKII in the outer membrane of mitochondria favors glucose
catabolism, cytosolic localization results in glucose anabolism
(125). Localization of HKII to the mitochondrial outer
membrane is mediated by its interaction with the voltage-
dependent ion channel (VDAC)-adenine nucleotide translocator
(ANT) complex. ANT located across the inner mitochondrial
membrane, in turn, interacts with cyclophilin D (CypD) in the
mitochondrial matrix. In skeletal muscles of HFD-fed SIRT3-
KO mice, there is a marked increase in cytosolic localization of
HKII, accompanied by impaired glucose metabolism. This result
indicates that SIRT3 may play an essential role in forming the
HKII-VDAC-ANT complex and subsequent activation of HKII
to promote glycolysis in skeletal muscles (72, 126). Currently,
in the heart, implications of SIRT3 mediated deacetylation of
CypD have only been explored in the context of mitochondrial
permeability membrane pore formation (127–129).

The next critical regulatory target of SIRT3 is
phosphofructokinase (PFK). In cardiomyocytes, SIRT3 has
been noted to enhance glucose metabolism by indirectly
upregulating cardiomyocyte expression of 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphotase 3 (PFKFB3) via apelin
(123). Furthermore, overexpression of SIRT3 has been shown
to attenuate diabetic cardiomyopathy by deacetylating the
transcription factor p53 and significantly reducing the expression
of its downstream element, a fructose 2,6 bisphosphatase called
TP53-induced glycolysis and apoptosis regulator (TIGAR)
(47). Together, the downregulation of TIGAR and upregulation
of PFKFB3 potentiate the marked increase in fructose 2,6
bisphosphate, a positive regulator of phosphofructokinase-
1 (PFK1). These results suggest that SIRT3 may serve as
a therapeutic target to rescue abnormal energetics under
hyperglycaemic conditions (47).

SIRT3 is also a positive regulator of Pyruvate dehydrogenase
complex (PDC), the enzyme complex that links glycolysis to
the Krebs cycle. Under normal conditions, SIRT3 deacetylates
pyruvate dehydrogenase phosphate-1 (PDP1) and pyruvate
dehydrogenase E1 component subunit-α (PDHE1α) of the PDC
to sustain physiological PDC activity (130). Furthermore, SIRT3
activates PDC by inhibiting HIF-1α. During hypoxia, HIF-1α
transactivates PDC kinase, a negative regulator of PDC (131)—
a function that is inhibited by SIRT3 under normal conditions.
In this manner, SIRT3 positively regulates the flux of pyruvate
into the tricarboxylic acid (TCA) cycle for glucose oxidation in
the heart (Figure 1). Similarly, SIRT3 has also been reported
as a positive regulator of glucose oxidation in skeletal muscles,
where it deacetylates and activates PDC activity (48). Unlike in
the heart, carbohydrates are the preferred energy substrate for
skeletal muscles. During fasting, reduced SIRT3 levels result in
hyperacetylation and decreased activity of PDC, which promotes
glycolysis-glucose oxidation uncoupling and accumulation of
pyruvate/ lactate. The glycolytic end products negatively regulate
PFK1 and glucose utilization as an energy substrate (48).
Similar to this, under conditions of ischemia and heart failure,
uncoupling of glycolysis-glucose oxidation is observed in the
heart. Moreover, NAD+ levels are depleted and the heart shows
increased dependence on glycolysis for energy generation (132).

Interestingly, SIRT3-KO mice show increased fibrosis in
several organs including the heart, lung, liver and kidney (62).
Enhanced glucose metabolism, particularly glycolysis is essential
for cardiac fibroblast activation and cardiac fibrosis (133, 134).
Consistent with this, limiting glycolysis in heart has been shown
to decrease cardiac fibrosis post myocardial infarction (134). The
protective role of SIRT3 against kidney fibrosis under diabetic
conditions is known to be mediated by suppression of HIF-1α
and PKM2 dimer formation that upregulates expression of key
glycolytic enzymes (135–137). Given that glycolysis has been
linked with cardiac fibrosis, it would be interesting to explore
the role of SIRT3 in conferring protection from cardiac fibrosis
via regulation of glucose metabolism in the heart. Overall, the
findings reflect an integral role for SIRT3 in regulation of glucose
metabolism in the heart (Figure 1).

