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Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS,

and complications of major surgery. Although patients leave critical care following

homeostatic recovery, significant additional diseases affect these patients during and

beyond the convalescent phase. New cardiovascular and renal disease is commonly

seen and roughly one third of all deaths in the year following discharge from critical

care may come from this cluster of diseases. During prolonged critical care stays,

the immunometabolic, inflammatory and neurohumoral response to severe illness in

conjunction with resuscitative treatments primes the immune system and parenchymal

tissues to develop a long-lived pro-inflammatory and immunosenescent state. This

state is perpetuated by persistent Toll-like receptor signaling, free radical mediated

isolevuglandin protein adduct formation and presentation by antigen presenting cells,

abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic

reprogramming of the innate immune arm (trained immunity), and the development of

immunosenescence through T-cell exhaustion/anergy through epigenetic modification

of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and

renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling

pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling

and dysfunction, and proteinuria and accelerated chronic kidney disease.

Keywords: critical illness, chronicity, atherosclerosis, insulin resistance, inflammation, heart failure, immune

aging, CKD

INTRODUCTION

The global burden of critical illness is difficult to quantify due to many factors but even prior to the
Coronavirus Disease 2019 (COVID-19) pandemic it was likely to be substantial and broad reaching
(1). Traditionally the focus of large multi-center randomized controlled trials in critical illness has
been on interventions aimed at decreasing inpatient mortality, but the spotlight is increasingly
turning to post-critical illness survivorship and quality of life (2–4). Several recent studies highlight
that even in previously healthy individuals a period of critical illness is associated with the onset of
long-term chronic health problems. In this review we critically appraise the literature surrounding
post critical illness cardiovascular disease and explore the potential mechanisms.

SURVIVING CRITICAL ILLNESS

Admission to critical care usually marks a patient’s most severe lifetime episode of acute illness.
Two fundamental lessons can be learned from critical illness survivor studies—the effects of
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critical illness are not short-lived or trivial, and the severity of
these long-term effects relate to the severity and duration of the
acute illness. For example, 3-year mortality in survivors of critical
illness is elevated compared to non-critically ill patients, and
these elevations in mortality are considerably increased by higher
critical illness severity (5). Similar associations between illness
severity, duration and one-year mortality are also found in ARDS
when examining survivor data (6–8). Although co-morbidity and
advanced age deleteriously synergise with acute illness severity,
studies attempting to correct for this still show an elevated
subsequent mortality associated with sepsis and acute respiratory
failure diagnoses (8–11). The recent COVID-19 pandemic has
served to emphasize these matters though intensive care unit
(ICU) follow-up has naturally been shorter in this disease than
for other critical illnesses (12).

Examination of the temporal patterns of mortality in ICU
survivors (compared to hospital controls) shows a rapid
cumulative excess mortality over the first 6-months following
discharge, which slows in its accrual rate over the next 2.5 years
of follow-up (5). One study found that over 35% of ICU survivor
deaths within 1-year of ICU admission relate to cardiovascular,
renal and cerebrovascular diseases and interestingly this cluster
of diseases was ahead of malignancy as the leading cause of
post-ICU survivor deaths (13). Other studies also point to
elevated rates of cardiovascular and renal diseases and associate
them with blood-stream markers of inflammation, showing
an accelerated mortality which gradually settles with time
(8, 14).

The question arises as to whether this is a generalizable
phenomenon or whether there are only specific subsets of the
critically ill to whom this applies. Data from previously young
healthy adults who have survived severe traumatic injuries
show an increased rate of new onset cardiovascular disease
(15). Furthermore, there is a dose-response relationship between
severity of injury (by injury severity score) and cumulative
incidences of hypertension, coronary artery disease, diabetes
mellitus, and chronic kidney disease (CKD). These very same
diseases are also seen in adult burn patients (16, 17). Trauma and
burns, as with many other critical illnesses, are often associated
with acute kidney injury (AKI). Data from a retrospective study
in Denmark demonstrated a one-year mortality rate of over 50%
following dialysis-requiring AKI (though not strictly isolated
to the critically ill), and a 1-year end-stage renal failure rate
of over 5% (18). Similarly, follow-up of a large randomized
controlled trial of differing dialysis intensities for AKI in critical
care also showed that the overall 1-year mortality rate following
AKI is over 50% with the majority of deaths occurring in
the first 90 days, but with a significant and ongoing mortality
over several years (19). The aforementioned study found an
association between the severity of critical illness (determined
by APACHE III score) and the risk of long-term mortality
and also showed the association of AKI survival with high
rates of cardiovascular disease, proteinuria and CKD. There
are obvious parallels with the findings of studies in trauma
and burns where injury severity correlated with subsequent
cardiovascular morbidity (15). Sepsis studies show similar trends
of elevated cardiovascular risk in survivors, as do studies of

viral [e.g., influenza and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)] and bacterial respiratory infection
(20–26). Interestingly, the elevated cardiovascular risk seen in
sepsis survivors is similar to non-infected critically ill controls
in some studies, suggesting that this phenomenon is either not
infection specific, or that non-infection diagnostic categories
fail to adequately capture same-stay inpatient infection/sepsis
events (20).

Were this phenomenon universal, one would also expect
it to be recapitulated in the pediatric setting. Pediatric
critical care survivor data suffers from problems of a relative
sparsity coupled with inclusion of large numbers of patients
with confounding inherited or congenital co-morbidities.
Furthermore, pediatric survivorship is usually coupled with
continued physical growth and maturation which has the
potential to offset pathological adversity. Nevertheless, there are
data that supports a generalisability of the phenomenon seen in
critically ill adults. Children who have suffered AKI (whether in
ICU or not) show a similar pattern of progression to proteinuria,
CKD and end-stage renal disease later in adulthood (27, 28).
In the pediatric burn population, studies show increased rates
of type 2 diabetes mellitus (T2DM), cardiovascular disease and
significant myocardial and circulatory impairments in survivors
(17, 29, 30). Irrespective of age, surviving a wide variety of
severe critical illnesses results in an accelerated onset of chronic
disease, particularly that which relates to the cardiovascular and
renal systems.

CARDIOVASCULAR DISEASE—THE
TRADITIONAL MODEL

The constellation of cardiovascular diseases comprising
hyperlipidaemia, essential hypertension, coronary heart
disease, cerebrovascular disease, heart failure, and CKD
have substantial clinical overlap (31–35). Although it was
over a century ago that Virchow suggested involvement
of the immune system in atherosclerosis based on post-
mortem studies, the understanding of the pathogenesis of
atherosclerosis came to center on abnormalities of lipid
homeostasis (36). Hypertension research only became possible
after the introduction of routine and non-invasive blood
pressure measurement, and associations between hypertension
and cardiovascular diseases such as atherosclerosis, heart failure,
or stroke soon became apparent (37). Abnormalities of salt
and water homeostasis and autonomic regulation as drivers
of hypertension were considered important, implicating renal,
humoral, and neural mechanisms alongside abnormalities
in lipid metabolism as drivers of cardiovascular disease.
Other common findings that were considered important but
assumed to have secondary roles in the pathophysiology of
cardiovascular disease related to the immune infiltrates that
Virchow and others had observed, subsequent oxidative and
free-radical mediated damage, microvascular dysfunction
with blunted endothelial-dependent vasodilatory responses,
extracellular matrix remodeling and fibrosis, and platelet
activation. Many of these secondary findings are also seen
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in T2DM, though the underlying driver there is believed to
be pathologically elevated plasma glucose levels and tissue
insulin resistance.

CHRONIC INFLAMMATION AND
CARDIOVASCULAR DISEASE

Although inflammation has long been recognized as playing a
potential causative role in cardiovascular disease (particularly
atherosclerosis), significant doubt existed whether detected
inflammation was a result or cause of atherosclerotic disease
(38, 39). Although acute inflammation can be shown to associate
with elevated cardiovascular risk in humans, definitive proof that
inflammation is an independent mechanistic driver of human
cardiovascular disease was until recently lacking. Clinical studies
suggest that modifying inflammation may hold cardiovascular
benefit (40, 41), while some animal studies have also confirmed
accelerated cardiovascular pathology following inflammatory
insults (42, 43). It is only recently that the role of inflammation
as a therapeutic target for combating cardiovascular disease has
been confirmed by the CANTOS trial, where interleukin (IL)-
1β antagonism showed a reduction in composite cardiovascular
outcomes in patients with established coronary artery disease
independent of plasma low density lipoprotein (LDL) cholesterol
(44–46). While this is an exciting development, the mortality
benefits of therapy in this setting overrode, but nonetheless, were
accompanied by an increased likelihood of death due to infection,
a particularly important finding for survivors of sepsis and critical
illnesses who have a high rate of infection-related hospital & ICU
readmissions (47).

