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Objective: Effective interventions that might limit myocardial ischemia-reperfusion (I/R)

injury are still lacking. Coenzyme Q10 (CoQ10) may exert cardioprotective actions that

reduce myocardial I/R injury. We conducted this meta-analysis to assess the potential

cardioprotective effect of CoQ10 in animal models of myocardial I/R injury.

Methods: We searched PubMed and Embase databases from inception to February

2022 to identify animal studies that compared the effect of CoQ10 with vehicle treatment

or no treatment on myocardial infarct size in models of myocardial I/R injury. Means

and standard deviations of the infarct size measurements were pooled as the weighted

mean difference with 95% confidence interval (CI) using the random-effects model.

Subgroup analyses were also conducted according to animals’ species, models’ type,

and reperfusion time.

Results: Six animal studies (4 in vivo and 2 ex vivo) with 116 animals were included.

Pooled analysis suggested that CoQ10 significantly reduced myocardial infarct size by

−11.36% (95% CI: −16.82, −5.90, p < 0.0001, I2 = 94%) compared with the control

group. The significance of the pooled effect estimate was maintained in rats, Hartley

guinea pigs, and Yorkshire pigs. However, it became insignificant in the subgroup of

rabbits −5.29% (95% CI: −27.83, 17.26; I2 = 87%). Furthermore, CoQ10 significantly

reduced the myocardial infarct size regardless of model type (either in vivo or ex vivo) and

reperfusion time (either ≤4 h or >4 h).

Conclusion: Coenzyme Q10 significantly decreased myocardial infarct size by 11.36%

compared with the control group in animal models of myocardial I/R injury. This beneficial

action was retained regardless of model type and reperfusion time.
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INTRODUCTION

Ischemic heart disease (IHD) is still the leading cause of death
worldwide (1). A total of 197 million cases and 9.14 million
deaths of IHD have been recorded globally in 2019 (1). Acute
myocardial infarction (AMI) is the most serious form of IHD
that is caused by decreased or complete cessation of the blood
supply to a part of the cardiac muscle leading to ischemia
and infarction of the affected portion. The American Heart
Association (AHA) estimates that one American will experience
an event of AMI nearly every 40 s and about 14% of AMI
cases will result in death (2). Despite the progress in myocardial
reperfusion methods over the past decade (e.g., pharmacological
thrombolysis and percutaneous coronary intervention [PCI]),
the mortality andmorbidity associated with AMI and its sequelae
(e.g., heart failure [HF]) are still significant (3, 4). One important
flaw of reperfusion strategies is the development of myocardial
ischemia-reperfusion (I/R) injury, which eventually constitutes
up to 50% of the infarct size (3, 5). The exact pathophysiology
of I/R injury is not completely understood (6). However,
possible underlying mechanisms include mitochondrial damage,
oxidative stress, inflammation, and excess calcium (7–9). Infarct
size is a crucial prognostic factor in patients with AMI (10).
Therefore, there is a large need for effective cardioprotective
approaches that aim for infarct size limitation.

Coenzyme Q10 (CoQ10), also known as ubiquinone, is a
lipophilic benzoquinone that presents in the cell membranes all
over the body, particularly in the mitochondria (11). It plays a
key role in ATP production through the electron transport chain
and oxidative phosphorylation (12). It also exhibits antioxidant
and membrane-stabilizing functions inside and outside the
mitochondria (13, 14). Since the heart is a very active organ that
requires much energy, it normally contains high levels of CoQ10

(15). Low levels of myocardial CoQ10 have been observed in
many cardiac diseases such as IHD, cardiomyopathy, and chronic
HF (16–19). In multiple reports, CoQ10 reduced creatine kinase
(CK) leakage during myocardial I/R injury (20–22). Therefore,
CoQ10 may represent a promising cardioprotective agent in case
of cardiac I/R injury. We conducted this systematic review and
meta-analysis to assess the potential cardioprotective effect of
CoQ10 and its related molecular mechanisms in myocardial I/R
injury in animal studies.

METHODS

We followed the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) during this study preparation
(Supplementary Table 1). The protocol of this meta-analysis was
not prospectively registered.

Literature Search Strategy
We systematically searched both PubMed and Embase databases
from inception to February 2022 using a combination of related
keywords and MeSH terms as follows: (Coenzyme Q10 OR
CoQ10 OR Ubiquinone OR “Ubiquinone”[Mesh]) AND (infarct
OR infarction OR myocardial infarction OR myocardial injury
OR myocardial necrosis OR myocardial death OR “Myocardial

Infarction”[Mesh]) AND (size OR area OR region OR part
OR portion OR zone). We did not use any restriction filters
throughout the search. We also manually searched related review
articles for potential missing studies (23).

