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Electrocardiogram (ECG), as a product that can most directly reflect the electrical

activity of the heart, has become the most common clinical technique used for the

analysis of cardiac abnormalities. However, it is a heavy and tedious burden for doctors

to analyze a large amount of ECG data from the long-term monitoring system. The

realization of automatic ECG analysis is of great significance. This work proposes a

beat-level interpretation method based on the automatic annotation algorithm and object

detector, which abandons the previousmode of separate R peak detection and heartbeat

classification. The ground truth of the QRS complex is automatically annotated and also

regarded as the object the model can learn like category information. The object detector

unifies the localization and classification tasks, achieving an end-to-end optimization

as well as decoupling the high dependence on the R peak. Compared with most

advanced methods, this work shows superior performance. For the interpretation of 12

heartbeat types in the MIT-BIH dataset, the average accuracy is 99.60%, the average

sensitivity is 97.56%, and the average specificity is 99.78%. This method can be used

as a clinical auxiliary tool to help doctors diagnose arrhythmia after receiving large-scale

database training.

Keywords: object detection, ECG, beat-level classification, deep learning, automatic annotation

INTRODUCTION

The WHO report regards cardiovascular disease as one of the leading causes of death worldwide,
and it will continue to exist in the near future. The burden of cardiovascular disease is so heavy
that research on heart health has to be taken seriously. Electrocardiogram (ECG), as a product that
can most directly reflect the electrical activity of the heart, has become the most common clinical
technique used for the analysis of cardiac abnormalities. However, it is a heavy and tedious burden
for doctors to analyze a large amount of ECG data from the long-term monitoring system. It is
necessary to realize automatic ECG analysis.

In the past few decades, the open source ECG databases have promoted the development of
automatic ECG analysis. Most methods are based on one-dimensional ECG signals, as shown
in Figure 1A, which mainly involve four steps: signal preprocessing, R-peak detection, feature
extraction, and classifier construction.
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R-Peak Detection
Over the years, a large number of studies have made efforts
in QRS complex detection. Pan and Tompkins (1) realized the
automatic detection of the R-peak through the first derivative,
non-linear transformation and amplitude/noise threshold. Using
time-domain features, Yeh and Wang (2) proposed a differential
operation method (DOM) algorithm. Li et al. (3) introduced
wavelet transform to the automatic detection of R-peak for the
first time. Martinez et al. (4) remove the singularity analysis,
and consider any possible QRS complex wave shape, search for
positive and negative zero crossing points. Manikandan and
Soman (5) introduced a new method using Shannon energy
estimation and Hilbert transform. These methods are time-
consuming, which require complex mathematical calculations, as
well as the accuracy is not always ideal.

Heartbeat Classification
According to different feature extraction methods, heartbeat
classification can be divided into artificial methods and automatic
methods. Common artificial features include morphological
features (6–8) such as RR interval, and ECG transform
coefficients (9–13) such as wavelet transform. These features are
sent to a traditional classifier for interpretation. For example,
Hu (14) extracted features based on multiple discriminant and
principal component analysis, and used support vector machine
(SVM) for classification. Song et al. used linear discriminant
analysis combined with SVM to analyze six types of arrhythmias
(15). Melgani and Bazi proposed an SVM classifier based on
particle swarm optimization (16). Martis et al. used a four-layer
feedforward neural network and a least squares support vector
machine (LS-SVM) to divide heart beats into five categories
(17). Ganeshkumar and Kumaraswamy introduced a random
forest tree (RFT) as a classifier (18). Park et al. proposed a
K-nearest neighbor (K-NN) classifier (19). Jun et al. proposed
a parallel K-NN classifier for high-speed arrhythmia detection
(20). The accuracy of the above methods highly depends on
the effectiveness of feature extraction, which requires strong
scientific theories and doctors’ personal experience as support,
as well as the computational complexity is high. With the
development and application of deep learning technology, it has
also become a research hotspot in the field of ECG classification.
In some previous studies, the simple 1D-CNN was used to
classify a time series of ECG signals (21–23) or one-dimensional
heartbeats (24). Acharya et al. proposed a nine-layer deep CNN
(25), which can identify five different heartbeats. Chauhan and
Vig used the deep long short-term memory (LSTMs) network
to classify abnormal and normal signals (26). Eltrass et al. (27)
proposed the CQ-NSGT algorithm, a newmethod for converting
one-dimensional signals into time-frequency maps, and used
AlexNet for time-frequency maps classification. Warrick and
Homosi proposed a new method to automatically classify
arrhythmias in ECG, using a combination of CNN and LSTM
(28). Shu et al. also proposed a system with combination of
CNN and LSTM (29) to identify five heart beats. Wong et al.
(30) proposed a FPGA implementation of ECG classifier based
on bCNN, the core of which is to reduce the computational
complexity of CNN. Yao et al. (31) proposed an integrated CNN