TRICARBOXYLIC ACID CYCLE AND
ELECTRON TRANSPORT CHAIN

Acetyl-CoA sourced from glucose and fatty acid metabolism
enters the tricarboxylic cycle (TCA cycle) to generate NADH,
FADH2, and CO2. SIRT3-KO mice are characterized by
hyper-acetylation of enzymes involved in the tricarboxylic
acid cycle (TCA) and the electron transport chain (ETC)
(37, 68). Investigation using cardiac and extra-cardiac models
has revealed several deacetylation targets of SIRT3 including
citrate synthase (50), aconitase (51), isocitrate dehydrogenase
(52), succinate dehydrogenase (39), and malate dehydrogenase
(49, 138). Deacetylation is associated with increased enzyme
activity of citrate synthase, isocitrate dehydrogenase, and
succinate dehydrogenase. On the other hand, SIRT3 mediated
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deacetylation of aconitase and malate dehydrogenase results in
downregulation of their enzyme activity (51).

In the ETC, succinate dehydrogenase of Complex II
and the NDUFA9 subunit of complex I are targets of
SIRT3 deacetylation. Hyperacetylation of NDUFA9 subunit in
Sirt3−/− mouse embryonic fibroblasts have been shown to
strongly correlate with reduced oxidative phosphorylation (37).
Additionally, studies performed in HEK293T have revealed
human ATP synthase β as a deacetylation target of SIRT3 (139).
Altogether, inhibiting SIRT3 expression culminates in a net
reduction in oxidative phosphorylation—indicating that SIRT3
positively regulates oxidative phosphorylation under normal
physiological conditions.

SIRT3 IN KETONE METABOLISM

The heart is the largest consumer per body mass of ketones
(4). Ketone bodies are synthesized in the liver and transported
into target tissues by facilitated diffusion through MCT-1
transporters. Under physiological conditions, the heart oxidizes
ketone bodies in proportion to their delivery. These enter
the energy metabolism as acetyl-CoA, competing with acetyl-
CoA generated from fatty acids and glucose metabolism for
terminal oxidation (140, 141). Studies indicate that Sirt3−/− mice
display increased acetylation of hydroxy methyl glutaryl-CoA
synthase (HMGS), an enzyme involved in ketogenesis in the
liver. During fasting, deacetylation of HMGS increases its activity
and, consequently, the levels of circulating ketone bodies (53). It
is expected, although not established, that alteration in hepatic
ketone metabolism may reflect a proportional change in cardiac
ketone metabolism.

A recent study in cardiac hypertrophy reported SIRT3-
dependent enhancement of ketone body metabolism via AMPK-
mediated increase in the levels of monocarboxylic transporters 1
(MCT1) and 3-oxoacid CoA-transferase (OXCT1) (60). Another
study reported that a key enzyme in ketogenesis, HMGS2 is
dramatically upregulated in heart failure with preserved ejection
fraction (HFpEF) (142). Its specific activity is, however, impaired
in these hearts. HFpEF myocardium is also characterized by
a net reduction in NAD+/NADH ratio and subsequently in
SIRT3 expression. Since ketogenesis may serve as an essential
energy source in failing hearts, SIRT3-dependent upregulation of
ketogenesis may function as a “rescue strategy” in heart failure
(142, 143).

SIRT3 IN AMINO ACID METABOLISM

The heart derives a marginal percentage of its energy from
amino acid metabolism (4). SIRT3-mediated deacetylation
results in glutamate dehydrogenase (GDH) activation, the
enzyme responsible for converting Glutamine and Glutamate to
TCA intermediate α-ketoglutarate (144). This regulation gains
importance in ischemia when the TCA cycle intermediates
are depleted. By increasing GDH activity, SIRT3 replenishes
TCA intermediate levels via anaplerosis—thereby serving a
cardioprotective function.

MODULATORS OF SIRT3

SIRT3 is downregulated under various pathological conditions.
As detailed throughout the review, SIRT3 activation exhibits
cardioprotective effects via remodeling of impaired cardiac
metabolism. Modulating SIRT3 levels under various conditions
may thus serve as a therapeutic strategy to ameliorate
metabolism abnormalities.