Inclusion and Exclusion Criteria
Experimental studies were included if they met the following
predefined criteria: (1) being an animal study on experimental
models of myocardial I/R injury (either in vivo or ex vivo), (2)
compared CoQ10 (either ubiquinol or ubiquinone form) with
vehicle treatment or no treatment, and (3) data on myocardial
infarct size, defined as the percentage of infarct zone over the
area at risk or the total ventricular myocardium, were reported
in both groups.

Exclusion criteria were as follows: (1) in vitro studies,
(2) studies that included animals with cardiovascular (CV)
comorbidities (e.g., obesity and diabetes mellitus), (3) studies
with non-English or inaccessible text, (4) retracted studies that
contained false or fabricated data, and (5) studies that missed any
of the inclusion criteria.

Data Extraction
The following information was extracted from each study: (1)
first author’s name, (2) publication year, (3) study location, (4)
animal characteristics (i.e., species, weight, age, and sex), (5)
treatment group characteristics (i.e., sample size, vehicle type,
intervention dose, duration, and route of administration), (6)
type of used anesthesia, (7) methods of model preparation,
(8) data on the infarct size in each group, and (9) data on
secondary outcomes assessing the cardiac function that included
left ventricular ejection fraction (LVEF), LV developed pressure
(LVDP), and LV dP/dtmax.

Risk of Bias Assessment
The risk of bias was assessed using the SYRCLE’s risk of
bias tool (24). This tool includes 10 domains as follows:
(1) sequence generation, (2) baseline characteristics, (3)
allocation concealment, (4) random housing, (5) blinding of
the investigator, (6) random outcome assessment, (7) blinding
of the outcome assessor, (8) incomplete outcome data, (9)
selective outcome reporting, and (10) other sources of bias. Each
domain is judged either the low, high, or unclear risk of bias.
Disagreements were settled by discussion.

Quantitative Data Synthesis
Means and standard deviations (SDs) of the infarct size
measurements in the included studies were pooled as weighted
mean difference (WMD) with 95% confidence interval (CI) using
the DerSimonian and Laird random-effects model to address
inter-study heterogeneity. If one of the included studies reported
standard error (SE) instead of SD, we calculated SD using the
formula: SD= SE× square root (sample size) (25). Heterogeneity
was judged by visual inspection of the generated forest plot and
measured by both I2 and χ2 tests. To test the result’s robustness,
leave-one-out sensitivity analysis was applied by removing one
study successively and performing the analysis again. To address
potential heterogeneity, we also conducted subgroup analyses
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FIGURE 1 | PRISMA flow diagram of study screening and selection process.

MI, myocardial infarction.

according to animals’ species, models’ type (either in vivo or ex
vivo), and reperfusion time (either≤4 h or >4 h).

Publication bias was judged by Begg’s funnel plot and
Egger’s test (26). In addition, the trim and fill approach was
applied in the case of an asymmetrical funnel plot to adjust
for the potential publication bias (27). All analyses were done
by RevMan version 5.3 (The Cochrane Collaboration, Oxford,
UK) and Comprehensive Meta-Analysis version 3 (Biostat, New
Jersey, USA).

RESULTS

Flow and Characteristics of Included
Studies
We identified 330 records through the literature search. Of
them, 300 records remained after the exclusion of duplicates.
Initial title/abstract screening resulted in 13 potentially relevant
studies. Following the more detailed screening of their full texts,
6 relevant animal studies (4 in vivo and 2 ex vivo) were finally
included in this systematic review and meta-analysis (28–33). All
steps of study selection are summarized in Figure 1.

A total of 116 animals were enrolled in the included studies.
Each relevant group (i.e., CoQ10 and control groups) included 58
animals. Four included studies (28, 30, 32, 33) were conducted
in the United States, one (31) in China, and one (29) in India.
The year of publication ranged from 1996 to 2017. Two of
the included studies (28, 33) used New Zealand White rabbits,
two used (29, 31) rats (Sprague Dawley or Wistar), one (30)
used Hartley guinea pigs, and one (32) used Yorkshire pigs.

All included animals were males. Ischemia was induced by
blockage of the left anterior descending (LAD) artery in two
studies (31, 32), the left main coronary artery in two studies
(29, 33), the left circumflex artery in one study (28), and the
aorta/atria in one study (30). Infarct size was reported in all
included studies as a percentage of the area at risk except for
one study as a percentage of the total left ventricle (32). More
details on the characteristics of the included studies are shown in
Table 1.