POST-CRITICAL ILLNESS MORBIDITY AND
MORTALITY

The Critical Illness Paradox
Given that inflammation is an aetiological factor in chronic
cardiovascular disease, we hypothesize that critical illness is
a phase of hyperinflammation that can drive de novo or
accelerate pre-existing cardiovascular morbidity and mortality.
Critical illness is undoubtedly associated with inflammation
and survivor chronic illness and mortality, particularly of
cardiovascular origin (14). However, it is not immediately
obvious how relatively brief acute illnesses that have lasted
only days to weeks and that end in a repair and resolution
phase of illness can induce a step change in cardiovascular risk.
In this phase the levels of many pro-inflammatory cytokines
have decreased, patients are often normotensive (and may have
spent more time during their illnesses with lower than normal
blood pressures), with low levels of total cholesterol, and may
have low circulating levels of cortisol and aldosterone. Patients
also display functional immunosuppression (48), and so this
constellation of features would appear to run counter to the
traditional and inflammatory models of cardiovascular disease
(see Table 1). However, by turning to modern insights in to the
pathogenesis of cardiovascular disease this apparent paradox is
somewhat resolved.

Critical Illness Related Oxidative Damage
Triggers “Chronic Disease Like” Immune
Activation and Endothelial Dysfunction
Considering that plasma endotoxin levels associate with incident
diabetes and cardiovascular disease in the community setting,
there is at least at the epidemiological level a strong association
between innate immune activation and the development of
metabolic and cardiovascular diseases (49–51). One mechanism
of this linkage is suggested to be through molecular pattern
receptor activation triggering low grade inflammation and
cytokine mediated insulin resistance (52). There is no reason to
suspect such phenomena are isolated to chronic disease and do
not occur alongside or as a consequence of acute inflammatory
events such as those which cause critical illness:

The acute phase of critical illness is undoubtedly characterized
by tremendous immune activation and consequential free
radical mediated damage (53, 54). Myeloperoxidase (MPO) is
an important enzyme in the process of oxidative damage,
it is the most abundant enzyme found in neutrophils,
and is capable of inducing microvascular dysfunction by
decreasing endothelial nitric oxide bioavailability, both
independently and when complexed with high density
lipoprotein (HDL) (55, 56). Furthermore, under various
conditions, including pre-clinical models of sepsis, the free-
radical mediated damage by MPO and other enzymes such
as NADPH Oxidase (NOX) results in the formation of highly
reactive isolevuglandins (γ-ketoaldehydes formed from the
isoprostane pathway) that rapidly modify cellular proteins
and activate pro-inflammatory pathways in tissue antigen
presenting cells (57–60). Isolevuglandin protein adducts,
found at elevated levels in patients with atherosclerosis and
end-stage renal disease, are presented by dendritic cells
bringing about monocyte recruitment to the endothelium,
linking free-radical mediated damage with the activation and
further recruitment of immune cells to the vasculature (61).
Furthermore, these protein adducts modify LDL resulting
in the uptake of LDL by receptors for oxidized LDL on
macrophages, and they modify HDL, resulting, resulting in
dysfunctional circulating HDL (62). Although leucocyte-
endothelial interactions necessarily increase at sites of infection
or tissue injury through mechanisms that are independent of
this specific pathway, isoprostanes have also been detected at
elevated levels in patients with sepsis (63). This suggests that
this pathway, which is of importance in hypertension and
atherosclerosis, could be of importance in human post critical
illness cardiovascular pathogenesis.

HDL is considered anti-inflammatory, atheroprotective, and
inhibitory of microvascular dysfunction by virtue of its myriad
effects on inflammatory signaling and adhesion molecule
upregulation, foam cell cholesterol efflux, and inhibitory effects
on LDL oxidation and Toll-like receptors (TLRs) (64). It
serves as a carrier molecule for transferring endotoxins such
as lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from
the bloodstream to the liver where they can be rapidly cleared
and detoxified by enzymes such as acyloxyacyl hydrolase,
but HDL also carries other molecules such as the enzyme
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TABLE 1 | The paradox of a lack of traditional risk factors for renal and cardiovascular disease during critical illness.

Risk factor Hypertension Insulin

resistance

Elevated

cholesterol &

TG

Elevated cortisol Elevated

aldosterone

levels

Immune response Age

Chronic

CVS/renal

disease

Recognized risk

factor

Recognized Recognized Associated with HT,

DM, & insulin

resistance

Recognized T-cell, monocyte, &

macrophage activation

recognized

Recognized

Critical illness Not a feature of

patients with

prolonged shock

Common during

acute illness

Usually less

than baseline

and often in

low/normal

range

Plasma levels

inappropriately

depressed in many

Plasma aldosterone

may be depressed

T-cell anergy, myeloid

derived suppressor

cells found

Trauma/burns tends to

affect young, sepsis

affects all groups

(elderly and pediatric

groups more so)

Although there is a documented high rate of cardiovascular and renal morbidity in the months to years following critical illness, many of the risk factors associated with these diseases

are not obviously seen in critical illness.

symmetric dimethyl arginase (SDMA) which limits nitric oxide
bioavailability in the circulation (65, 66). It has been shown
in some patient groups that share clinical overlap with critical
illness survivors (e.g., those with CKD and T2DM) that HDL
is abnormally modified by isoprostanes as described above, or
by the presence of SDMA, in both cases inducing endothelial
dysfunction and atherosclerosis via the activation of macrophage
TLRs and inhibition of nitric oxide (67–69). One study showed
fifty percent of 28-day sepsis survivors have SDMA levels of 0.82
µmol.l−1 or more, which is a level where population nomograms
show severe HDL impairment (70, 71). The amount of circulating
functional HDL is therefore also likely low in a substantial
number of sepsis, and possibly other previously hyperinflamed,
ICU survivors. This is not to implicate these pathways as being
central drivers of the severe microvascular dysfunction which
occurs during critical illnesses such as sepsis (though it may
partly explain why patients with pre-existing cardiovascular
diseases have worse basal microvascular function than others).
Instead we propose that these pathways become relevant for
ongoing vascular dysfunction after the critical phase of illnesses
have subsided.

Microvascular dysfunction has been found in a number
of different types of critical illnesses and is associated with
endothelial damage and disruption of the endothelial glycocalyx
(72). Due to the inability to measure basal microvascular
health before admission (except in elective surgical patients), no
studies have specifically looked at the rate of normalization of
microvascular abnormalities in individuals after critical illnesses,
which makes it difficult to assess the potential importance
of these pathways in convalescence. However, one study in
sepsis assessed biomarkers of endothelial health from ICU
admission to 1-year out. This study showed that in 14–38%
of surviving patients, levels of all measured soluble endothelial

adhesion molecules and markers of coagulation activation [e.g.,

plasminogen activator inhibitor (PAI) −1] remained elevated

above normal from 90 days after admission until a year out

(73). Many of these patients have persistently elevated levels of

IL-6, inducing both the endothelial release of PAI-1 and the

upregulation of endothelial adhesion molecules, suggesting that
the ongoing presence of inflammation and circulating cytokines
such as IL-6 sustains endothelial activation (74–76). Furthermore

microalbuminuria, a condition that is highly associated with
systemicmicrovascular dysfunction, is particularly common after
admission to ICU in those with severe kidney injuries (19, 77).
Therefore, abnormalities in endothelial health and microvascular
function probably persist after severe critical illnesses for
a significant period of time in a substantial proportion of
ICU survivors. As endothelial dysfunction is also involved in
the initiation and progression of atherosclerotic disease its
persistence is likely to contribute to ongoing cardiovascular
disease. This paradigm of a seamless progression of endothelial
dysfunction from one disease state to another is also supported
by conserved inflammatory signaling pathways that induce
endothelial activation both in peritonitis and atherosclerosis
(78, 79). Furthermore, recent findings that chronic microvascular
rarefaction precedes tissue aging suggests that critical illness
could induce a step-change toward chronic organ dysfunction
and tissue aging at least through the premature induction of
chronic vascular dysfunction (80).

Acute Myocardial Injury, Dysfunction and
Its Aftermath
The fourth universal definition of myocardial infarction provides
a framework for understanding increases in the cardiac
injury biomarker Troponin (cTn), —essentially dichotomising
to acute myocardial infarction of a variety of ischaemic
subtypes and causes external to it (non-ischaemic injuries) (81).
Although non-ischaemic myocardial injuries do not involve
clinically detectable ischaemia, they can be contributed to by
processes that can cause ischaemic injuries and myocardial
infarction (e.g., anemia, sustained and severe tachycardia);
correctly differentiating non-ischaemic from ischaemic injuries
is therefore difficult but improved by rigorous clinical ischaemia
assessment (82). Increases in cardiac injury biomarkers such
as cTn are common during critical illnesses and are not
always accompanied by overt myocardial ischaemia, dysfunction
or shock. However, myocardial injury in critical illness is
independently associated with adverse acute disease outcomes
(83, 84). Outside of ischaemia organ-specific extra-cardiac
processes such as pulmonary embolism, hyperadrenergic-
associated myocardial injuries in a variety of brain injuries,
and polytrauma with myocardial contusion can contribute
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to cTn release (85–87). Notwithstanding that, there are
substantial numbers of critically ill patients who see increases
in cTn without fitting in to the aforementioned etiologies.
These patients may appear completely stable, such as the
routinely observed post-operative major surgical patient with
a peri-operative myocardial injury, or alternatively may have
severe shock and multiple-organ failure due to a variety of
potential causes.