and GRU classifier to classify a time series of ECG signals. Sarin
et al. (32) compared the classification accuracy ofMLP, CNN, and
LSTM on a subset of the MIT-BIH dataset.

Most previous works just classify a signal over a long
period of time to get simple information about the existence of
abnormality. There are many types of heartbeats in a section of
ECG signal such as bigeminy and trigeminy, so this work focuses
on the interpretation of beat-level to get detailed information
about each beat for further analysis. Beat-level classification
in the past required the R-peak detection before classification
especially the inference stage also cost the same as the training
mode. More importantly, the classification accuracy was highly
dependent on R-peak detection quality and the independence
of R-peak detection made end-to-end optimization impossible.
In this work, the position of QRS complex is also taken as the
object to be learned by the model-like category information,
which unifies the positioning and classification tasks based on
the object detector, achieving an end-to-end overall optimization
without independent time-consuming R-peak detection process.
Besides, we expect the model to classify by learning features
from the morphology of heartbeats, much like doctor’s eyes,
as shown in Figure 1B, this work analyzes the original two-
dimensional images of heartbeats, not performing a series of
complex mathematical calculations for one-dimensional signals
or time-frequency diagram.

PROPOSED METHOD

Figure 1B shows the overall framework of the ECG analysis
method in this work. There are two key designs: Automatic
heartbeats annotation and Object detector.

Signal Preprocessing
The ECG signal has some interference such as baseline drift and
high-frequency noise. In order to obtain a better detection effect
in the follow-up, it is necessary to preprocess the signal in the
early stage.

Power Frequency Interference
According to the standards published by the American College
of Cardiology (ACC), for the normal ECG signal, the amplitude
range is between 0.05 and 5mV, the frequency range is
within the range of 0.05–100Hz, and the spectral energy is
generally concentrated between 0.25 and 35Hz. This work uses a
Butterworth filter with a cutoff frequency of 45Hz and order of 10
to remove power frequency interference. In order to evaluate the
effect of noise reduction, we add a 50Hz noise signal to simulate
power frequency interference. Figure 2 shows the comparison of
the effect before and after the noise signal processing.

Baseline Drift
Baseline drift is generally caused by human breathing
and electrode movement, which belongs to low-frequency
interference, usually below 0.5Hz. The ST-segment frequency
band is in the range of 0.7–2.0Hz, which partially overlaps with
the baseline drift frequency band, 0.05–1.5Hz. It is necessary
to avoid obvious deformation of low frequency parts such
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FIGURE 1 | The overview of the framework for analysis of ECG abnormality. (A) The framework of traditional method for ECG analysis. (B) The framework of

proposed method for ECG analysis.

FIGURE 2 | Power frequency interference reduction. (Left) Time domain. (Right) Frequency domain.
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FIGURE 3 | Baseline drift removing. (Left) Time domain. (Right) Frequency domain.

FIGURE 4 | Automatic heartbeats annotation.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 March 2022 | Volume 9 | Article 857019

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kang et al. Beat-Level Interpretation of Intra-Patient Paradigm Based on Object Detection

FIGURE 5 | The framework of object detector.

as ST segment, or which will lead to detection and analysis
distortion. Therefore, the median filter, which has a good effect
on suppressing larger drift as well as protecting smaller P-wave
and T-wave, is adopted.

The effect of drift removal mainly depends on the filter
window width. If the width is too small, the fitted baseline
has more high-frequency components, while too large width
causes too much computation and affects speed of the algorithm.
Considering both speed and effect, as well as for convenience of
value, the width is set to half of the sampling rate.