Risk of Bias in the Included Studies
According to SYRCLE’s risk of bias tool, all included studies
showed a low risk of bias concerning the following three domains:
baseline characteristics, selective outcome reporting, and other
sources of bias. No studies reported any information about
sequence generation, allocation concealment, random housing,
blinding of the investigator, or random outcome assessment.
One study by Liang et al. (31) reported blinding of the outcome
assessor. A study by Khan et al. (29) was at a high risk of
bias due to incomplete outcome data reporting. The risk of bias
assessment is summarized in Table 2.

Meta-Analysis Results Regarding
Myocardial Infarct Size
Pooled analysis of 6 studies including 116 animals revealed that
CoQ10 significantly reduced myocardial infarct size by −11.36%
(95% CI: −16.82, −5.90, p < 0.0001, Figure 2) compared with
the control group in experimental models of myocardial I/R
injury. Significant between-study heterogeneity was observed in
this meta-analysis (χ2

= 132.87, p < 0.00001, I2 = 94%). The
significance of the pooled effect estimate did not alter when
we applied the leave-one-out sensitivity analysis, indicating the
robustness of the observed result.

Subgroup Analysis Results
In subgroup analysis, according to included animal species, the
significance of the pooled effect estimate was maintained in rats,
Hartley guinea pigs, and Yorkshire pigs. However, it became
insignificant in the subgroup including rabbits −5.29% (95% CI:
−27.83, 17.26; I2 = 87%; Table 3). Moreover, CoQ10 significantly
reduced the myocardial infarct size regardless of model type
(either in vivo −10.14% [95% CI: −16.22 to −4.07] or ex vivo
−15.81% [95% CI: −21.76 to −9.85]) and reperfusion time
(either ≤4 h −13.43% [95% CI: −26 to −0.85] or >4 h −4.93%
[95% CI:−7.78 to−2.08]).

Significant heterogeneity was observed in all studied
subgroups except for the subgroup included ex vivo studies
(I2 = 0%; χ2, p = 0.848). All details on subgroup analyses are
summarized in Table 3.

Results Regarding Cardiac Function
Parameters
Data on LVEF were reported only in the study by Liang et al.
(31). Significant improvement in LVEF was observed in CoQ10

group (mean: [SD] 67.12 [6.18]) compared with the control
group 59.12 (5.81). Data on LVDP were reported in the studies
by Lekli et al. (30) and Maulik et al. (32), while data on LV
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TABLE 1 | Characteristics of the included studies.

References Country Species

(sex)

Weight Model

type

Anesthetic Method of

ischemia

Duration of

I/R

Groups of interest Time Approach

Birnbaum

et al. (28)

USA NZW

rabbits (M)

2 to 3.6 kg in-vivo Ketamine/

xylazine

Blockage of

LCX or

anterolateral

branch of it

30 min/4 h Coenzyme Q10 30mg

(n = 10)

After 13min

of ischemia

IV infusion

Placebo 12ml (n = 10)

Coenzyme Q10 30mg

(n = 6)

60min before

ischemia

Placebo 12ml (n = 6)

Khan et al.

(29)

India Wistar rats

(M)

200 to 250

gm

in-vivo NR LCA blockage 30 min/

45min

Coenzyme Q10 1

mg/kg (n = 6)

Control (n = 6)

Before I/R

injury

induction (for

7 days)

NR

Lekli et al.

(30)

USA Hartley

guinea pigs

(M)

350 to 400

gm

ex-vivo Sodium

pentobarbital

Clamping of

atrial and

aortic

cannulas

30 min/

120min

Coenzyme Q10 5

mg/kg (n = 6)

Vehicle (n = 6)

Before I/R

injury

induction (for

30 days)

Gavaging

Liang et al.

(31)

China SD rats (M) 250 (10) gm in-vivo Sodium

pentobarbital

LAD ligation 45 min/ 72,

24 and 2h

Coenzyme Q10 6

mg/kg/mL (n = 6)*

3 days Before

I/R induction

IP

Soybean oil solvent

(n = 6)*

Maulik et al.

(32)

USA Yorkshire

pigs (M)

18 to 25 kg ex-vivo Sodium

pentobarbital

LAD ligation 15 min/

120min

Coenzyme Q10 5

mg/kg (n = 6)

Placebo (n = 6)

Before I/R

injury

induction (for

30 days)

NR

Verma et al.