Elevated cTn levels in this context are not dependent on
a prior history of ischaemic heart disease or congestive heart
failure, though levels tend to be higher in those with such a
history (88). Similarly while renal impairment can somewhat
affect the circulating levels of cTn through decreased elimination,
it is erroneous to dismiss new or large increases in cTn
to renal dysfunction alone—cTn clearance is less reliant on
renal clearance as blood concentrations increase following
its release in to the circulation (89, 90). Furthermore, the
persistently raised cTn that is commonly seen in CKD outside
of critical illness is also likely to be minimally contributed
to by renal impairment per se, implying ongoing myocardial
injury instead (91). However, the presence of shock, commonly
associated with myocardial dysfunction and usually requiring
vasoactive/inotropic drugs, is associated with a higher degree
of cTn release than non-shocked states (88, 92). Similarly
higher degrees of ARDS severity associate with higher levels
of cTn, and also associate with worse endothelial function
(93). Other observational studies in mixed cohorts of critically
ill suggest associations of cTn with IL-6 and inflammatory
state, which is further supported by peri-operative studies
(94, 95). Sympathoadrenal hyperactivation in the context of
inflammation and tissue injury, proposed to induce shock-
induced-endotheliopathy (SHINE), is a potentially contributory
mechanism to cTn release, though clearly sympathetic activation
is not unique to shock and occurs to a greater or lesser degree
in all critically ill patients so that it could partially account for
cTn elevation outside of shock states too (96–98). Our findings
of an independent association of both heart rate and markers
of vasoplegia with hyperdynamic left ventricular function
(where cTn release is higher than any other echocardiographic
phenotype of septic shock) lends further support to the SHINE
concept (99).

In line with this angiography studies in patients with post-
operative ACS demonstrate little in the way of obstructive
coronary artery disease or plaque thrombosis, but instead
show a high prevalence of Takotsubo’s cardiomyopathy, a
catecholamine-mediated condition (100, 101). Similarly a study
in critically ill medical patients also showed Takotsubo-type
left ventricular apical ballooning in approximately one third
of patients (102). Critical illness related myocardial injury may
therefore occur through a combination of sympathoadrenal
and cytokine induced cardiomyocyte dysfunction and death—
these can drive immunogenic and destructive regulated cell
death processes within the tissue microenvironment, such as
necroptosis and pyroptosis (103, 104). These latter processes
are preceded by and result in the further release of large
amounts IL-1β and IL-6. Although some histological studies
suggest cell death is infrequent in septic myocardial injury,

cardiomyocyte death can be driven by very brief ischaemia
that does not produce overt infarction (105). This can
drive inflammatory death in macrophages in the cardiac
microenvironment through cytosolic nucleic acid detection and
the triggering of type 1 interferon responses, implying a self-
reinforcing loop of cardiomyocyte death and inflammation (106).
However, sources of nucleic acids beyond those in necrosing
cardiomyocytes also exist, such as circulating mitochondrial
and cell free DNA in trauma, and cytosolic DNA due to sub-
lethal cell stress (107, 108). The cardiovascular dysfunction that
features as part of shock in critical illness is associated with
leukocyte infiltration of the myocardium, myocardial oedema,
electrophysiological and cardiomyocyte contractile dysfunction
(109). These abnormalities are thought to have their origins
in enhanced adrenergic signaling with increased oxidative and
nitrosative cell stress, abnormalities of mitochondrial structure
and function, abnormalities of calcium sparking, and also
possibly through alteration of cardiac macrophage behaviors
which are normally involved in co-ordinate action potential
propagation through Connexin-43 mediated interactions with
cardiomyocytes (109–111). Pre-clinical studies have shown
disruption of cardiac gap junctions and Connexin-43 in both
septic and traumatic cardiac dysfunction, suggesting this may
be involved in arrhythmogenesis, such as atrial fibrillation
(AF) (112, 113). The finding that β-adrenoceptor provoked S-
nitrosylation of Connexin-43 is arrhythmogenic in pre-clinical
models of inherited cardiomyopathies is also notable in this
regard (114).

New-onset AF occurs in roughly one in five critically
ill patients, predominantly in a paroxysmal fashion, and is
associated with the risk of in-hospital death (115, 116). It
occurs sub-clinically in a high proportion of patients and
therefore may affect patients without being detected. One
follow-up study of critical illness survivors demonstrated an
association of ICU-acquired AF with 1-year post-discharge
mortality, while the MANAGE trial which investigated the
pharmacological management of peri-operative elevated cTn in
those having major non-cardiac surgery (a population which is
highly prevalent in surgical ICUs) showed improved outcomes
in patients randomized to the anti-coagulant dabigatran (116,
117). In a pre-planned secondary analysis of MANAGE the
reduction in the composite primary outcome (a composite of
vascular mortality and non-fatal myocardial infarction, non-
haemorrhagic stroke, peripheral arterial thrombosis, amputation,
and symptomatic venous thromboembolism) was seen to
be significantly reduced only for non-haemorrhagic stroke,
a diagnostic category with strong aetiological association
with AF. Furthermore, when looking to survivors of sepsis,
those with new onset AF during their acute illness were
confirmed in another study to have higher risks of post-
critical illness mortality, stroke and also recurrent AF and
heart failure than those without (118). New onset AF may
then associate with AF in convalescence, the importance of
this being that AF is a risk factor for both stroke and heart
failure. Given a link between (post-operative) IL-1β release,
abnormal cardiomyocyte calcium handling and AF has already
been established, it may be that residual inflammation and
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metabolic dysfunction are targetable drivers of post-ICU AF
(119, 120).

Prolonged exposure of the injured myocardium to
catecholamines is associated with fibrotic change (121). Studies
in patients with Takotsubo’s cardiomyopathy show (iron-laden)
monocyte/macrophage infiltrates in the myocardium which
would seem to be akin to monocytic infiltrates seen in sepsis
(122). Pre-clinical studies also support the role of iron-
processing macrophages in septic cardiac dysfunction through
the enhancement of nitric oxide production (which leads to a
vicious cycle of increased catecholamine dosing through reduced
adrenoceptor sensitivity), and is also in keeping with studies
in human heart failure (123–126). Although Takotsubo studies
show echocardiography normalizes some months after the initial
event just as echocardiographic abnormalities normalize soon
after sepsis, there is still associated residual poor functional
ability, ongoing systemic inflammation, magnetic resonance
imaging evidence of diastolic dysfunction and a persistently
abnormal energetic status common to heart failure (122, 127).
Remarkably heart failure, particularly that with preserved
ejection fraction (HFpEF), commonly occurs after critical
illness in groups without a prior cardiac history (e.g., after
severe pediatric burn) suggesting that the acute intracardiac
nitrosative stress that is involved in acute cardiac dysfunction
remains latent and plays an important aetiological role in
HFpEF pathogenesis (29, 126). It is also notable that the
recently devised HFpEF score marks elevated body mass index
(BMI) and AF as high scoring risk factors for the likelihood of
HFpEF—both of these risk factors are prevalent in survivors
of critical illness (128). Thus, patients surviving severe critical
illnesses with myocardial injury and prolonged periods of
high catecholamine exposure (not necessarily exogenous)
are likely to develop myocardial inflammatory infiltrates
which in the context of ongoing inflammation, neurohumoral
activation [including components of the renin-angiotensin-
aldosterone system (RAAS)] and ongoing preferential adipose
deposition, could develop in to latent heart failure through
immune-mediated mechanisms that stimulate myofibroblast
proliferation (124).