Besides, in order to avoid edge effects, the signal is expanded
before filtering. Specifically, the endpoint value instead of 0 is
added to both ends of the signal to avoid larger errors.

Figure 3 shows the effects before and after the processing of
a signal with severe baseline drift in the MIT-BIH database (see
section MIT-BIH Database). It can be seen that the drift is well-
suppressed, and only the very low-frequency part is attenuated
while the high-frequency part is barely affected.

Automatic Heartbeats Annotation
After the signal preprocessing described in section Signal
Preprocessing, the heartbeat images are saved in.jpg format. In
order to take the position information as the object that can be
learned by the subsequent model, it is necessary to annotate the
location of the heartbeats.

The transient degree of signal is often described by singularity.
Wavelet transform is an effective method to analyze signal
singularity, which has promising features for characterizing
the local regularity of signals by decomposing the signal into
elementary building blocks that are well-localized both in
time and frequency (33). Each pair of positive and negative
modulus maximum of the wavelet coefficient corresponds to
a signal singularity, and the zero-crossing point between the
pair is the singularity position. The relationship between wavelet
decomposition and singularity varies in different scales. The
small scale reflects the high-frequency component of the signal,
while the large scale corresponds to the opposite.

Different bands could be located by wavelet decomposition at
different scales due to an ECG signal varies in frequency. Q-wave
and S-wave are typical high-frequency waves with low amplitude,
whose energy is concentrated in small scale.

We select the wavelet coefficients at j = 1 scale (34), and the
officially marked R peaks are used as the reference to locate Q-
wave and S-wave. The R peak corresponds to the zero-crossing
point of the modulus maximum–minimum pair, Q-wave and S-
wave are located at the modulus minimum and maximum within
a certain range before and after the R peak, respectively. We need
to give certain delay compensation during the actual operation
because each waveform is not completely symmetric. Figure 4
shows the detailed process.

We use a rectangular box to annotate the position of QRS
complex, with Q-wave position as the left boundary, S-wave
position as the right boundary, R-peak position as the upper
boundary, and the smaller ordinate in Q-wave and S-wave as the
lower boundary. The upper left corner (xmin, ymin) and lower
right corner (xmax, ymax) are saved as location information in
.xml file format.

Object Detector
WeuseCascade RCNN (35). as a basicmodel, and Figure 5 shows
the overall framework of the model.

Region Proposal Network
Region proposal network takes an image as input and outputs
in a set of rectangular boxes called proposals. Each proposal has
a score, which measures the confidence belongs to foreground.
As shown in Figure 6, in order to generate a region proposal,
we slide a small window of n∗n (n = 3 in this work) on the
convolutional feature map. Each sliding window is mapped to
a lower-dimensional feature that is fed into two fully connected
layer branches: a regression branch (reg) and a classification
branch (cls). Since it operates in a sliding window mode, the fully
connected layers are shared in all spatial locations.

At each sliding window position, we predict multiple region
proposals at the same time, where the maximum number of
proposals at each position is denoted as k (k = 3). Therefore,
the reg branch has 4k outputs to encode the coordinates of
the k rectangular boxes, and the cls branch outputs 2k scores
to estimate the foreground or background probability of each
proposal. The k proposals are parameterized with respect to k
reference boxes called anchors. The anchors center on the sliding
window and are associated with scale and aspect ratio. In order
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FIGURE 6 | Region proposal network (RPN).

to reduce redundancy, Non-maximum suppression (NMS) is
used for proposals according to their scores. Then the proposals
with top scores are selected for follow-up detection. The NMS is
explained in detail later.

Region of Interest Pooling
Region of interest pooling uses maximum pooling to transform
the features in RoI into a small feature map of fixed size H∗W
(7∗7), where H and W are hyperparameters independent of any
specificRoI. The inputs ofRoI pooling are coordinate information
of the proposals from RPN or that of the predicted boxes from

previous stage, and the convolution feature map of a certain layer
or several layers.