(33)

USA NZW

rabbits

2.5 to 3.5 kg in-vivo Ketamine/

xylazine

LCA blockage 30 min/3 h Coenzyme Q10

liposomes 36mg

(n ≈ 6)

Before I/R

induction

Intracoronary

infusion

Empty liposomes

(n ≈ 6)

I/R, ischemia reperfusion; NZW, New Zealand White; SD, Sprague Dawley; IV, intravenous; IP, intraperitoneal; NR, not reported; M, males; LCX, left circumflex artery; LCA, left coronary

artery; LAD, left anterior descending artery.

*In each group according to the different durations of reperfusion.

TABLE 2 | Summary of the risk of bias assessment of the included studies.

Study/

domain

Sequence

generation

Baseline

characteristics

Allocation

concealment

Random

housing

Blinding

of the

Investigator

Random

outcome

assessment

Blinding of

the

outcome

assessor

Incomplete

outcome

data

Selective

outcome

reporting

Other

sources of

bias

Birnbaum

et al. (28)

Unclear Low Unclear Unclear Unclear Unclear Unclear Low Low Low

Khan et al.

(29)

Unclear Low Unclear Unclear Unclear Unclear Unclear High Low Low

Lekli et al. (30) Unclear Low Unclear Unclear Unclear Unclear Unclear Low Low Low

Liang et al.

(31)

Unclear Low Unclear Unclear Unclear Unclear Low Low Low Low

Maulik et al.

(32)

Unclear Low Unclear Unclear Unclear Unclear Unclear Low Low Low

Verma et al.

(33)

Unclear Low Unclear Unclear Unclear Unclear Unclear Low Low Low

dP/dtmax were reported in the studies by Maulik et al. (32)
and Liang et al. (31). Recovery of LVDP and LV dP/dtmax was
significantly better in CoQ10 group compared with the control
group. The summary of data on cardiac function outcomes is
shown in Table 4.

Publication Bias
Visual inspection of the generated funnel plot suggested potential
publication bias in the observed result (Figure 3). The trim and
fill approach adjusted the pooled effect estimate for this potential
bias as follows: −12.78% (95% CI: −18.23, −7.32) by imputing
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FIGURE 2 | Forest plot displaying the results of meta-analysis of coenzyme Q10 effect on myocardial infarct size in models of myocardial ischemia-reperfusion injury

compared with the control group. CI, confidence interval; df, degrees of freedom; SD, standard deviation; IV, inverse variance.

TABLE 3 | Summary of subgroup analyses results.

Subgroups No. of comparisons MD (95% CI) I2 Chi2, P value P value for interaction

Species 0.737

Rats 4 −12.05 (−18.98 to −5.12) 97% <0.0001

Rabbits 3 –5.29 (–27.83 to 17.26) 87% <0.0001

Hartley guinea pigs 1 −16.9 (−29.57 to −4.23) NA NA

Yorkshire pigs 1 −15.5 (−22.25 to −8.75) NA NA

Models type 0.192

In vivo 7 −10.14 (−16.22 to −4.07) 95% <0.0001

Ex vivo 2 −15.81 (−21.76 to −9.85) 0 0.848

Reperfusion time 0.196

≤4 h 7 −13.43 (−26 to −0.85) 95% <0.0001

>4 h 2 −4.93 (−7.78 to −2.08) 70% 0.07

MD, mean difference; NA, not applicable. Bold values indicates that the result became insignificant.

TABLE 4 | Summary of results on cardiac function parameters.

Studies Lekli et al. (30)* Maulik et al. (32)* Liang et al. (31)**

Outcomes/Groups CoQ10 group† Control group CoQ10 group† Control group CoQ10 group† Control group

LVEF (%) NR NR 67.12 (6.18) 59.12 (5.81)

LVDP (mmHg) 64 (3) 45 (3) 131 (4.2) 92 (3.9) NR

LV dP/dtmax (mmHg/ms) NR 1.976 (0.085) 1.11 (0.098) 2.25 (0.12) 1.84 (0.08)

LVEF, left ventricular ejection fraction; LVDP, left ventricular developed pressure; NR, not reported.

All data are presented as mean (standard error) except for data by Liang et al. are presented as mean (standard deviation).

*After 120min of reperfusion.

**After 72 h of reperfusion.
†
p < 0.05 compared with the control group.

one study to the left of its mean. The significance of the effect
estimate was not changed after this adjustment. On the contrary,
Egger’s test detected insignificant publication bias in the current
analysis (two-tailed p-value= 0.18).