Cardiorenal Synergy in Chronic
Cardiovascular Pathogenesis
The immune response to AKI is associated with increased
levels of pro-inflammatory cytokines and immune cell
secreted Galectin-3, the latter being implicated in myocardial
inflammation and fibrosis in acute and chronic settings
(129, 130). Sympathoadrenal and neurohumoral activation occur
in the acute phase of severe critical illness, as exemplified by
sepsis (131, 132). Galectin-3 expression and secretion is increased
in response to the terminal RAAS mineralocorticoid hormone
aldosterone, salt intake, and beta-adrenoceptor agonism (133–
135). However, these sympathoadrenal and neurohumoral
changes are also important in driving chronic disease through
oxidative damage. Renal nerve derived noradrenaline and
circulating Angiotensin II [Ang II; tightly linked to NOX

via the type 1 angiotensin II (AT1) receptor] are recognized
vasoconstrictive mediators of chronic hypertension, and have
also been shown to induce the formation of renal dendritic cell
isolevuglandin protein adducts (136). Antigen presentation by
these dendritic cells activates and drives renal T-cell infiltration
with attendant renal pro-inflammatory cytokine release and
altered renal histology (136, 137). AKI studies also show the
macrophage chemokine CCL-14 as a highly predictive biomarker
of persistent (>72 h) high grade AKI (138). As higher grade AKI
and acute kidney disease (AKD; AKI of 7 days or more duration)
is predictive of CKD progression this suggests renal macrophages
are involved in imperfect repair processes that cause renal fibrosis
(139). This is consistent with data from animal studies of AKI
showing that renally secreted transforming growth factor (TGF)-
β and damage associated molecular patterns (DAMPs) draw in
macrophage and T-cell populations which drive renal fibrotic
repair programs as part of a cycle of ongoing tubular cell death
and macrophage recruitment and activation (140, 141). One
study showed that renal mesenchymal cells such as fibroblasts
and pericytes are the main cell population that become activated
myofibroblasts, driving extracellular matrix deposition and
renal fibrosis in response to TGF-β and platelet-derived growth
factor (PDGF) signaling (142). Although this study didn’t
implicate immune cell infiltration as a major component of
CKD progression, the model proposed is nonetheless in keeping
with one which involves parenchymal and macrophage derived
PDGF and TGF-β as initiators of chronic fibrosis in the early
stages of injury and is also similar to fibrotic circuits found
in the heart (124, 143). As Galectin-3 stabilizes cell surface
cytokine receptors and inhibits T-cell apoptosis it may hinder
inflammation resolution across the cardiovascular and renal
systems, thus skewing toward maladaptive repair and chronicity
following AKI (144).

Importantly, although AKI is likely a multi-faceted process
and varies in its pathophysiology depending upon the nature
of the initiating injury (e.g., sepsis vs. polytrauma), the
transition to fibrotic repair and CKD is transcriptionally
preserved among different types of CKD pathophysiology and
implicates the immune system, renal parenchymal hypoxia,
and pro-fibrotic growth factor signaling molecules such as
TGF-β (145–147). The early understanding of idiopathic
hypertension as being secondary to changes in the kidneys
may therefore partly hold true for post critical-illness induced
hypertension, potentially aligns renal microvascular dysfunction
and microalbuminuria, and might also explain the beneficial
effects on mortality of post-AKI Angiotensin Converting
Enzyme inhibitors (ACEi) in observational studies (77, 148,
149). The interaction of vascular, renal and heart diseases
as is currently understood for chronic disease therefore
also apply in the setting of acute illness and its repair
phase, though the specifics of the interaction after critical
illnesses are unique to acute injury and repair programs,
probably occur at a more rapid pace than occur naturally
in aging, but clearly only become a concern for patients
that can survive the resuscitative phases of illness (150,
151). Furthermore, the persistence of CKD progression may
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contribute, alongside inflammatory programs, to sarcopenia and
frailty in convalescence (152).

The Immune Response to Tissue Injury
Leads to Altered Systemic Metabolism and
Adiposity Which Exacerbates
Cardiovascular Homeostasis
Amongst the most obvious metabolic changes that occur in
critical illnesses are early increases in circulating levels of
lactate and glucose, but there are other changes which are just
as obvious but perhaps less appreciated. The onset of illness
leads to sickness behavior favoring the diversion of energy
utilization—a reduction in physical activity is partly possible
due to a cytokine mediated induction of lethargy and fatigue
and also a reduction in appetite that neutralizes the urge to
seek food. Changes in appetite are partly regulated by the
IL-1β induced hormone growth differentiation factor (GDF)-
15 which signals via central nervous system glial cell derived
neurotrophic factor (GDNF) family receptors α-like (GFRAL)
receptors to induce anorexia (153). The energy furnished by
sickness behavior and tissue breakdown is diverted toward
powering the febrile response, increased cardiac work, and the
systemic response required for tissue repair and immunity. For
example, pre-clinical studies suggest that the GDF-15-GFRAL
signaling pathway induces centrally driven sympathetic output
to the liver which supports hepatic triglyceride output. This
may provide an energy substrate for the heart and other tissues
despite an IL-1β mediated downregulation of VLDL receptors
in the septic heart, thus enhancing tolerance of cardiac injury in
the face of sepsis (154–156). Notably, GDF-15 signaling induces
muscle breakdown in studies inside and outside of ICU, thus
contributing another systemically available fuel source in illness
(157–159). Furthermore, the hormone is also seen as a biomarker
of mitochondrial health and cellular stress and senescence as
it increases with increasing cellular and organismal dysfunction
(160). Whether the linkage between high GDF-15 levels and
poor ICU outcomes is related to its contribution to cachexia
remains unknown, but levels of this hormone remain elevated
in ICU survivors for at least 1 week after ICU discharge so
that potentially undesirable effects of GDF-15 could persist in
convalescence (161).

Concurrent decreased levels of LDL cholesterol and increased
levels of triglycerides and free fatty acids (FFAs) have been
observed in critically ill patients, and may occur partly due
to increased hepatic triglyceride output, early catecholamine
driven increases in adipose tissue lipoprotein lipase and
hormone sensitive lipase activity, and additional factors that take
precedence at different times such as dynamic reductions in
non-adipose lipoprotein lipase activity (162–164). Both obesity
and critical illness see high levels of macrophage and other
immune cell infiltrates in adipose tissue which contribute
to adipose-related inflammation and insulin resistance in
the outpatient setting; the role of these immune infiltrates
beyond possibly serving as immune memory is unknown in
critical illness convalescence (162, 165). However, the serine-
phosphorylation of insulin-receptor-substrate-1 by cytokines and

TLR4 agonists such as FFAs means that convalescent obesity
and adverse convalescence metabolic profiles in addition to
residual inflammation can be expected to perpetuate insulin
resistance (166, 167). As the normal action of insulin is to
facilitate glucose uptake via glucose transporter type 4 (GLUT4)
channel expression in muscle, and reduce glucose output
from the liver through the inhibition of both glycogenolysis
and gluconeogenesis, the combination of enhanced hepatic
glucose release and the inhibition of muscle glucose uptake
leads to relative or overt hyperglycaemia. This acute stress
hyperglycaemia has been shown to be associated with increased
rates of post-critical illness DM (168). Although it is likely that
post-critical illness DM is a latent disease revealed by acute illness
for many (169), evidence of increased rates of insulin resistance
and metabolic syndrome that relate to the magnitude of
traumatic injuries in UK veterans suggests this is not necessarily
the case (170). Furthermore, hyperglycaemia and insulin
resistance, which can continue alongside low grade inflammation
for months beyond the acute phase of critical illness in the
absence of overt DM, are known to contribute to sustained
vascular dysfunction via endothelial glycocalyx disruption, the
inhibition of endothelial nitric oxide mediated vasodilatation and
aggressive pro-atherosclerotic myeloid behaviors (171–174). In
this context the emergence of GDF-15 as a cardiovascular and
all-cause mortality risk biomarker outside of ICU is notable.