As shown in Figure 7, the RoI pooling layer maps the
coordinates to the corresponding position in the feature map.
Each RoI is a rectangular area in the convolutional feature
map, which is defined by a quadruple (x, y, h, w), respectively,
corresponding to its center point coordinates (x, y), height h,
and width w. RoI pooling divides the RoI of h∗w into H∗W
grids consisted of sub-windows of approximate size h/H∗w/W,
and performs maximum pooling operation on each sub-window.
Pooling is applied to each feature map channel independently,
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FIGURE 7 | Region of interest (RoI) pooling.

TABLE 1 | Categories and numbers of beats in the MIT-BIH database.

AAMI classes MIT-BIH

Annotations

Description Numbers

Normal(N) N Normal beat 75,052

L Left bundle branch

block beat

8,075

R Right bundle branch

block beat

7,259

Supraventricular

ectopic beat

(SVEB)

E Atrial escape beat 16

J Nodal (junctional)

escape beat

229

A Atrial premature beat 2,546

A Aberrated atrial

premature beat

150

J Nodal (junctional)

premature beat

83

S Supraventricular

premature or ectopic

beat (atrial or nodal)

2

Ventricular ectopic

beat (VEB)

V Premature ventricular

contraction

7,130

E Ventricular escape beat 106

Fusion (F) F A fusion of ventricular

and normal beat

803

Unknown beat (Q) / Paced beat 7,028

F A fusion of paced and

normal beat

982

Q Unclassifiable beat 33

just like standard maximum pooling, thus we get fixed size
feature maps from RoIs of varying sizes.

Head
The Head layer is responsible for further processing the fixed
size feature maps from RoI pooling to output the final detection
results. Each feature map will go through a series of fully
connected layers, and finally branch into two output layers,
classification and regression. For each RoI, the classification layer

TABLE 2 | Categories and numbers of beats.

Classes Training set Testing set

N 4,013 987

L 3,992 1,008

R 3,975 1,025

e 3,994 1,006

j 3,971 1,029

A 4,053 947

a 4,031 969

J 3,985 1,015

S 3,957 1,043

V 4,002 998

E 4,014 986

F 4,013 987

Total 48,000 12,000

TABLE 3 | The results of each category on testing set.

Classes Acc (%) Sen (%) Spe (%)

N 99.19 93.52 99.70

L 99.94 99.60 99.97

R 99.47 96.20 99.77

e 99.92 99.90 99.92

j 99.47 96.99 99.70

A 98.87 93.14 99.36

a 99.87 99.07 99.94

J 99.68 98.23 99.81

S 99.81 99.81 99.81

V 99.49 96.59 99.75

E 99.98 99.90 99.98

F 99.5 97.77 99.66

Average 99.60 97.56 99.78

outputs the softmax probabilities of C foreground classes and
one background class, while the regression layer outputs four real
numbers encoding predicted boxes position.
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TABLE 4 | The performance of our proposed method compared with previous

work.

Work Classes_n Acc (%) Sen (%) Spe (%)

Zhou et al. (36) 4 98.51 94.41 98.45

Hou et al. (37) 5 99.45 98.63 99.66

Wan et al. (38) 5 99.1 – –

Ullah et al. (39) 8 99.11 97.91 99.61

Wang (40) 2 97.4 97.9 97.1

Chen et al. (41) 6 99.32 97.75 99.51

Niu et al. (42) 3 96.4 – –

Houssein et al. (43) 4 98.26 97.43 –

Naz et al. (44) 4 97.6 – –

This work 12 99.60 97.56 99.78

Loss Function
In order to calculate the loss of each predicted box, we need to
classify them as foreground or background according to their
Intersection over Union (IoU) with ground truths. IoU will be
described in detail later.

Given an IoU threshold IoU_thres, the predicted boxes which
have maximum IoU with ground truths and the predicted boxes
whose IoU with any ground truth greater than IoU_thres are
regarded as foregrounds, while the predicted boxes whose IoU
with all ground truths less than IoU_thres are backgrounds. For
Stage1, Stage2, and Stage3 in Figure 5, the value of IoU_thres
is increasing.

A bounding box is encoded as (45),

tx = (x− xa)/wa, ty = (y− ya)/ha,
tw = log(w/wa), th = log(h/ha),
t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha,

t∗w = log(w∗/wa), t∗
h
= log(h∗/ha)

(1)

where x, y, w, h are the center point’s coordinates, width, and
height of a rectangular box, x, xa, x

∗, respectively, correspond to
the predicted box, anchor and ground truth, y, w, h are similar.