DISCUSSION

Evidence Summary
To the best of our knowledge, this is the first meta-analysis to
explore the potential cardioprotective limiting effect on infarct

size of CoQ10 in myocardial I/R injury. Our meta-analysis of
6 studies including 116 experimental models of myocardial I/R
injury suggested that CoQ10 significantly decreased myocardial
infarct size by 11.36% compared with the control group. In
addition, this beneficial effect was preserved irrespective of
model type (either in vivo or ex vivo) and reperfusion time
(either ≤4 h or >4 h). Likewise, the significant improvement of
cardiac function parameters (e.g., LVEF and LVDP) with CoQ10

was observed in multiple included studies. These results are of
interest in the context of involved molecular mechanisms and
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FIGURE 3 | Corrected funnel plot showing publication bias in animal studies that compared the effect of coenzyme Q10 with vehicle treatment or no treatment on

myocardial infarct size in models of myocardial ischemia-reperfusion injury.

their implications in informing future research on the promise
of CoQ10 as a cardioprotective agent.

Underlying Molecular Mechanisms
There are a number of different mechanisms, which may account
for the cardioprotective effect of CoQ10 seen in our analysis.
First, CoQ10 has been shown in numerous studies to act as
an antioxidant, increasing the levels of superoxide dismutase
and glutathione and decreasing the levels of lipid peroxidation
(31). This antioxidative activity is crucial as oxidative stress
is believed to play a significant role in myocardial I/R injury
(3). Following reperfusion of an ischemic heart, there is an
increased production of free oxygen radicals that induces further
cellular damage. Specifically, dysfunction of the mitochondrial
electron transport chain results in the increased production
of free oxygen radicals (34). These radicals then damage
cardiolipin, an important component of the inner mitochondrial
membrane (35). Cardiolipin damage may precipitate further
leakage of electrons from the mitochondria (36), leading to
the formation of greater amounts of superoxide anion radicals,
therefore precipitating a vicious cycle that causes severe cellular
damage (37). In multiple studies, CoQ10 inhibited oxidative
inactivation of CK and reduced its leakage during myocardial I/R
insult (21, 22, 38, 39).

Additionally, CoQ10 has been shown to reduce the levels of
p53 (31), which is a well-recognized pro-apoptotic protein (40).
P53 exerts its pro-apoptotic effect by enhancing the transcription
of a group of pro-apoptotic members of the bcl-2 family,
named BH3-only proteins (40–42). These proteins inhibit the
anti-apoptotic members of the bcl-2 family and may enhance
other pro-apoptotic bcl-2 proteins such as BAX and BAK (43).

Therefore, by inhibiting the activity of p53, CoQ10 may reduce
cellular apoptosis and thus reduce infarct size. In addition to
its ability to diminish pro-apoptotic activity, CoQ10 has also
been shown to increase the gene expression of anti-apoptotic
bcl-2, leading to decreased apoptotic activity and preserved
cellular structures in the setting of I/R injury (29). Besides, Khan
et al. (29) observed that CoQ10 reduced apoptotic DNA levels
through inhibition of caspase-9 and cytochrome-C release into
the cytoplasm.

It has been reported that CoQ10 increased the levels of
adenosine triphosphate (ATP) and creatine phosphate and
enhanced the aerobic efficiency of the myocardium in I/R injury
(31, 39). Increased production of nitric oxide was also observed
with CoQ10 resulting in coronary vasodilatation (29).

Autophagy is a vital protective pathway that acts by the
self-ingestion of damaged proteins and organelles (44). Owing
to this pathway, minimal levels of energy may be sufficient
for cell survival under stress conditions such as I/R injury
(44, 45). Therefore, enhanced autophagy may be essential for
cardioprotection in I/R injury (45, 46). It has been reported that
CoQ10 increased several proteins responsible for the activity of
autophagy such as Atg5, beclin-1, and LC-3II/LC3-I ratio (31).
It also has been involved in the regulation of mitochondrial
autophagy (through increasing levels of LC3-II, PINK, and
parkin) and attenuation of mitochondrial dysfunction (47).
Moreover, CoQ10 has been shown to increase the expression of
ubiquitin proteins in I/R animal models (32). The ubiquitin-
proteasome system is important for a cell to degrade its
own dysfunctional contents. The system works as follows:
dysfunctional substances are tagged by ubiquitin proteins, in a
process called ubiquitination. Then, proteosomes recognize these
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FIGURE 4 | Summary of involved potential mechanisms of action of coenzyme Q10 reducing effect on myocardial infarct size in models of myocardial

ischemia-reperfusion injury. SOD, superoxide dismutase; GSH, glutathione; CK, creatine kinase; UPS, ubiquitin-proteasome system; ACE, angiotensin-converting

enzyme; NO, nitric oxide; VD, vasodilatation; ATP, adenosine triphosphate; PCr, phosphocreatine; CoQ10, coenzyme Q10; IS, infarct size; CI, confidence interval. This

figure was produced on diagrams.net, using SMART materials (Servier Medical Art; smart.servier.com) that are approved under a Creative Commons Attribution 3.0

Unported License.

tags and subsequently remove the dysfunctional constituents
of the cell (48–50). Importantly, the coupling of ubiquitin
to proteasomal activity requires so-called ubiquitin receptors,
which recruit the ubiquitinated protein to the proteasome for
degradation (51).

