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Cardiogenic shock (CS) is a severe condition with in-hospital mortality of up to 50%.

Patients who develop CS may have previous cardiac history, but that may not always be

the case, adding to the challenges in optimally identifying and managing these patients.

Patients may present to a medical facility with CS or develop CS while in the emergency

department (ED), in a general inpatient ward (WARD) or in the critical care unit (CC).

While different clinical pathways for management exist once CS is recognized, there are

challenges in identifying the patients in a timely manner, in all settings, in a timeframe that

will allow proper management. We therefore developed and evaluated retrospectively a

machine learning model based on the XGBoost (XGB) algorithm which runs automatically

on patient data from the electronic health record (EHR). The algorithm was trained

on 8 years of de-identified data (from 2010 to 2017) collected from a large regional

healthcare system. The input variables include demographics, vital signs, laboratory

values, some orders, and specific pre-existing diagnoses. The model was designed to

make predictions 2 h prior to the need of first CS intervention (inotrope, vasopressor,

or mechanical circulatory support). The algorithm achieves an overall area under curve

(AUC) of 0.87 (0.81 in CC, 0.84 in ED, 0.97 in WARD), which is considered useful for

clinical use. The algorithm can be refined based on specific elements defining patient

subpopulations, for example presence of acute myocardial infarction (AMI) or congestive

heart failure (CHF), further increasing its precision when a patient has these conditions.

The top-contributing risk factors learned by the model are consistent with existing clinical

findings. Our conclusion is that a useful machine learning model can be used to predict

the development of CS. This manuscript describes the main steps of the development

process and our results.

Keywords: cardiogenic shock, machine learning, electronic health records, early warning system, clinical decision

support, subpopulation analysis

1. INTRODUCTION

CS is a condition characterized by low cardiac output leading to hypoperfusion of major organs
and is associated with a high short-term mortality of up to 50% (1). Clinical trials of CS patients
are difficult to conduct because of high patient acuity, limited time for therapeutic interventions,
and heterogeneity of CS. As a result, limited data exists regarding efficacy of various therapeutic
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interventions, and major gaps are present in the understanding
of the most appropriate therapy in individual patients at
various stages of disease. Studies have evaluated the predictors
of mortality in patients who are diagnosed with CS (2).
However, these predictors are generally non-modifiable and
are assessed after the patient has already developed CS. While
they are able to predict clinical outcomes, they typically fail to
provide adequate information in a manner to influences patient
management and therefore increase chances of improve survival.
Several studies have also evaluated predictors of developing
CS, but these are usually static variables or data available post
intervention (e.g., thrombolysis in MI flow) that don’t provide
early discrimination (3).

Early recognition, triage, risk stratification and protocolized
management of patients in hospitals equipped with adequately
trained personnel and technology have been associated
with improved outcomes in observational studies of CS (4).
Many patients who experience CS may not present initially
to tertiary care hospitals but rather to smaller hospitals
without specialized cardiovascular or CS therapies available.
Furthermore, a substantial proportion don’t present to the
hospital in CS but develop it after they have been admitted
to the hospital for other reasons, such as AMI or CHF (5, 6).
They may also develop CS during non-working hours when
there are fewer clinicians at bedside who are capable of
immediately evaluating, recognizing, appropriately triaging,
managing, and potentially transferring patients to specialized
centers. Thus, there exists an important unmet need for
methods to consistently identify patients who are at risk
of developing CS.

The widespread use of EHR systems enables development of
algorithms to identify specific patient parameters, abnormalities,
and provide individualized decision support. Machine learning
algorithms can perform automated, continuous screening and
therefore be integrated into standard clinical workflows to
provide early notification. The purpose of this study is to
develop an early warning system for CS using machine
learning models and based on routinely populated clinical
variables available from the EHR within a large regional
healthcare system.

Specifically, our objective is to predict the development
of CS 2 h earlier than with standard clinical care. In this
way, clinicians can reassess the patient’s condition and
provide early cardiac interventions to prevent further
deterioration into CS. To the best of our knowledge,
our work presents the first model that can predict the
onset of CS for the general patient population with
good performance.

We chose to use machine learning techniques because
they often achieve significantly better prediction performance
compared to standard statistical models such as logistic
regression (LR) (7). Machine learning algorithms can (1) model
non-linear relationships between input variables and the target
variable; (2) naturally incorporate interactions between different
inputs; (3) achieve interpretability.We evaluatemultiplemachine
learning algorithms as well as LR and choose the algorithm [XGB,
(8)] achieving the best prediction performance.