Acute critical illness related weight loss involves a
combination of adipose, muscle and skeletal compartment
biomass depletion. Muscle mass is lost partly due to
immobilization but in common with lipolysis, proteolysis
also occurs due to the rewiring of systemic metabolism during
critical illness, furnishing substrate particularly to the starved
tricarboxylic acid cycle (175, 176). Brief reductions in cellular
adenosine triphosphate (ATP) levels, which can occur due
to many factors such as hypoxia, the activation of glycolysis
and closely related β2-adrenergic activation of the Na+/K+-
ATPase, result in a decrease in cellular energy charge which
can be compensated for by the conversion of 2 molecules of
adenosine diphosphate (ADP) to one molecule each of ATP
and AMP. The generated adenosine monophosphate (AMP) in
turn activates the cellular energy node 5′ AMP kinase (AMPK)
which alters metabolic flux to generate more ATP by favoring
catabolism over anabolism. Thus, the activation of fat and
protein catabolism is intimately linked with the aforementioned
alterations in lipid metabolism and insulin resistance, and is tied
to glycolysis activation and the attempted restoration of cellular
energy charge. Although glycolysis generates pyruvate which
usually enters the tricarboxylic acid cycle (TCA), studies from
critically ill patients show alterations in pyruvate dehydrogenase
activity and defects in fatty acid beta-oxidation, associated
with the development of lipid droplets in immune cells and
multiple different non-adipose tissue beds (177–179). The
biochemical bottleneck downstream of pyruvate and around
long chain fatty acid metabolism coupled with the ability to
utilize lactate to feed the TCA cycle is possibly why septic cardiac
dysfunction is associated with an increased reliance on lactate
as an energy substrate and a reduced use of FFA and ketones
(180, 181).
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Lipid droplets ordinarily harbor contact sites for
mitochondria for the co-ordinate running of cellular metabolism,
but in the presence of intracellular bacterial infection and
presumably pathogen associated molecular pattern (PAMP)
sensing, mitochondrial-lipid droplet contacts decrease, altering
the flux of lipid metabolism while improving innate immunity
through the secretion of antimicrobial lipoproteins (182). In
keeping with their important role in immunity, lipid droplets
also serve as platforms for nucleic acid detection, enhancing
type 1 antiviral interferon responses and are also formed in
response to endoplasmic reticulum stress and other forms of
cellular stress (183). Therefore, these changes in cellular lipid
content could be seen partly as an evolutionary conserved
innate immune response to perceived pathogen threat and also
a defensive sequestration of backed up cytotoxic lipids such
as diacylglycerol. However, they come at a cost of an obligate
deterioration in mitochondrial substrate processing when the
number of contact sites decrease. Defects of mitochondrial
fatty acid delivery and oxidation with subsequent lipid droplet
accumulation that occur in the context of insulin resistance
superficially appear similar to an accelerated from of metabolic
syndrome associated fatty liver disease (MAFLD) and DM.
However, acute phase metabolic and organ dysfunction
abnormalities in critical illnesses appear to share greater overlap
with those responsible for acute fatty liver of pregnancy, such
as inherited defects in long chain 3-hydroxyacyl coenzyme A
dehydrogenase (LCAD) and carnitine palmitoyl-transferase
1, both enzymes under the regulatory control of peroxisome
proliferator-activated receptor (PPAR) pathways. Liver biopsy
samples from acute fatty liver of pregnancy patients and
from those with liver failure due to mitochondrial damaging
therapeutics all converge histologically or biochemically on
lipotoxicity and impairment of mitochondrial function at the
level of beta oxidation, though the clinical context is clearly
liver specific (184). In the case of non-liver critical illnesses such
as sepsis, post-mortem histology reveals hepatic steatosis in
roughly three quarters of patients (185). Furthermore, the same
PPAR-α regulated defects in lipid handling and beta oxidation
have been found in small cohorts of critically ill patients and a
much larger cohort of stable cirrhotics with multi-organ failure
(177–179, 186). This suggests that impaired beta oxidation
occurs in the liver and also in a systemic manner in multiple
organ failure and that the metabolic abnormalities that cause
steatosis and an acute liver failure in AFLP merely signpost how
the same process is likely to occur in other organs in critical
illnesses (185, 187). In support of this abundant lipid droplets
and impairments in fatty acid oxidation have also been found in
the septic heart, acutely injured kidney and the skeletal muscle
of critically ill patients, while reduced expression of PPAR-α has
also been found in patients with poor sepsis outcomes (188–191).
Findings of beta oxidation impairment associating with CKD
stage, and lipid droplet accumulation in diabetic nephropathy
highlight that these acute changes of metabolism in critical
illness might lead to ongoing mitochondrial and chronic organ
dysfunction in the context of residual inflammation and insulin
resistance through lipotoxicity (192, 193). The importance of
these changes and how they are also linked with acute changes

in mitochondrial responses to stress and late immune and organ
dysfunction are discussed further below.

The Importance of the NLRP3/IL-1β/IL-6
Signaling Axis in Acute Illness and
Cardiovascular Disease
Critical illness occurs when detected threat or injury, synergises
with the dynamic host response to it, so that critical illness
necessarily is associated with substantial activation of any of
a number of pattern recognition receptors such as TLRs.
The nucleotide-binding domain leucine-rich repeat and pyrin
domain containing receptor 3 (NLRP3) inflammasome operates
as a threat-detecting intracellular platform that is required for
the formation of IL-1β from its precursor pro-IL-1β, and is
instrumental in its cellular release through gasdermin membrane
pores in response to detected DAMPs, PAMPs and harmful
alterations in the cellular interior milieu, such as alterations in
redox status and mitochondrial dysfunction (194). In keeping
with this it has been suggested that familial Mediterranean
fever, an autoinflammatory condition known to associate with
cardiovascular disease and high IL-1β secretion through pyrin
overactivity, may have emerged through selection pressures for
enhanced resistance to epidemic infections such as Yersinia
pestis (195, 196). Importantly, the induction of NLRP3 assembly
and pro-IL-1β (and pro-IL-18) production is dependent on a
priming signal which in modern times might originate from
persistent low grade systemic inflammation as occurs in obesity
or aging, or indeed following a first-hit acute inflammatory insult
such as surgery/trauma or early infection. Secretion of the pro-
inflammatory cytokine IL-1β (and its IL-1 superfamily member
IL-18) is thus intricately linked to cellular stress and regulated,
necrosis-like cell death (pyroptosis) which may be partly
responsible for myocardial injuries that are seen post-surgically
and in association with sepsis and other critical illnesses (197,
198). Although this implicates this pathway in pyroptosis, other
forms of regulated cell-death (e.g., necroptosis) also implicated
in cardiomyocyte death share a high degrees of cross-talk
with it and may also be up or down-regulated (199). NLRP3
activation in cardiomyocytes has been shown in pre-clinical
models to trigger spontaneous AF, and is upregulated in the atrial
cardiomyocytes of patients with post-operative AF, implying
that increased activation of this signaling pathway acutely and
during convalescence may be an important contributing factor
to paroxysmal AF and its consequences (120, 200).

IL-1β signals via its cytokine receptor IL-1R and induces the
production of IL-6, which leads to C-reactive protein (CRP)
production by the liver. In the aftermath of critical illness,
residual inflammatory activity (measured by high sensitivity
(hs)CRP) is very common and is associated with higher
rates of metabolic syndrome and an elevated risk of death
from cardiovascular causes (8, 73, 170). Other studies suggest
both IL-1β and IL-6 levels remain elevated in over 30%
of ICU survivors at 3-months while CRP is detectable in
at least 60%, with correlation between functional outcomes
and inflammatory state—this is partially in keeping with
pre-clinical studies that suggest IL-1β activity is part of
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a disease tolerance programme that comes at the cost of
fibrosis, cachexia and of course, cardiovascular disease risk
(201, 202). As IL-1R mediates mtDNA release and a nucleic
acid sensing (antiviral) response which should trigger cellular
resilience through tolerance (203, 204), the involvement of
persistent inflammation through IL-1β in chronicity may be a
function of a dysregulated genetic tolerance programme that
leads to a vicious cycle of chronic infection, inflammation
and fibrosis (205). In addition to the primary findings of
CANTOS where IL-1β repression resulted in a reduction in
cardiovascular morbidity and mortality, residual inflammation
after treatment with canakinumab (assessed through IL-6 and IL-
18 tertiles) also associated with incident cardiovascular diseases
(206). Furthermore, genetically determined decreases in IL-
6 signaling reduce the likelihood of cardiovascular events in
patients with IL-1β related cardiovascular risk factors, but not
in those without (207). It therefore seems likely that IL-1β,
IL-6 and possibly CRP activity after critical illness perpetuate
vascular dysfunction and cardiovascular disease just as they
do in the outpatient setting, and this is likely a consequence
of ongoing processes linked to cell stress, inflammatory cell
death and the engagement of a disease tolerance programme.
Furthermore, pro-fibrotic AngII has also been shown to activate
the NLRP3 inflammasome via AT1 receptor ligation, downstream
NOX activation, with attendant vascular remodeling and renal
inflammation (208, 209). Similarly, β1-adrenoceptor activation
can also trigger myocardial NLRP3, contributing to immune
cell ingress and myocardial fibrosis (210). In this regard it is
notable that murine models of sepsis and acute inflammation
show significant acceleration of the atherosclerotic process,
with increased vascular macrophage infiltration seen in the
recovery stage correlating with acute stage upregulation of
inflammatory cytokines such as IL-6, and adhesion molecules in
vasculature (42, 43). This finding in mice is further corroborated
by epidemiological human data showing increased rates of
cardiovascular pathology for many years following sepsis (23).

Chronic Critical Illness Features a
Senescent Adaptive Immune Phenotype
Akin to That in Hypertension and
Atherosclerosis
The recruitment of innate immune cells to the vascular and
renal compartments is a phenomenon that is well-recognized
in atherosclerosis, AKI and CKD (211, 212). However, many
studies in humans and animals have also supported the concept
of T-cell and macrophage involvement in the pathogenesis of
hypertensive vascular dysfunction (213). CD4+ (Th1 & Th17),
CD8+, and γδT-cells have been shown to be important in
driving hypertensive changes while regulatory T lymphocytes
(Treg)and myeloid derived suppressor cells (MDSC) ameliorate
hypertension related vascular dysfunction. Renal infiltrates of
cytotoxic CD8+ T lymphocytes are also associated with vascular
dysfunction and hypertension. Furthermore, it would appear
that the CD8+ T-cells that are found in hypertensives have
a greater degree of immunosenescence than age and sex-
matched controls, and as such they produce greater quantities

of Interferon (IFN)-γ, tumor necrosis factor (TNF)-β, granzyme
B, and perforin (214). Studies of the immune landscape of
symptomatic and asymptomatic atherosclerotic plaques also
show large numbers of T-cells that are primed for granzyme
and perforin secretion (212). These observations are important
for understanding how cardiovascular and renal diseases might
continue to progress in the immediate post-critical illness
period. Immunosenescence is a characteristic of critical illness
survivorship, and the abnormalities in the immune system
with persistent inflammation take more than a year to return
to normal levels (48, 215). T-cell Programmed Death (PD)-
1 receptor positivity is a mark of exhaustion/anergy is both
common in vulnerable atherosclerotic plaques and is a result
of persistent inflammatory and hypoxic stimuli, such as that
occurring during critical illness and infections (212, 216).
Furthermore, findings that immunosenescence alone can drive
tissue aging (217), and that biological age can be accurately
predicted by both cardiovascular biomarker scores and an
associated immune-aging score based on various markers of
immunosenescence, such as T-cell PD-1 receptor positivity, lends
further support to the hypothesis that the immunesenescence
that follows critical illness results in a drive toward both
cardiovascular disease and aging (218, 219). It is also notable
that rates of viral reactivation in critical illness are high,
though it is unclear whether re-activation of cytomegalovirus
(CMV) and Epstein Barr Virus (EBV) exacerbate the T-cell
immune dysfunction or are its epiphenomena (48, 220, 221).
There is evidence that CMV infection is associated with
hypertension and vascular dysfunction, and that viral persistence
is associated with alterations in T-cell distributions and function
similar to those found in persistent critical illness (222–225).
Importantly, suppression of viral reactivation in critical care is
safe and feasible, but so far has not shown significant mortality
benefits, suggesting that latent processes driving functional
immunosuppression are of greater importance than CMVdisease
in driving mortality and morbidity (226).