Several plant metabolites protect against cardiovascular
diseases by modulating SIRT3 activity. In Sirt3−/− mice
with heart failure, Resveratrol has been shown to ameliorate
cardiac fibrosis by SIRT3-dependent inhibition of TGF-β/α-
SMA signaling in heart failure (145). The dimerized form of
Resveratrol, ε-viniferin, is also a known activator of SIRT3
(146, 147). Polydatin, a polyphenol isolated from Polygonium
cuspidatum has been shown to ameliorate myocardial infarction
in cardiomyocytes through a SIRT3-dependent increase in
mitochondrial biogenesis and autophagy and a decrease
in apoptosis (148). Dihydromyricetin from Ampelopsis
grossedentata has been shown to reduce cardiac ischemia
reperfusion injury by improving mitochondrial function
and reducing oxidative stress in a SIRT3-dependent manner
(149). Berberine and Honokiol are also known activators of
SIRT3. They have independently been shown to protect the
heart against doxorubicin, an antineoplastic drug that induces
cardiotoxicity. They confer protection from doxorubicin-
induced cardiomyopathy by preventing oxidative damage,
mitochondrial dysfunction, and cell death (150, 151).

Yet another known SIRT3 activator, Salidroside, extracted
from Rhodiola rosea has been shown to protect against cardiac
dysfunction in animal models of diabetes and myocardial
infarction (MI) (152, 153). In mice models of MI, Salidroside
reduces fibrosis and infarct size and improves cardiac function.
However, the role of SIRT3 activation in this process remains
to be understood. In the mouse model of diabetes, salidroside
is known to confer protection by increasing SIRT3 expression
and translocation to mitochondria, promoting MnSOD activity,
thereby reducing oxidative damage observed in diabetic
patients cardiomyopathy (154). Another activator of SIRT3
is Licoisoflavone A, a naturally occurring flavonoid and
active ingredient of Tongmaiyangin, a Chinese therapeutic
pill composed of 11 herbs. It has been shown to inhibit
angiotensin II-induced cardiac hypertrophy via SIRT3 activation
(155). Most recently, Quercetin was identified as SIRT3
activator. It was shown to preserve mitochondrial function and
structure, ameliorate cardiac hypertrophy, and improve overall
cardiac function via activation of the SIRT3 in spontaneously
hypertensive rats (156).

Several small molecules have also been identified as SIRT3
activators. Depletion of NAD+, the Sirtuin cofactor, is a
major contributor to various cardiac pathologies. Subsequently,
NAD+ repletion has proved to be effective in amelioration
of these pathologies conditions (157, 158). Administration of
exogenous NAD+ in mice and in vitro models of hypertrophy
has been shown to confer cardioprotection from hypertrophy
in a SIRT3-dependent manner. Exogenous NAD+ activates
SIRT3, which in turn deacetylates and activates LKB1 kinase,
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thereby promoting anti-hypertrophic LKB2-AMPK signaling.
In addition to this, SIRT3 activation can also be expected
to block pro-hypertrophic Akt1 signaling by inhibiting ROS
production (105). Early studies also demonstrated the use
of the NAD+ biosynthetic precursor nicotinamide riboside
to enhance SIRT3 activity in mouse embryonic fibroblasts
(MEFs), as indicated by reduced acetylation of SIRT3 targets
in these cells (159). Most recently, oral administration of
nicotinamide riboside in HFpEF mice was noted to result
in reversal of the heart failure phenotype and recovery of
mitochondrial function (158). Although the SIRT3 protein
expression in these mice remains unaltered, nicotinamide
riboside may be expected to serve as a SIRT3 activator
by enhancing its deacetylation activity without altering its
expression. However, this possibility remains to be tested.
Another prominent small molecule known to activate SIRT3
in the heart is NAD+ precursor nicotinamide mononucleotide
(NMN). Using a SIRT3-KO/Friedreich’s ataxia cardiomyopathy
(FXN)-KO double knockout model, a study demonstrated that
NMN administration restores cardiac energetics and function in
these hearts a SIRT3-dependent manner (160).

Other small molecule activators of SIRT3 include Metformin,
which is commonly used in the treatment of type 2 diabetes.
Metformin augments SIRT3, thereby improving heart failure
post-myocardial infarction by enhancing cardiac metabolism
and reducing apoptosis (90). The hormone, melatonin has been
shown to ameliorate IR injury by increasing the expression
and activity of SIRT3 levels (161). Choline, a precursor
of the neurotransmitter acetylcholine, is also known to
improve diabetic cardiomyopathy through SIRT3 mediated
enhancement of mitochondrial protein unfolded response,
fatty acid and ketone body metabolism (60). Elabela, a small
endogenous peptide, is shown to protect against diabetic
cardiomyopathy by inhibiting oxidative stress and apoptosis
via SIRT3 mediated deacetylation of the transcription factor
FOXO3a (162).