TABLE 1 | Clinical interventions often applied to patients with CS.

Vasopressors Norepinephrine, Epinephrine, Dopamine,

Phenylephrine, Vasopressin

Inotropes Dobutamine, Milrinone

Mechanical cardiac support IABP, Impella, LVAD, ECMO, TandemHeart

2. MATERIALS AND METHODS

In this section, we first describe the extraction process of
the patient cohort, which consists of 4,012 CS patients, 782
hypovolemic shock patients, 16,916 septic shock patients, and
93,581 non-shock patients from the EHR data of a large
regional healthcare system. For each patient, 76 clinical variables,
including vital signs, laboratory measurements, ventilator
settings, previous diagnoses and interventions, were extracted.

Then we describe the labeling of positive and negative class
used for model training. The XGB classifier was chosen to
build the CS prediction model because it achieved the optimal
performance. Compared to LR, where the log-odds is assumed
to be the linear weighted summation of input variables, XGB
assumed the log-odds as the summation of hundreds or even
thousands of decision trees applied to input variables. Since
each decision tree defines a non-linear function over multiple
input variables, such as predicting the positive class if systolic
blood pressure falls below 90 bpm and body temperature is
below 36 degrees Celsius, XGB automatically learns non-linear
combinations of input variables and can identify more input
patterns that are predictive of the target variable compared to LR.

2.1. Patient Cohort Extraction
We extracted a patient cohort consisting of (1) patients with
diagnosis of CS based on ICD code which we used as target
population; and (2) patients without diagnosis of CS as control,
from a large-scale longitudinal patient EHR database collected
from Banner Health, which is a large regional healthcare system
consisting of 30 hospitals in the US, from 2010 to 2017. The
use of the patient data was approved by the Institutional Review
Board. In this database, more than 11 million patients have
measurements of systolic blood pressure during their stays.

2.1.1. Target Patients With CS
Both ICD-9 and ICD-10 codes of CS, including R57.0, 785.51,
998.01, were used to identify the target patients. In total, 5,881
target patients were identified.

For each target patient, the onset time of CS was determined as
follows: we used the onset time of the first clinical interventions
typically given to CS patients, including vasopressors, inotropes,
or mechanical circulatory support, as the surrogate of the onset
time of CS. Patients who received ICD diagnosis of CS but
no CS-specific interventions were excluded. Since patients often
received a sequence of interventions over time, the onset time of
the first intervention was selected to determine the onset time of
CS. The list of interventions used are summarized in Table 1.

We carefully assessed but ultimately did not use a blood
pressure threshold in isolation to determine the onset of CS for
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TABLE 2 | The distribution of the type of first intervention received by patients with

diagnosis of CS.

Type of first intervention Number of patients Percentage

(%)

Norepinephrine 2,524 47

Dopamine 1,057 20

Dobutamine 691 13

Epinephrine 642 12

IABP 458 9

Phenylephrine 430 8

Milrinone 385 7

Vasopressin 214 4

VAD 92 2

Impella 70 1

ECMO 18 0

multiple reasons: (1) a single low blood pressure measurement
may be erroneous or may not provide enough specificity for
the onset of CS, especially if the subsequent reading is in
normal physiological range without intervention; (2) a single low
blood pressure measurement in the absence of ancillary clinical
evidence of hypoperfusion may not indicate onset of CS. For
example, many advanced heart failure patients who eventually
develop CS may have baseline hypotension; (3) hypotension may
be caused by other causes including hypovolemia, medications,
arrhythmia, and septic shock rather than onset of CS. We
also evaluated using two consecutive blood pressure readings
indicative of hypotension to determine the onset of CS. However,
the limitations of this method were that there were often large
gaps in time between the two low measurements, precluding
accurate determination of true of timing of shock. To consider
an example case scenario, patients who were transferred to
operating room (OR) or catheterization laboratory (Cath lab)
after shock had hemodynamic measurements, including blood
pressure, recorded in the OR/Cath lab recording software, which
was not readily available in the EHR, leading to large gaps in the
measurements extractable from the EHR. In another scenario,
in patients who had continuous hemodynamic monitoring (e.g.,
arterial lines), not all hypotensive episodes would be recorded
in the EHR. Furthermore, patients who had shock and were
treated quickly with vasopressors/inotropic agents may not have
had multiple hypotensive measurements despite true CS. For
these reasons, we opted to choose the time of recognition and
institution of therapy in current practice as the onset time of CS
and aimed to improve upon this.