Critical Illness Produces a Persistent and
Trained Innate Immune Memory via
Immunometabolic Changes Associated
With Atherosclerotic Disease Progression
The traditional model of the innate immune system describes
a system without any retained memory function. This concept
has radically changed following the recognition that epigenetic
reprogramming of myeloid precursors occurs after innate
immune stimulation, resulting in a shift in innate immune
responses to either trained or tolerant states (227). The proposed
mechanisms for this reprogramming are sophisticated and relate
immunometabolic changes that occur in infection with those
that are seen in vascular dysfunction and atherosclerosis. These
immunometabolic changes are intricately tied to the redox state
of the cell (Figure 1).

Themetabolic response to stress and infection involves altered
cellular patterns of glycolysis and oxidative phosphorylation
along with alterations in the NAD+/NADH balance of the cell.
The glycaemic response to sepsis is well-recognized and has
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FIGURE 1 | Immunometabolic determination of immune cell polarization. A complex set of metabolic changes occur under cell stress, involving upregulation of

GLUT1 transporters, upregulation of cholesterol biosynthesis, decrease in mitochondrial oxidative phosphorylation (causing increased succinate formation), and

upregulation of glycolytic enzyme activity. Cellular redox status (reflected in NAD+/NADH+ ratio) is consequently altered. These changes determine future immune cell

behavior through alterations in epigenetic imprinting (EI), but also determine current immune cell cytokine responses via HIF-1α. The involvement of mitochondria

(center in picture) is fundamental to this process; alterations in fusion/fission status under the control of mTOR, PGC1α, and Drp1 control immune cell functional state

and might also directly contribute to organ dysfunction (not shown).

been clearly linked to upregulation of glycolytic pathways in
immune cells with involvement of cellular energy sensors such
as mechanistic target of rapamycin (mTOR) and AMPK (228,
229). Enhanced glycolysis triggers alterations in the TCA cycle
resulting in mitochondrial succinate generation and also driving
nuclear translocation of the glycolytic enzyme pyruvate kinase
M2 (PKM2). Nuclear PKM2 dimerises and forms a complex
with the transcription factor hypoxia inducible factor (HIF)-
1α (which is activated by succinate), resulting in acceleration
of the Warburg effect, greater lactate production, and pro-
inflammatory cytokine generation in macrophages. This HIF-
1α related phenomenon occurs in both the atherosclerotic
and septic settings and may also mediate enhanced neutrophil
mobilization from the bone marrow through lactate (230–
235). These metabolic changes are associated with increased
intracellular concentrations of mevalonate, a product of the
cholesterol biosynthesis pathway. Mevalonate signals in an
autocrine and paracrine fashion via insulin-like growth factor-
1 (IGF-1) which further enhances glycolysis via sensitization of
mTOR and AMPK. Crucially, mevalonate also translocates to the
cell nucleus where it is responsible for epigenetic modification
of the monocyte and macrophage genome such that host

defense molecules and cytokine response (particularly IL-1β)

is more vigorous on subsequent exposure to stressors. Statins

inhibit mevalonate production and in addition to their effect
on circulating cholesterol also stabilize atherosclerotic plaques
through a reduction in monocyte and plaque macrophage
trained immunity and hyperinflammation (234, 236). Whether
their effects on monocyte and macrophage immunometabolism

is an important mechanism in their potential action in
hyperinflammatory ARDS is unclear at this time (237).

The macrophage phenotype of primed glycolysis (as opposed
to mitochondrial dependent oxidative-phosphorylation) coupled
with appropriate histone modifications on the macrophage
genome and a tendency to IL-1β production has been found in
the cells of vulnerable atherosclerotic plaques in several studies—
the so-called M1 phenotype (238). Furthermore, in addition to
LPS/TLR4 and β-d-Glucan/Dectin-1 signaling (sepsis activated
pathways), oxidized LDL, aldosterone and catecholamines have
also been shown to trigger trained immunity (227, 239, 240).
In order for trained immunity to persist, it must be imprinted
in the bone marrow niche. This training process occurs in
haematopoietic progenitor cells causing myeloid precursors to
be released into the circulation primed in this state (241). In
summary, an epigenetic training of monocytes, macrophages and
T-cells (see below) which is associated with atherosclerosis and
vascular dysfunction follows on from the altered redox status
and metabolite profile that itself results from the cellular stress
of critical illness and infection (242).

Trained Immunity Is Intrinsically Linked to
Mitochondrial and Metabolic Changes That
May Also Explain Chronic Organ
Dysfunction
When Ox-phos is interrupted, such as in ischaemia, the
TCA intermediate succinate accumulates (243). In stressed
cardiomyocytes succinate signals via its receptor GPR91, leading
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to mitochondrial fission and dysfunction, and cardiomyocyte
apoptosis (244). This has been shown to be an important
mechanism in myocardial post-ischaemia-reperfusion
dysfunction, but whether this also is true for septic cardiac
dysfunction remains unknown. Mitochondrial fission involving
succinate, Dynamin related protein-1 (Drp1) and the mTOR
regulated transcription factor PPAR-γ co-activator 1 (PGC1α),
is part of a pattern of metabolic change occurring under cell
stress that is required to drive the switch from resting state to the
pro-inflammatory phenotype, thus linking altered mitochondrial
metabolism to cell stress/death and pro-inflammatory IL-1β
secretion (245–248). On the other hand, fused mitochondria
show more efficient oxidative phosphorylation and associate
with the endoplasmic reticulum (notably, the site of lipid droplet
formation) where they sequester calcium. This is associated with
the alternately activated (M2) macrophage phenotype and Th2
responses (249–251).

However, the epigenetic imprinting of T-cells relates to their
anergic/exhausted status too, so that epigenetic reprogramming
of immune cells as previously described is not solely an
innate immune process, nor one which always enhances an
inflammatory immune response (252). Indeed the late phase of
acute illness which is characterized by T-cell anergy and PD-1
upregulation is also accompanied by a switch of leukocytes back
from a glycolytic pro-inflammatory state to an immunotolerant
mode where ox-phos is also inhibited (this is as opposed
to an ordered return to ox-phos with preserved glycolysis)
(253, 254). This may provide a metabolic explanation for the
increased propensity to infections seen in late stage critical
illness—a broad dysfunction of immune cell metabolism means
cells are sluggish in responding to a secondary or residual
stimulus due to a switch at the cellular level. This presumably
costs the host less energy than continual crudescence, but
possibly represents a high risk strategy of immune tolerance
that may also result in reduced pathogen clearance (255). This
is somewhat in keeping with ideas regarding the two strategies
by which organisms handle infection, resistance and tolerance.
Resistance refers to host strategies that ensure survival by
actively reducing pathogen burden, whereas tolerance programs
improve host survival at any given level of pathogen load
through resilience. Although complimentary, these strategies
may dynamically change in dominance depending on the stage
of illness, the switch of strategy being determined by energetic
considerations that have been selected through evolution (256,
257). Studies show that reductions in complex 1 activity of
the electron transport chain in mitochondria, whether through
hormetic processes or ribosomally targeted drugs (258, 259),
results in changes in mitochondrial substrate handling that
increase disease tolerance. In the case of exposure to LPS, ox-phos
and fatty oxidation decrease with subsequent reductions in pro-
inflammatory epigenetic imprinting through histone acetylation
and a concurrent switch from pro-inflammatory M1 to tolerant
M2 macrophages. These metabolic changes are in keeping with
a reduction in mitochondrial oxygen consumption that is under
the control of aforementioned mTOR and PGC-1α (247).