The location information we annotate are upper left corner
(xmin, ymin) and lower right corner (xmax, ymax) of a
rectangular box. So before calculating the regression loss, we
convert the coordinates to a quadruple (x, y, h w), where

x=(xmin+xmax)/2, y=(ymin+ymax)/2, w=xmax-
xmin, h=ymax-ymin,

Then the four values are encoded by Equation (1), which are
used as ground truth labels.

The regression loss of a predicted box is defined as

Lreg(t, t
∗) =

∑

i∈{x,y,w,h}

smoothL1(ti − t∗i ) (2)

where

smoothL1(x) =

{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

(3)

The classification loss is calculated by cross entropy, which is
defined as

Lcls(p, c) = − log pc (4)

where p is the softmax probability vector from the classification
branch, c is the true category label, taking 0, 1, 2...C. C is
the number of foreground classes, and 0 corresponds to the
background class.

The loss function of each stage is defined as (35).

Ls =
∑

n

Lcls(ps,n, p
∗
s,n)+ λ

∑

n

p∗s,nLreg(ts,n, t
∗
s,n) (5)

where. balances the weight of classification loss and regression
loss, only the boxes belong to foreground class p∗s,n = 1 need to
be calculated for regression losses.

The total loss function is the sum of the three stages

L = L1 + L2 + L3 (6)

Non-Maximum Suppression
Non-maximum suppression, which is usually used in the RPN
and inference stage, aims to extract predicted boxes with
high confidence and suppresses the predicted boxes with low
confidence, thus could remove redundant boxes detecting the
same object.

Before describing NMS, it is necessary to explain the IoU,
which measures the overlap between two boxes. As shown in
Figure 8, the IoU of box A and box B is

IoU =
A

⋂

B

A
⋃

B
(7)

Obviously, the higher the IoU value, the higher the degree of
overlap between two boxes.

For an image, the final classification branch and regression
branch will output confidence scores and coordinate information
of a series of boxes. The specific process of the NMS is as follows.
B represents the box set. First, selecting the predicted box M
with the maximum confidence score and adding it to the set D
representing final results. Second, removing the boxM and other
category boxes whose IoU with M exceed preset threshold from
B. Next, repeating the two steps until B is empty. In this work,
only the boxes with the highest confidence score can be regarded
as the final predicted results in NMS because there is no overlap
between different heartbeat objects.

EXPERIMENTS AND RESULTS

MIT-BIH Database
MIT-BIH arrhythmia database, one of the four internationally
recognized standard ECG databases, is used for experimental
evaluation in this work. The database contains a total of 48
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TABLE 5 | Comparison of detection performance between Faster RCNN and Cascade RCNN.

Faster RCNN Cascade RCNN

Class gts dets recall AP dets recall AP

N 943 948 91.7 90.5 930 92.5 91.4

SVEB 934 931 92.9 91.6 937 95.0 94.1

VEB 882 950 97.7 97.0 895 96.9 96.3

F 238 217 83.6 83.1 235 88.7 87.8

mAP@0.5 90.5 92.4

gts, the number of ground truths; dets, the number of objects the model detects; recall, the ratio of true positive objects detected to all positive objects; AP, average precision of single

category, calculated by PR curve; mAP@0.5, mean Average Precision (IoU = 0.5).

FIGURE 8 | Intersection over union (IoU).

records from 47 different patients, and the ECG signals are
sampled at 360Hz with 11-bit resolution.

Each record corresponds to about 30min of ECG data,
including signals from two leads. For all records, the first lead
is the modified lead II (MLII) and the second lead is V1, V2, V4,
or V5. Twenty-three records are randomly selected from 4,000
continuous 24-h dynamic ECG signals of patients at Beth Israel
Hospital (BIH), while the remaining data are selected from a few
rare ECG data samples and have important clinical significance.
The notes are authoritatively certified by multiple cardiologists.

The Association for the Advancement of Medical
Instrumentation (AAMI) (46) divides the heartbeats in the
MIT-BIH database into five categories. Table 1 shows the specific
categories and numbers.