All phytochemical and small molecule activators are
summarized in Table 3. It is worthwhile to note that the
unavailability of proven pharmacological activators of SIRT3
currently remains a challenge in exploiting the therapeutic
potential of SIRT3 regulation in cardiac metabolism. Studies
characterizing SIRT3 activators are riddled with mechanistic and
methodological gaps that prevent them from being translated for
clinical use. Most studies proposing the use of phytochemicals as
SIRT3 activators are correlation-based, and fail to demonstrate
direct binding to, or mechanism of indirect activation of SIRT3
by the modulator. Most of these studies also lack the use of a
rescue model to establish SIRT3 activation as the mechanism
underlying cardio-protection against various diseases. Moreover,
the therapeutic potential of many of these phytochemicals
remains to be explored in vivo in models of cardiac pathologies
such as heart failure. Furthermore, they fail to evaluate the
effect of modulator treatment on cardiac function—which is
an essential parameter for exploring pharmaceutical potential
of a proposed therapeutic. Finally, and most importantly, it
is unclear whether these compounds are selective activators
of SIRT3. For instance, in addition to SIRT3, resveratrol can

modulate several other molecules, including SIRT1 (166–168),
SIRT5 (169), certain kinases and ATP synthase (170). Similarly,
NAD+ also serves as a substrate for enzymes involved in calcium
signaling and DNA damage repair (157). This characterizes these
activators with pleiotropic effects and renders them less suitable
for pharmacological use.

Overall, these gaps warrant the need for comprehensive
studies to better characterize SIRT3 activators, and identify
suitable candidates for clinical studies to explore their
therapeutic potential.

SUMMARY AND FUTURE PERSPECTIVE

Metabolic dysfunction is a common feature of cardiac
pathologies like hypertrophy, ischemic reperfusion injury,
and heart failure. Therefore, understanding the regulation
of myocardial metabolism is of keen interest in identifying
therapeutic targets for cardiac pathologies treatment. SIRT3
appears as a promising target for improving myocardial
metabolism due to its proximity to the mitochondrial
metabolic machinery and the cardiac pump, along with its
functional dependence on the cellular [NAD+]/[NADH]
ratio. Recent studies have highlighted the regulatory
roles of SIRT3 in physiological and pathological cardiac
metabolism. Overall, SIRT3 presents as a positive regulator
of cardiac energy metabolism. It has been shown to enhance
glucose and fatty acid oxidation and promote ketogenesis
for energy generation in the heart. SIRT3 expression is
downregulated in models of cardiac hypertrophy, heart
failure, ischemia, and diabetic cardiomyopathy. Activating
SIRT3 in these hearts ameliorates metabolic dysfunction,
thereby attenuating the damage associated with pathological
metabolic reprogramming. Implications of SIRT3-mediated
metabolic regulation need to be studied to identify
SIRT3 modulators for the treatment of these numerous
cardio pathologies.

Metabolic targets of SIRT3 have been studied extensively
in extra-cardiac tissues, especially in the liver and skeletal
muscles. The heart, however, differs vastly in its use of
metabolic substrates from other organs. It is uniquely
omnivorous and relies primarily on fatty acids for energy
generation. Thus, it is expected that metabolic targets
and mechanisms of SIRT3 regulation may differ in the
heart. It would be of keen interest to understand if and
how SIRT3 targets identified in extra cardiac tissues are
regulated in the heart and identify novel targets specific to
cardiac metabolism.

Furthermore, the heart is composed of multiple cell types,
including fibroblasts, cardiomyocytes, smooth muscle cells, and
endothelial cells. Each cell type has a distinct metabolic profile.
It would be fascinating to study the role of SIRT3 in each cell
type in the heart using cell-type-specific transgenic or knock-
out models of SIRT3. It would highlight how SIRT3 regulates
metabolic crosstalk between different cell types to coordinate
overall cardiac energetics. Moreover, since the heart is a highly
metabolic organ, studying novel routes of SIRT3 regulation in the
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TABLE 3 | Activators of SIRT3.