In I/R injury, oxidative stress leads to the formation of
dysfunctional oxidized proteins, and it is the proteasome
(particularly the 20S proteasome), which is primarily responsible
for the removal of such hazardous proteins (52). Accordingly, it
is not surprising that recent research has shown that inhibiting
the proteasome system exacerbates I/R injury (53). In addition,
Hu et al. have recently shown that knocking out ubiquilin 1, a
ubiquitin receptor, in I/R mice models led to an accumulation of
ubiquitinated proteins, ultimately resulting in larger infarct size
compared to mice with increased ubiquilin 1 activity, in whom
infarct area was smaller (54).

Furthermore, Tian et al. have demonstrated that
pharmacological proteasomal inhibition leads to increased
activation of protein kinase C delta (PKCδ) and decreased
activation of PKCε (53). The changes in the ratios of these two
isozymes, through their effects on mitochondrial functions, lead

to increased apoptosis and thus exacerbate I/R injury (53, 55–57).
In sum, these findings suggest that CoQ10, by increasing the
levels of ubiquitin proteins, may enhance proteasomal activity,
decrease apoptotic activity, and ultimately conserve myocardial
cells after I/R injury.

Coenzyme Q10 has also been found to reduce levels of
angiotensin-converting enzyme (ACE) in patients following MI
(58). This is important for two reasons: first, ACE is a known
inducer of remodeling following MI (59); therefore, by reducing
ACE levels, CoQ10 reduces remodeling and preserves cardiac
function. Second, inhibition of ACE can reduce the afterload
imposed on the heart, thereby alleviating adverse structural
cardiac changes (60). Coenzyme Q10 has been found to reduce
peripheral resistance and thus afterload (61), which may be
partially mediated by its effect on ACE. Supporting this postulate
is a meta-analysis showing an attenuated benefit of CoQ10

in cohorts using ACE inhibitors (62), which suggests that
CoQ10 exerts some of its beneficial effects, at least partially,
by its effect on the renin-angiotensin-aldosterone system.
All involved potential mechanisms of action are summarized
in Figure 4.
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Related Evidence From Clinical Studies
and Future Prospective
In line with our results, the benefits of CoQ10 in terms of
cardioprotection/CV prevention in MI (and other CV diseases)
have been observed in clinical studies; however, its effect on
the infarct size has not been investigated in humans. In a
double-blind randomized controlled trial (RCT), Singh et al.
(58) assessed the effects of CoQ10 (120 mg/day for 24 weeks),
compared with placebo, on parameters of left ventricular
remodeling in 55 patients with post-MI LVEF <50%. This study
revealed that CoQ10 significantly reduced the wall thickness
opposite the infarction site from (mean [SD]) 12.2 (2) to 10
(1.8) mm compared with placebo (p < 0.01). It also significantly
suppressed changes in the sphericity index and wall thickening at
the infarction site. Huang et al. (63) reported that higher plasma
levels of CoQ10, measured 1 month after primary PCI, were
associated with better left ventricular performance/remodeling
after 6 months of follow-up in 55 patients with ST-segment
elevation MI (STEMI). Low plasma levels of CoQ10 have been
observed in patients with cardiomyopathy (17, 64). In a cohort
of 236 patients with chronic HF, lower levels of CoQ10 were
associated with the increased risk of all-cause mortality (hazard
ratio [HR]: 1.99; 95% CI: 1.21–3.30, p = 0.007) (18). In patients
with CV disease admitted to the coronary care unit, low plasma
CoQ10 (less than 0.59 mg/L, or 0.46 mg/L) was an independent
predictor of both in-hospital and long-term mortality (65, 66).
In another RCT including 144 patients with AMI, CoQ10 (120
mg/day) was compared with placebo for 28 days in terms of CV
prevention (67). In comparison with placebo, CoQ10 significantly
reduced total cardiac events (15 vs. 30.9%, p = 0.02), angina
pectoris (9.5 vs. 28.1%, p < 0.05), total arrhythmias (9.5 vs.
25.3%, p < 0.05), and poor left ventricular function (8.2 vs.
22.5%, p < 0.05). In 2003, Singh et al. (68) also compared, in a
double-blind RCT, the effect of CoQ10 (120mg/day) with vitamin
B for 1 year on CV events in 144 patients with recent AMI.
Coenzyme Q10 significantly reduced the total cardiac events
(24.6 vs. 45.0%, p < 0.02) and non-fatal MI (13.7 vs. 25.3%,
p < 0.05) compared with vitamin B. In a meta-analysis of 8
clinical trials with 327 patients undergoing cardiac surgery with
cardiopulmonary bypass, CoQ10 (30–600 mg/day) for 12 h to
14 days before surgery significantly reduced inotropic drugs
requirement and incidence of ventricular arrhythmias after
surgery, with no significant effect in terms of cardiac index, the
incidence of atrial fibrillation, or duration of hospital stay (69).
In a recent Cochrane review that included 11 RCTs with 1,573
patients with HF, CoQ10 reduced all-cause mortality (risk ratio
[RR]: 0.58; 95% CI: 0.35–0.95) and HF-related hospitalization
(RR: 0.62; 95% CI: 0.49–0.78) compared with the control group
(70). A significant improvement in LVEF was also observed
with CoQ10 supplementation in comparison with the control
group (MD: 1.77; 95% CI: 0.09–3.44) (70). In a cohort of
443 Swedish healthy elderly individuals, CoQ10 (200 mg/day)
combined with selenium (200 µg/day) for 4 years resulted in
reduced CV death compared with placebo (5.9 vs. 12.6%; p =