Given MLII is the only lead representing all records in this
database, as well as the most commonly used lead for experts to
analyze, this work only extracts the ECG signals ofMLII lead for
experiments. According to AAMI’s recommendation, the rhythm
heartbeat records, i.e., 102, 104, 107, and 217, are not used, and
the Q category which does not actually exist is also ignored.

In order to balance the number of different heartbeat
categories, we only sample a part of Normal heartbeats as

samples, and perform data augmentation by translating and
resizing for various heartbeat images. A total of 60,000 heartbeat
images are used in the final experiment, which are divided into
training sets and testing sets in a ratio of 8:2. Table 2 shows the
numbers for each category in detail.

Evaluation Metrics
Consistent with previous research, classification accuracy(Acc),
sensitivity(Sen), and specificity(Spe) are used as evaluation
metrics in this work.

Acc =
TP + TN

TP + FN + FP + TN
(8)

Sen =
TP

TP + FN
(9)

Spe =
TN

TN + FP
(10)

The above metrics are applicable to each heartbeat category,
where TP is the number of heartbeats correctly classified as
positive samples, TN is the number of heartbeats correctly
classified as negative samples, FP is the number of heartbeats
incorrectly classified as positive samples, and FN is the number
of heartbeats incorrectly classified as negative samples.

Implementation Details
We use the Cascade RCNN equipped with Feature Pyramid
Network (FPN) (47) as our default framework, the ImageNet pre-
trained ResNet-50 (48) is adopted as the backbone, and the RoI
Align (49) is used to replace the RoI pooling. Our implementation
and hyperparameters are based on MMDetection (50). Anchors
with 1 scale and 3 aspect ratios are used. NMS with a threshold
of 0.7 is used to generate 2,000 and 1,000 proposals for training
and inference. In each training step, 512 proposals are sampled
from 2,000 proposals for training, and the ratio of foreground to
background proposals is 1:3.

The model is trained for 24 epochs on 4 GPUs with 4 images
per GPU. With SGD optimizer, the learning rate is initialized to
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FIGURE 9 | Detection results of the proposed model on various heartbeat images. (A) RBBB beat. (B) Normal beat. (C) LBBB beat. (D) Nodal escape beat. (E) Nodal

premature beat. (F) Fusion of ventricular and normal beat. (G) Atrial escape beat. (H) Ventricular escape beat. (I) Atrial premature beat. (J) Aberrated atrial premature

beat. (K) Premature ventricular contraction. (L) Premature or ectopic supraventricular beat.
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0.02 and divided by 10 at the 16th and 22nd epoch. The weight
decay and momentum are set to 0.0001 and 0.9, respectively.

The optimal model with the highest mAP@0.5 is obtained by
using 5-fold cross-validation during training. Table 3 shows its
prediction accuracy of each category on the testing set.

It is worth noting that the method in this work is not limited
to the Cascade RCNN object detector, but applicable to other
two-stage detectors or one-stage detectors. We could choose the
appropriate detector as the basic model according to your needs.

DISCUSSION

Traditional ECG analysis methods require independent QRS
complex detection that causes that the effectiveness of feature
extraction and classification are highly dependent on the earlier
detection accuracy. Error detection and missing detection can
have a negative impact on feature extraction and eventually cause
wrong classification results.

On the one hand, the morphology of ECG varies from person
to person, even the same individual at different times, and the
signals are easily disturbed by noises, which resulting in the
difficulty of QRS complex detection. On the other hand, the QRS
complex detection process is separate, so it is hard to achieve an
end-to-end overall optimization through model training. It takes
much time and effort, which is not beneficial for real-time testing.

This work avoids independent QRS complexes detection,
which decouples the high dependence of feature extraction and
heartbeats classification on detection accuracy.

Overall Classification Performance
In order to take the position information as an object learned
by the model, this work converts one-dimensional signals
into two-dimensional images whose QRS complex position is
annotated by automatic annotation algorithm. The positioning
and classification tasks are unified in this work.

This work focuses on the interpretation of beat-level.
Especially for an ECG signal containing multiple types of
heartbeats such as bigeminy and trigeminy, we can get a detailed
category of each beat for further analysis, rather than only the
existence of abnormality by just classifying a signal over a long
period of time.