Among 5,881 CS patients identified through the ICD codes
listed above, 5316 patients (90%) received at least one type of
interventions listed in Table 1. For each patient who received
interventions, we identified the type of the first intervention
and computed their frequency for all such patients as shown
in Table 2. Note that the total number of patients shown in
the second column exceeds 5316 because some patients received
multiple types of interventions at the same time.

Norepinephrine, Dopamine, Dobutamine, and Epinephrine
were first-line agents. Second, compared to Norepinephrine,

TABLE 3 | Patients with septic shock, hypovolemic shock, and no shock in the

control patient group.

Subset of control patients Number of patients

Septic shock 18,321

Hypovolemic shock 1,171

Non-shock 93,581

TABLE 4 | Number of patients in the target group (CS) and the control group

(septic/hypovolemic shock and non-shock) after excluding patients with diagnosis

of multiple shock types.

Patient group Number of patients Percentage

(%)

Target CS 4,012 3.5

Control Hypovolemic shock 782 0.7

Control Septic shock 16,916 14.7

Control Non-shock 93,581 81.1

other pressors were much less likely to be used first. Third,
mechanical support devices were rarely applied as first line
interventions since they take time to arrange and are usually
applied after pressors/inotropes are administered. These findings
were consistent with the current practices of treating CS patients
(9).We further restricted the target patient cohort to only include
adult patients (age greater than 18 years), reducing the cohort size
from 5,316 to 5,148.

2.1.2. Control Patients
The control patients consisted of both shock patients and non-
shock patients. Specifically, for shock patients, we extracted all
patients with diagnosis of either septic shock or hypovolemic
shock. Ideally, the trained model should separate CS from
other types of shock. Both septic shock and hypovolemic shock
patients were identified using ICD codes. Their onset time was
determined by the first administration of vasopressors, including
Norepinephrine, Epinephrine, Dopamine, Phenylephrine, and
Vasopressin. For non-shock patients, we randomly sampled
100,000 patients from the entire patient cohort after excluding
shock patients (around 11 million patients). Although the model
automatically balanced the control cohort and the target cohort,
the subsampling was needed to avoid creating a patient cohort
that is too large to apply standard analytics tools.

After excluding non-adult patients, the number of patients
belonging to the septic shock, hypovolemic shock and non-shock
groups are shown in Table 3.

2.1.3. Combine Target Patients and Control Patients
In practice, one patient can develop multiple types of shock. For
example, CS patients can develop septic shock during their stay
in the intensive care units. To train a model that can separate CS
from other shock types, we only kept patients with diagnosis of a
single type of shock due to the lack of information to determine
with certainty what type of shock occurred first. Since patients
with diagnosis of multiple shock types were excluded, the number
of patients in both the target group and the control group further
decreased (Table 4).
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2.1.4. Input Feature Extraction
We extracted 76 variables, including vital signs, laboratory
measurements, ventilator settings, previous diagnoses, antibiotics
administration and echocardiogram. The names of these
variables are listed in Table 5. The naming of most vital
signs, laboratory measurements and ventilator settings are self-
explanatory. For variables that need further explanation, detailed
descriptions are in Section 1 in the Supplementary Material.

2.1.4.1. Time Range of Input Features
For each patient, starting from the time of intervention, we
extracted the input variable values from 1 to 12 h before the
intervention onset time. Note that the time of intervention for
non-shock patients was randomly selected in their hospital stay.
At each time point, the value measured in the last 2 h was
used for vital signs or 48 h for laboratory measurements or
ventilator settings.

2.1.5. Patient Cohort Statistics
We took the input variables extracted at 2 h before the
intervention onset and compared the distribution of
Temperature and Troponin over the target and control
patient groups. The results are shown in Figure 1 and show
that (1) CS patients have the highest Troponin levels; (2) Septic
shock patients have highest Temperature. These were consistent
with pathophysiology and existing literature (10–13), which
can serve as a “sanity check” on the reliability of the extracted
patient cohort.

2.2. Model Training
Our objective was to predict the onset of CS 2 h earlier. Given
that the input features were extracted from 1 to 12 h before
the intervention onset for each patient, we defined the positive
samples as input feature values measured at 2 and 1 h before the
intervention onset time for CS patients.

The negative samples consist of the input feature values (1)
measured at 3–12 h before the intervention onset for CS patients;
and (2) measured at 1–12 h before the intervention onset for
septic/hypovolemic shock patients and non-shock patients. In
contrast, the negative samples will not develop CS within 2
h. In the design matrix used for model training, there were
8,024 samples in the positive class and 1,375,468 samples in the
negative class, resulting in 0.58% prevalence for the positive class.
Due to the class imbalance, we assigned higher weights to samples
in the positive class to make the total weights of positive and
negative class to be equal.