0.015), a favorable effect that persisted for 10 years after the
intervention (HR: 0.51; 95% CI: 0.36–0.74, p = 0.0003) (71,
72). Multiple RCTs reported, in line with the previous results,

significant improvements in the quality of life of chronic HF
patients with CoQ10 supplementation (alone or combined with
other micronutrients) compared with placebo (73, 74).

Myocardial infarct size has been identified as an important
prognostic parameter in MI (10). In a patient-level meta-analysis
including 2,632 patients from 10 randomized primary PCI
trials, myocardial infarct size measured within 1 month after
PCI was significantly associated with the increased risk of all-
cause mortality (HR: 1.19; 95% CI: 1.18–1.20, p < 0.0001) and
hospitalization for HF (HR: 1.20; 95% CI: 1.19–1.21, p < 0.0001)
for every 5% increase. Therefore, infarct size reduction may
be a clinically plausible explanation for the above-mentioned
promising results of CoQ10 as a cardioprotective agent.

Experimental studies explored the cardioprotective potential
of numerous antioxidant agents (e.g., vitamins C and E, N-
acetyl cysteine, and allopurinol) based on the central role of
oxidative stress in myocardial I/R injury (75, 76). In fact,
several preclinical studies have shown promising results with
these agents. For example, Ferrari et al. (77) reported that
vitamin E infusion in isolated rabbit hearts (20min before
hypoxia) decreased the depletion of ATP and CP and preserved
the mitochondrial function and the myocardium ultrastructure.
A combination of vitamins C and E reduced infarct size
in ischemic, reperfused pigs’ heart by LAD artery ligation
for 45min followed by 3 days of reperfusion (78). N-acetyl
cysteine (a glutathione precursor, 100 mg/kg), given 2 h after
LAD artery ligation followed by 2 h of reperfusion in dogs,
significantly reduced ventricular arrhythmias and myocardial
infarct size (37 [12.6%]) compared with the control group
(55 [7.0%]) (79). Allopurinol, a xanthine oxidase inhibitor,
was reported to enhance coronaries relaxation (80) and limit
myocardial infarct size in dogs (81, 82) and also in rats (83).
Despite these positive results of antioxidants in animal studies,
results from large-scale clinical studies on cardioprotection were
disappointing (84). Long-term supplementation of vitamins E
and C in clinical trials did not show benefit in terms of CV
prevention (85–89). In a relatively large RCT that included
251 patients with STEMI undergoing PCI, N-acetyl cysteine
did not show any clinical benefit in terms of CV prevention
or with respect to myocardial I/R injury limitation compared
with placebo (90). As for allopurinol, multiple small trials
have shown positive cardioprotective results (e.g., decreased
incidence of arrhythmia and improved myocardial efficiency
and cardiac function) in patients undergoing coronary artery
bypass grafting and in cardiomyopathy (91–93). However,
other several trials failed to show benefit (94–97). It has
always been a challenge to translate the results of experimental
animal studies to human clinical studies (98). Lack of
reproducibility of experimental studies, methodological defects
(e.g., selection and performance bias), and large disparities
(e.g., presence of comorbidities, different cardioprotective
endpoints [i.e., infarct size vs. mortality rate] and inconsistency
in dosing and timing of the intervention) in study design
between animal experiments and clinical studies are possible
causes of translational failure (84, 99, 100). Although low
methodological quality may apply to the included animal studies,
the combination of consistent evidence derived from animal
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and clinical studies suggests an important role for CoQ10 as a
cardioprotective molecule following MI. However, large well-
designed RCTs with longer durations of follow-up are warranted
to further assess the potential cardioprotective benefits of CoQ10