This immunoparesis would tend to decrease the risk
of autoimmunity to neoantigens following severe acute

inflammation—the evidence that autoimmunity can occur
in response to anti-PD-1 therapy in cancer, supports
this response representing a deleterious but programmed
protective mechanism (255, 260). The importance of epigenetic
mechanisms linked to cell metabolism is further demonstrated
by the fact that this bi-directional, NAD+ dependent switch of
ox-phos to glycolysis, and the switch to T-cell anergy, is mediated
by histone modifying sirtuin enzymes at the epigenetic level
(261, 262). It is then tempting to speculate that in those critically
ill patients with the worst outcomes (death or chronicity)
an early pro-inflammatory stage could result in decreases in
cellular NAD+ and a subsequent failure of SIRT3 to prevent
LCAD and glycolytic enzyme hyperacetylation—this would not
only result in impaired fatty acid oxidation and subsequent
cellular lipid accumulation, but also the acetylation of numerous
mitochondrial proteins and glycolytic enzymes with subsequent
immunoparesis and chronic organ dysfunction, as seen in sepsis
and CKD (177, 190, 193, 253, 263).

Critical Illness Produces Bone Marrow
Stress, and May Produce Somatic
Mutations in the Haematopoietic Stem Cell
Niche Favoring Myeloid Skewing, Clonality,
and NLRP3 Inflammasome-Dependent
Cardiovascular Disease
Critical illness presents multiple stresses on the bone marrow.
Immobility, inactivity and sedentarism are associated with
prolonged increases in bone marrow fat content, which leads
to increased leptin signaling and inflammatory monocytic
output (264, 265). Furthermore, there is sustained cytokine,
glucocorticoid and sympathetic nervous system activity
that places additional replicative pressure on this niche with a
resultant myeloid skewing to its output (266, 267). Dysglycaemia,
which commonly accompanies the insulin resistance of severe
illness and continues in convalescence, also leads to increased
myelopoiesis with inflammatory monocytosis and neutrophilia,
at least one mechanism being via S100A8/A9-mediated
activation of the receptor for advanced glycation end-products
(174). Sleep, which normally places a brake on bone marrow
replication rates, is severely disrupted during severe critical
illnesses and remains disrupted for a long time after and
this will further compound bone marrow replicative pressure
in convalescence (268, 269). The combined effect of these
disruptions during critical illness convalescence would be to
result in a sustained increase in myeloid progenitor replication
rates, a myeloid skewed output with an inflammatory monocyte
and neutrophil cohort, and the propagation of atherosclerotic
disease and myocardial injuries.

The burden of somatic mutations in the human body is
greater than previously appreciated (270). Physico-chemical
attack on the genome, for example by ultraviolet radiation
and cigarette smoking, results in DNA damage and consequent
repair mechanisms which are imperfect, thus resulting in
mutation. This also occurs under other circumstances where free-
radical mediated damage is increased, such as under conditions
of severe inflammation as seen in critical care (271, 272).
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Emergency myelopoiesis is a feature of the acute response to
inflammation and is dependent on epigenetic modifying enzymes
such as Tet2 (273). However, inflammation favors not only
myelopoiesis and increased rates of somatic mutation, but also
increases the probability of myeloid clonal survival (274). A
specific form of myeloid clonal survival with a blood variant
fraction of 2% or more [termed clonal haematopoiesis (CH) of
indeterminate potential (CHIP)] is very strongly associated with
driver mutations in genes for epigenetic regulators such as TET2,
DNMT3A, ASXL1, and also in genes that code for signaling
molecules such as JAK2 and TP53 (275). CHIP is also associated
with age, being highly prevalent above the age of 60 years,
coupled with an increased incidence of cardiovascular disease
(276). These clonal changes are of indeterminate potential as they
are preleukaemic, though only a small proportion of those with
CHIP go on to develop myelodysplastic syndromes and acute
myeloid leukaemias. These preleukaemic changes are driven by
TLR2-sensed microbial signals as may be found in critically
ill patients with infections or with gut barrier dysfunction
(277). Studies support a bi-directionality of causation between
inflammation (vascular or otherwise) and CHIP, and as CH
exacerbates insulin resistance in preclinical models (278, 279), the
hypothesis that critical illnesses can drive CHIP must be taken
seriously (280).

Both atherosclerosis and heart failure are mechanistically
linked with clonality, Tet2 and Dnmt3a loss of function,
consequent increased activation of the NLRP3 inflammasome
and IL-1β and IL-6 production in monocytes (281–283). IL-
1β antagonism, which mechanistically should reduce IL-6 and
hsCRP, reduced cardiovascular event rates only in those with
therapy sensitive decreases in hsCRP in the CANTOS trial (44).
Considering that Tet2 is required for IL-6 driven inflammation
repression whereas Dnmt3a represses mast cell inflammatory
responses (284, 285), if treatment responders in CANTOS had
a high incidence of CHIP while the treatment non-responders
didn’t, a mechanistic pathway with supportive data exits to
explain this observation (286). This latter paradigm where
CHIP drives post-acute illness adverse outcomes is supported by
survival data from patients undergoing trans-catheter aortic valve
implantation (287). The finding that CHIP is a cardiovascular
risk factor, increases the propensity to certain types of infection,
and that Tet2 dysfunction leads to sub-optimal emergency
myelopoiesis (273), means investigating whether CHIP has
a role in NLRP3 hyperactivation, peri-operative and ICU-
acquired non-ischaemic myocardial injuries, the inability to
resolve inflammation is a high priority particularly as it may be
important targetable driver of hyperinflammation in both the
acute and survivor phases of critical illnesses (288).

Deleterious Mineralocorticoid Signaling
Activates the Immune System and Occurs
in Critical Illness
Studies in primary hyperaldosteronism show that
mineralocorticoid receptor (MR) agonism without an acute
pathological insult is deleterious to the cardiovascular and renal
systems (289). Renal, cardiac and vascular T-cell infiltration,

IFN-γ production and deleterious remodeling in the context
of hypertension has been shown to be modifiable by action at
T-cell mineralocorticoid receptors (MR), supporting the role of
immune infiltrates in cardiovascular and renal chronic disease
progression (290, 291). Similarly MRs are present in myeloid
cells and are involved in polarization to a pro-inflammatory
phenotype with receptor blockade by antagonists reducing
cardiac hypertrophy, fibrosis, and vascular damage following
pathological insults (292). Fibrotic remodeling in the context
of MR agonism can occur without clinical hypertension,
suggesting that vascular dysfunction and tissue remodeling is
a feature of a specific immune response which often predates
hypertensive change (293). This suggests that a disease process
producing similar immune changes, such as critical illness,
could also begin the cascade of tissue remodeling resulting in
these disease phenotypes without overt signs of hypertension.
It is also noteworthy that adverse tissue remodeling through
MR activation depends on immune cell and adipose released
neutrophil gelatinase-associated lipocalin (NGAL) (294, 295).
NGAL is substantially upregulated during critical illness and has
also been found at elevated levels in the bloodstream of patients
with heart disease (independent of renal function) where it
carries prognostic significance (294, 296–298). In addition to the
genomic MR pathway, there are additional non-genomic MR
pathways that are related to adverse tissue remodeling—namely
the transactivation of epithelial growth factor receptors (EGFR),
the IGF-1 receptor pathway, and the AT1 receptor/NOX pathway
(299). NOX, AT1, and IGF-1 have already been described as
carrying key roles in the proposed pathophysiology above
and are heavily involved in immunometabolic change and
epigenetic training.

The MR also has an important role in the regulation of the
cardiovascular system at the level of the paraventricular nucleus
(PVN) of the hypothalamus. Hypothalamic AT1-receptor
activation and endotoxin-mediated TLR activation, as occurs in
sepsis leads to increased hypothalamic NOX and NFκB activity,
which in turn has been shown to deleteriously affect autonomic
tone and cardiac remodeling (300). It also appears that circulating
pro-inflammatory cytokines have the same effect on the PVN
and this is mediated by perivascular macrophages (301). These
changes in hypothalamic NOX, nuclear factor kappa B (NFκB),
the associated sympathetic overactivity and dysautonomia are
seen in aging, in sedentarism, in hypertensives, after myocardial
infarction and in heart failure, and it is particularly notable
that microglia (central nervous system macrophages), play
a prominent role in this (302–305). Furthermore, continual
centrally mediated sympathetic activation has been found in pre-
hypertensives where it contributes to deleterious cardiovascular
remodeling, and patients with dysautonomia have been shown
to have cardiac hypertrophy which is mediated by MR mediated
supine hypertension despite normal daytime blood pressure and
aldosterone levels (306, 307). Activation of hypothalamic MRs
enhances the AT1-mediated effect on NOX while antagonism
of hypothalamic MRs is associated with improvements in
dysautonomia, reduced hypothalamic NOX activation and
reduced hypertension (308–310). This central mechanism of
dysautonomia, partially driven by oxidative stress is likely an
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important one for the recovering critically ill patient who
often has encountered a degree of autonomic dysfunction
(311). Further evidence that this may be of significance is that
significantly increased free radical mediated apoptotic change has
been found in the microglial fraction of hypothalamuses of septic
shock patients (312).