We randomly split all patient encounters into five-folds, where
the first three-folds were used for model training, the fourth-
fold for validation and the fifth-fold (hold-out test set) for model
performance evaluation. For the training set, validation set and
test sets, we have provided the corresponding number of unique
patient encounters, number of data samples and those with
positive class labels in Section 2 in the Supplementary Material.

To identify the model that can achieve both high classification
performance and high interpretability, we evaluated LR and
three different types of machine learning models, including
XGB, multiple layer perceptron (MLP) (14), and temporal

convolutional network (TCN) (15). For each model, we ran
extensive hyperparameter search to maximize the AUC score
on the validation set. The rationale of evaluating these models
and the detailed hyperparameter search are described in Section
3 in the Supplementary Material. The optimal validation AUC
corresponding of the optimal hyperparameter setting of each
model is in Table 6. The XGB model consisting of 500 decision
trees of depth 2 with learning rate 0.1 achieved the highest
validation AUC score of 0.88.

3. RESULTS

In this section, we evaluated the model performance using
multiple classification metrics. The model performance across
different patient subpopulations are also presented. Furthermore,
we provided interpretation tools to analyze the clinical patterns
learned by the model.

3.1. Model Evaluation
We evaluated the model performance on the test set using the
AUC, the Area Under the Precision Recall Curve (AUPRC) and
the Break-Even Precision Recall (BEPR). Besides evaluating the
performance on all test patients from different types of care
settings, we also showed the performance on patients belonging
to each care settings. It is to be noted that accurate care setting
information was only available for a subset of patient encounters.
Therefore, the number of patients belonging to ED, WARD, and
CC were smaller than the total number of patients.

3.1.1. Evaluation at All Time Steps
We first evaluated the model performance using samples
collected from 12 to 1 h before the intervention onset of test
patients. The results are summarized in Table 7.

The model achieved AUC score of 0.87 on all test patients.
Comparing model performance across different care settings in
terms of AUC, the model performed best in WARD with AUC
equal to 0.97, which was followed by ED with AUC of 0.84 and
CCwith AUC of 0.81. To correctly interpret the values of AUPRC
and BEPR, one needs to take into account that they are negatively
affected by the extremely low prevalence of the positive class
(0.595%) resulting from the approach taken to define positive and
negative samples (with each patient contributing 12 samples of
which at least 10 are negative).

To understand how well the model can separate the positive
class from the negative class at different time steps prior to
intervention, we applied the model to each test patient over time
and compute the risk of developing CS in 2 h. At each time
point, we computed the mean and standard deviation (σ ) of
risk scores of patients having (1) CS; (2) hypovolemic shock;
(3) septic shock; and (4) non-shock. For these four patient
groups, the plot of mean risk over time is shown in Figure 2.
The lower bound and the upper bound of the shaded area were
computed by subtracting 2σ and adding 2σ from the mean
risk (95% confidence interval). Figure 2 showed that the average
risk of CS kept increasing as the time moves closer to the
intervention onset, indicating the model detected higher risk of
CS as patients deteriorate; Second, the average risk of developing
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TABLE 5 | Input variables extracted for mode training.

ALT CVP Hemoglobin PlateletCount

AMI Calcium INR Potassium

AST Carboxyhemoglobin ImmatureGranulocytes Procalcitonin

AVPU_Scale CardiacIndex Lactate RBC

AgeInYears Cardiomyopathy Lymphocytes Respiration

Albumin Chloride Magnesium SAFE_SIRS

AnionGap Compliance MeanPlateletVolume Sodium

Antibiotics Creatinine Methemoglobin SystolicBloodPressure

BUN D_Dimer MitralRegurgitation PulsePressure

Bands ECHO NT-proBNP Temperature

BaseExcess Eosinophils Neutrophils Troponin

Basophils EWS_CNS O2Saturation TroponinDelta

Bicarbonate EjectionFraction PAWP WBC

Bilirubin Fio2 PCO2 AirwayPressure

BloodCulture GFR PEEP InspiratoryTime

CKMB GenderIsMale PIP TidalVolume

CKMB_CKTotal Glucose PO2 MinuteVolume

CKTotal HeartRate PT pH

CRP Hematocrit PTT PlateauPressure

FIGURE 1 | The distribution of Troponin (left) and Temperature (right) over the CS, septic/hypovolemic shock, and non-shock groups.