In general, this work shows good performance in the beat-
level classification of intra-patient paradigm. Table 4 shows a
comparison with previous work. It can be seen that our method
achieves the best results in both average classification accuracy
and specificity. The sensitivity is slightly lower than some work
which has fewer categories of interpretation. Obviously, our
method is more advantageous in the number of categories.

The Importance of Object Detector
The human visual system is fast and accurate. At a glance, you
can immediately know what the objects in the image are, where
they are, and how they interact. We apply computer vision
knowledge to ECG abnormality analysis, and use the object
detection framework to directly predict the bounding boxes and
class probabilities from the heartbeat images. During training
and testing, the model can see the entire heartbeat image, so it

implicitly encodes contextual information about the class and
appearance to detect foreground objects more accurately, as well
as directly optimizes the detection performance end-to-end.

This work constructs an object detection framework for
heartbeat images based on Cascade RCNN, which consists of a
series of cascading detection networks. Each detection network
is trained on positive and negative samples based on different
IoU thresholds. The output of the former network serves as the
input to the latter, which is a stage-by-stage training method.
The detector of each stage focuses on detecting the proposals
whose IoU are in a certain range. The detection effect gets better
and better since the output IoU is generally larger than the
input IoU. We take a part of the heartbeat images as samples;
Table 5 shows the detection accuracy of Faster RCNN (51) and
Cascade RCNN on the four categories recommended by AAMI.
Obviously, Cascade RCNN is more effective, whose mAP@0.5
value is about 2 percent higher than Faster RCNN.

The Effectiveness of Automatic Location
Annotation
As we all known that the annotations play an important role in
an object detection task, but only about 200–300 images can be
processed per hour if we manually annotate images one by one
like the similar work (51, 52). Obviously, the high human cost
will discourage users and hardly expand to larger datasets, which
deeply reduce the value of this kind of method.

A core strategy in this work is to automatically annotate
the QRS complex position of the heartbeat images, which
avoids the extremely time-consuming manual labeling process.
Thousands of images can be annotated in just a few minutes, so
instead of fixed lengths like one beat length (51) or 10 s (52),
we can easily get the signal sequences of different lengths, as
shown in Figure 4, which is beneficial for testing samples of
unknown length.

Except for the improved classification accuracy as described
in section Overall Classification Performance, the annotation is
also essential for reducing the complexity during the inference
stage. In the testing mode of traditional methods, as shown in
Figure 1A, the preprocessed signals still need to perform the
same process including QRS detection and feature extraction
as in the training mode. The training stage does not facilitate
the inference stage. The proposed method spends some labeling
costs during the training stage, while in the testing mode, as
shown in Figure 1B, the preprocessed signals need only be fed
into the pretrained model as images. Figure 9 visualizes the
prediction results for different categories of heartbeats; the model
could output both the position of the QRS complex in the
form of a rectangular box and the heartbeat category with a
confidence score.

CONCLUSION AND FUTURE
PERSPECTIVE

In this work, we propose a beat-level interpretationmethod based
on object detection. We use a convolutional neural network as a
feature extractor for two-dimensional heartbeat images, without
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complex manual design to extract features. Most importantly,
this work abandons the previous mode of separate QRS complex
detection and heartbeats classification, the ground truth of QRS
complex is marked by automatic annotation algorithm, which
is also regarded as the object, the model can learn like category
information. The classification and regression branches of the
object detector unify the localization and classification tasks,
achieving an end-to-end optimization as well as decoupling
the high dependence on the R-peak detection. We evaluate the
performance on the MIT-BIH database, our method is superior
to most advanced research even if the number of categories is
as many as 12. The average accuracy is 99.60%, the average
sensitivity is 97.56%, and the average specificity is 99.78%.
In addition, since the independent and time-consuming QRS
complex detection process is abandoned during the inference
stage, our method is expected to be adopted in real-time
monitoring systems to bring convenience to patients with cardiac
abnormalities in the future. Of course, the MIT-BIH database
contains too few patients to support the classification of inter-
patient paradigm (53); the method in this work can be extended
to the inter-patient paradigm when the beat-level annotations of
more patients are obtained in the future.
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