The acute response to severe illness involves activation
of the sympathetic and renin-angiotensin-aldosterone systems.
Different studies suggest aldosterone levels are either higher
or lower than normal in severe disease (313, 314). However,
pathological MR agonism is not solely an aldosterone related
phenomenon. Cortisol and aldosterone both have the same
affinity for and can signal via the MR. Furthermore, functional
plasma levels of cortisol are 100-fold higher than those of
aldosterone. Intracellular enzyme systems (11-β hydroxysteroid
dehydrogenases I & II) and cellular redox status ensure
aldosterone selectivity for the MR in health (315). During
physiological stress increased circulating cortisol levels induce
these enzymes so that intracellular cortisol levels increase
further, whereas an alteration of the cellular redox status affects
the mechanisms of transcriptional repression that normally
inhibit cortisol-dependent pathways of MR activation (316, 317).
Therefore under stress, peripheral and central MRs can become
activated by glucocorticoids, as suggested by experimental studies
(308, 318). The beneficial effects of MR antagonists in patients
with chronic cardiovascular pathology where plasma aldosterone
levels are normal is suspected to be mediated in this way
(319). Notwithstanding that, the picture during critical illness is
uncertain as dynamic changes in plasma cortisol and aldosterone
during this time are well-recognized though poorly understood,
and furthermore tissue resistance to steroid hormones in sepsis is
strongly suspected to exist (320). Nevertheless, it is clear that the
MR is a receptor with immunomodulatory actions and one which
modifies both redox status (via NOX & AT1) and is involved
in tissue remodeling (via EGFR/IGF-1 pathways). This and the
known adverse cardiorenal outcomes following severe critical
illnesses is the basis for the anticipated Dapa-SSCILL randomized
controlled trial (12).

The Potential Role of the Clinicians’ Fluid
Therapies and Interstitial Sodium
During periods of shock, large volumes of intravenous
resuscitation fluids are used by clinicians to restore the
patient’s intravascular volume. Although some degree of fluid
resuscitation is almost invariably necessary, the optimal level
for any individual patient is not defined. Furthermore, the
use of resuscitative fluid therapy leads to atrial stretch and
natriuretic peptide induced endothelial dysfunction, which may
contribute to further acute organ dysfunction, and persists to
some degree during convalescence (321, 322). TLR4 agonists
such as endotoxin and resuscitation fluid volume have also
been shown to induce (or associate with) the transformation of
mature and progenitor endothelial cells to a fibroblast-like form,
in keeping with the process of endothelial-to-mesenchymal
transition (EMT) (323, 324). This important process which also
involves TGF-β signaling is suspected to be centrally involved in

multiple cardiovascular pathologies including atherosclerosis,
leading weight to the idea that acute severe disease transitions to
chronic (325).

Following resuscitation there is often a prolonged period
where intravenous fluids continue to be delivered for either
maintenance or as part of drug delivery. This is an enormous
sodium burden for the critically ill patient, which is not easily
mobilized (326, 327). Although plasma levels of sodium vary in
critically ill patients, it is unclear whether vascular interstitial
sodium concentrations are in the same range as plasma, or
like hypertensive patients are potentially much higher. This has
not been widely studied in the critically ill population but if
interstitial sodium is and remains elevated as suggested by one
small study in patients with AKI, then this elevation could also
trigger antigen presenting dendritic and effector Th17 cells to
exacerbate deleterious immune recruitment to the vasculature as
in hypertensive patients (213, 328, 329).

Taking all this evidence together suggests that over the
course of critical illness, severe acute inflammation (ROS
generation, altered self-antigen presentation, high circulating
levels of IL-1β, IFN-γ, and other pro-inflammatory cytokines),
Ang II, catecholamines, and potentially the sodium load of fluid
resuscitation synergise and produce an adverse cardiovascular
and renal immune infiltrate. This creates (or accelerates pre-
existing) cardiovascular and renal disease by virtue of an
immunometabolic driven, long-lived epigenetic reprogramming
of the immune system which in turn drives chronic low grade
inflammation beyond the phase of critical illness. This chronic
inflammation continues to drive pathology just as it does in
patients with chronic diseases who have never had a critical
illness but who go on to develop T2DM, CKD and cardiovascular
diseases. The aforementioned mechanisms would imply a dose
response relating to the severity of inflammation and likelihood
of consequent cardiovascular and renal disease—indeed this
is seen. Furthermore, they provide explanations for chronic
illness pathologies in critically ill patients despite the absence of
traditional risk factors, and despite significant periods of time
where blood pressure is not elevated (Figure 2).

PARALLELS IN CRITICAL COVID-19
DISEASE

The COVID-19 pandemic resulted in a global surge of often
lengthy ICU admissions, predominantly for respiratory failure
and ARDS. In common with ARDS, sepsis and other severe
organ dysfunction syndrome patients, many critical-COVID-19
survivors have been left with chronic problems that continue
to impede function at 2-year follow-up (330). Although
critical-COVID-19 survivors frequently describe new problems,
predominatly related to dyspnoea and limited functional
capacity, some of these problems arise from SARS-CoV-2 viral
infection with no, or only mild-moderate acute symptoms and
therefore may not be related to critical illness per se (331).
Nonetheless, studies clearly show that critical COVID-19 disease
is associated with a significantly higher likelihood of a range
of post-infection CVS diseases in addition to cognitive and
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FIGURE 2 | Outline of how acute inflammation leads to chronicity affecting the cardiovascular and renal systems. Areas in green are triggered during the onset of

acute inflammation whereas areas in gold become apparent during survivorship. The white area between acute and chronic phases represents the cellular processes

precipitated (de novo disease) or accelerated (disease already exists) by acute inflammation; these processes continue during survivorship because antigen

presentation and deleterious immune infiltrates have become established. Note that none of the mechanisms in the white area are reliant on traditional risk factors of

hypertension, dyslipidaemia, obesity, and diabetes for triggering the chronic diseases in gold. Nevertheless, the recently elucidated inflammatory and immune

mechanisms underlying vascular dysfunction, hypertension, and atherosclerosis are central to triggering these chronic diseases. What is not specifically highlighted is

the legacy effect of epigenetic reprogramming (trained immunity) due to the effects of altered cellular redox status and accelerated glycolysis on macrophages,

monocytes, and T-cells.

functional impairments when compared to less severe disease,
even in patients who have never experienced CVS disease
before (26, 330). Although some of these functional problems
may relate to the degree of slow-resolving pulmonary damage
that was acutely sustained (332), this does suggest that critical
illness and its associated biology induce maladaptive pathways
of disease resolution in COVID-19 convalescence that go
beyond those that are specific to long-COVID. Such common
pathways might include those highlighted earlier which are
involved in AKI to CKD transition (333, 334). Similarly, though
SARS-CoV-2 infects cells by entry through the ACE receptor
(335), direct pathogen-mediated CVS disease and inflammatory
cell death with continued endotheliopathy (possibly in the
face of a latent, active, viral reservoir) appears a convergent
mode of post-ICU CVS dysfunction that may be especially
pronounced after SARS-CoV-2 infection (336–338). Critical

COVID-19 disease is also an important determinant of subjective
long-term non-recovery, and residual inflammation (CRP) and
coagulopathy are associated with worse subjective functional
and cognitive outcomes too (332, 339). Importantly, the
link between interferon-mediated (antiviral) inflammation,
neurodegeneration and associated cognitive decline is
increasingly appreciated but may also be a consequence of
COVID-19 other inflammatory insults seen in ICU (e.g., trauma)
that share similarity with nucleic acid activated stress pathways
(340–342). These interferon-driven processes appear to be
persistently active due to ongoing immune activation in those
with long-COVID but it is unclear whether a similar persistence
of interferon signaling occurs in convalescence after other
critical illnesses (343). However, as in other critical illnesses,
T-cell exhaustion is more likely found in severe acute COVID-19
disease (344), continues in convalescence, and is associated with
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mitochondrial and cellular metabolic dysfunction (345). It is
therefore likely that further COVID-19 disease, long-COVID
and post-critical COVID-19 recovery research will continue
to highlight new and shared pathways of post-ICU CVS and
other chronicities.

CONCLUSION

The high levels of inflammation and reactive oxygen species
(ROS) seen in severe critical illness generate an immune-
mediated onset of de novo, or acceleration of pre-existing,
cardiovascular disease. The CVS and renal disease that is seen
therefore does not necessarily relate to traditional risk factors
which tend to be normal or depressed acutely (such as blood
pressure, lipid profile, HbA1c) at the onset of critical illness

survival. The presence of continued low grade inflammation
and immune changes that are slow to resolve following
critical illness create an environment where adverse tissue
remodeling continues, endothelial dysfunction is sustained,
metabolic syndrome can take hold, and the risk of CVS
and renal disease is elevated. In order to arrest disease
progression an anti-inflammatory therapy is mandated which
is sensitive to the fragile and immunosuppressed state of the
critically ill.
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