SIRT3 activator Source Model system Physiological effects of

activator treatment

Cardiac phenotype References

Phytochemicals

Resveratrol Vitis vinifera, Morus rubra,

Vaccinum spp., Polygonum

cuspidatum, Artocarpus

sp., Rheum raponticum,

Pinus sylvestris, Cassia sp.,

Arachis hypogea, Picea sp.

Mice with cardiac hypertrophy TGF-β/α-SMA signaling (↓) Cardiac fibrosis (↓) (145, 163)

Polydatin Polygonium cuspidatum Mice with myocardial infarction Mitochondrial biogenesis (↑),

autophagy (↑),

apoptosis (↓)

Cardiac function (↑) (148)

Dihydromyricetin Ampelopsis grossedentata Mice with myocardial

ischemia/reperfusion

Mitochondrial function (↑),

Oxidative stress (↓)

Cardiac IR injury (↓) (149)

Berberine Berberis vulgaris Doxorubicin-treated

cardiomyocytes

Mitochondrial biogenesis (↑),

Mitochondrial fragmentation (↓),

Oxidative stress (↓),

Apoptosis (↓)

DOX-induced

cardiotoxicity (↓)

(150)

Honokiol Magnolia officinalis Doxorubicin-treated mice hearts Mitochondrial function (↑),

Mitochondrial DNA damage (↓),

Oxidative stress (↓),

Apoptosis (↓)

DOX-induced

cardiotoxicity (↓)

(38, 151, 164)

Salidroside Rhodiola rosea HFD + Streptozocin-induced

diabetic mice; High fat and High

glucose-conditioned neonatal rat

cardiomyocytes

AMPK activity (↑),

PGC-1α expression (↑),

Mitochondrial mass (↑),

Mitochondrial superoxide

production (↓)

Cardiac fibrosis (↓),

Cardiac function (↑)

(154)

Licoisoflavone A Glycyrrhiza uralensis Phenylephrine (PE)-induced

hypertrophy in neonatal rat

cardiomyocytes

ANF and BNP expression (↓) PE-induced

hypertrophy (↓)

(155)

Quercetin Morus alba, Moringa

oleifera, Brassica sp.,

Prunus domestica etc.

Angiotensin II-induced

hypertrophy in cardiomyocytes

Mitochondrial function (↑),

Oxidative stress (↓)

Angiotensin II-induced

cardiac hypertrophy (↓)

(156, 165)

Other molecules

Exogenous NAD+ Isoproterenol-induced cardiac

hypertrophy in mice;

Phenylephrine (PE)-induced

hypertrophy in neonatal rat

cardiomyocytes

LKB1-AMPK signaling (↑),

Anf expression (↓),

Collagen-α expression (↓)

Cardiac fibrosis (↓),

Isoproterenol-induced

cardiac hypertrophy (↓),

Cardiac function (↑)

(105)

Nicotinamide mononucleotide (NMN) Friedreich’s ataxia

cardiomyopathy (FXN) mouse

model

Glycolytic flux (↓) Cardiac function (↑) (160)

Metformin Mice with myocardial infarction Mitochondrial function (↑),

PGC-1α activity (↑),

Apoptosis (↓)

Cardiac function (↑) (90)

Melatonin Mice with myocardial

ischemia/reperfusion, H9C2

cardiomyocytes

Apoptosis (↓),

Oxidative stress (↓)

Infarct size (↓),

Post-ischemic

contractile function (↑)

(161)

Choline Abdominal Aortic Banding (AAB)

rats; Angiotensin II-induced

hypertrophy in neonatal rat

cardiomyocytes

AMPK activity (↑),

mtUPR (↑),

Mitochondrial function (↑),

Ketone body metabolism (↑),

BNP expression (↓)

Cardiac function (↑) (60)

Elabela Streptozotocin-induced type I

diabetic mouse model

SOD-2 and MnSOD expression

(↑),

Apoptosis (↓),

Oxidative stress (↓),

Interstitial collagen deposition (↓)

Cardiac fibrosis (↓),

Cardiac function (↑)

(162)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 March 2022 | Volume 9 | Article 850340

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Murugasamy et al. SIRT3 in Cardiac Metabolism

cardiac context may reveal exciting insights into the role of SIRT3
as a regulator of whole-body energetics.
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