in MI.
Animal studies play a critical role in understanding molecular

mechanisms in a variety of diseases. However, there are large
anatomical and physiological differences between used animal
species and humans, especially with smaller animal models
(101). Most of the included studies in this meta-analysis are
based on small animal models. Thus, more high-quality animal
studies on CoQ10’s cardioprotective effects in larger models of
myocardial I/R injury are still needed for better assessment of the
suitable dosing and timing of CoQ10 and understanding of the
involved mechanisms of action (101). Human equivalent doses
of CoQ10 (based on body surface area) that ranged from 9.7
to 233 mg/day, for an adult person weighting 60 kg, were used
in the included studies (102). However, higher doses of CoQ10,
preferably given through intravenous or intracoronary routes,
should be considered/assessed in future studies for multiple
reasons. First, because of its relatively high molecular weight
(863.34 g/mol) and insolubility in water, poor oral bioavailability
has been a limitation for CoQ10 supplementation, which may
become more evident in large MI complicated by peripheral
hypoperfusion (23, 103). In rats, only a small part of orally
supplemented CoQ10 was found to reach the circulation, spleen,
and liver with none reached the heart or kidney (104, 105).
However, CoQ10 as a lipid microsphere given intravenously
reached both the heart and kidney as well as other tissues in
rats (104, 106). Second, CoQ10 supplementation was found to
be highly safe (107). In patients with Parkinson’s disease, doses
of 1,200 mg/day, and even 2,400 mg/day were well tolerated,
compared with placebo (108). Finally, statins are commonly
used drugs in patients with IHD that have been observed to
additionally reduce CoQ10 levels (109). Therefore, considering
higher doses of CoQ10 in patients on statins is reasonable.
According to the included studies, pretreatment with CoQ10 for
3–30 days before induction of I/R injury seems to be favorable for
prophylaxis of MI. Other timings, which may be more applicable
in patients with unpredictable acute event (i.e., before or at early
reperfusion), should be adequately assessed in future preclinical
studies (3). Nevertheless, as mentioned before, higher doses
of CoQ10 administered through intravenous or intracoronary
routes may be needed in these timings to effectively increase
the heart concentrations of CoQ10 (21). More animal studies
on CoQ10 cardioprotective potential with a background of other
comorbidities (e.g., hypertension, obesity, and diabetes mellitus)
are needed for a better clinical insight. In addition, proof-of-
concept clinical trials should include infarct size as an endpoint
when assessing CoQ10’s cardioprotective effects (10).

Limitations
Our meta-analysis has some limitations. First, significant
heterogeneity was observed in the current analysis. Variability

in animals’ characteristics and methodological differences (e.g.,
model type, risk of bias sources, and method of ischemia)
among the included studies may explain this heterogeneity.
Nevertheless, random-effects model and subgroup analyses
were applied to address this heterogeneity. Second, potential
publication bias was suggested by funnel plot visual inspection.
However, the trim and fill approach was used to adjust for this
bias. Third, most of the included studies were based on smaller
animal models, which are less similar to humans compared
with larger ones. Fourth, data on cardiac function were not
adequately reported in the included studies. Fifth, all included
studies did not report any information about multiple domains
of bias assessment (e.g., sequence generation and allocation
concealment). Sixth, infarct size assessments were short-term,
ranging from 45min to 72 h after reperfusion. Finally, all
included animals were without CV comorbidity, not reflecting
cases of MI in clinical practice that may have multiple CV risk
factors (e.g., obesity, diabetes mellitus, and hypertension).

CONCLUSION

Coenzyme Q10 significantly decreased myocardial infarct size
by 11.36% compared with the control group in animal
models of myocardial I/R injury. Additionally, this beneficial
action was retained regardless of model type (either in vivo
or ex vivo) and reperfusion time (either ≤4 h or >4 h).
Significant improvements in cardiac function parameters were
also observed with CoQ10. High-quality large animal studies
are still needed to confirm these results and to further
explore the involved mechanisms. Moreover, these results
provide the rationale for future large well-designed RCTs with
longer durations of follow-up to assess their translation into
clinical application.
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