TABLE 6 | Optimal validation AUC score of each model.

Model LR XGB (depth = 1) XGB (depth > 1) MLP TCN

Validation AUC 0.84 0.87 0.88 0.87 0.87

TABLE 7 | Model performance on all test patients as well as patients belonging to different care settings.

Care setting # Patients Target prevalence (%) AUC AUPRC BEPR

All test patients 279,780 0.60 0.87 0.11 0.19

ED 33,684 0.41 0.84 0.11 0.20

WARD 14,292 0.42 0.97 0.14 0.22

CC 23,016 0.93 0.81 0.068 0.14
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FIGURE 2 | Mean risk of patient having CS (red), hypovolemic shock (green),

septic shock (blue), or non-shock (magenta).

CS in 2 h was higher for patients labeled as CS compared
to patients labeled as septic/hypovolemic shock, whose average
risks were further higher than no-shock patients. This means
the model can discriminate between CS and non-CS patients,
including septic/hypovolemic shock and non-shock. Third, the
95% confidence intervals were wide for all four patient groups,
indicating highly variable risk profiles within each patient group.

3.1.2. Evaluation at 2 h Before Intervention Onset
We were also interested in the model performance evaluated
on samples collected at 2 h before the intervention onset.
This analysis can demonstrate whether the model can correctly
distinguish the onset of CS (for positive samples) from control.
The results are summarized in Table 8.

The model achieved AUC score of 0.87 on all test patients. In
terms of AUC, the performance on WARD was still better than
ED, which was followed by CC. Compared to the evaluation at all
time steps, the values of AUPRC and BEPRweremuch higher due
to the higher prevalence (3.6%) of the positive class (each patient
contributing with one sample only, either positive or negative).

3.1.3. Subpopulation Analysis
To increase clinicians’ trust of the model prediction, using
samples collected at 2 h before the intervention onset, we
also evaluated the model performance over different patient
subpopulations. The model can achieve greater clinical value
if its performance is satisfactory in the subpopulation. In
pursuit of this, we defined patient subpopulations using the
following criteria.

1. AMI indicates the subpopulation consisting of patients with
previous diagnosis of AMI within the past 1 year.

2. CHF indicates the subpopulation consisting of patients with
previous diagnosis of CHF within the past 1 year.

3. ECHO indicates the subpopulation consisting of patients
receiving an echocardiogram since admission.

Besides AUC, AUPRC and BEPR, we also show the recall value
when selecting a decision threshold to make PPV (precision)
equal to 0.5. The results are shown in Table 9.

For the analyzed patient subpopulations, the AUPRC, BEPR
and Recall@PPV=0.5 values were significantly higher due to
higher prevalence of the positive class. Therefore, the model
should be given higher trust when applied to patients belonging
to these three subpopulations.

3.2. Model Interpretation
To understand the importance of input feature contribution
in prediction of CS, we computed SHAP value (16) across all
training samples. For each sample and feature pair, its SHAP
value measures the importance of the feature to the prediction
of the sample. Therefore, for each feature, the average of the
absolute SHAP value of all training samples can be used to
measure its global feature importance. Figure 3 shows the list
of top-ranking input features that are predictive of the onset of
cardiogenic shock in 2 h.

3.2.1. Top-Ranking Risk Factors of CS
For the top nine most important input features, we made scatter
plots of SHAP values against the feature value (in red dots). This
illustrates how the contribution to the model risk increases or
decreases as the feature value increases. Furthermore, we also
made the distribution of feature values of the positive class (in
green) and negative class (in blue) in the same figure. The results
are summarized in Figure 4.

The model learns the following risk factors contribute to
being identified as higher risk of developing CS: (1) The risk
of CS increases with respect to the patient’s age (17); (2) Males
have higher risk than females (17); (3) Higher troponin level is
associated with higher risk of CS (12, 13); (4) Higher glucose
level is associated with higher risk of CS (18); (5) Lower body
temperature (cold skin) is associated with higher risk of CS (19);
(6) Lower pulse pressure is associated with higher risk of CS (9);
(7) Medium level of immature granulocytes (IG) is associated
with higher risk of CS: high level of IG indicates infection,
sepsis, and septic shock. Given about 30% of CS patients are also
diagnosed with sepsis, the IG of CS patients are higher than no-
shock patients; 8) Higher O2 saturation is associated with higher
risk of CS possibly because CS patients receive oxygen and are
often intubated; 9) Lower bicarbonate is associated with higher
risk of CS (20).

These risk factors can either be supported from existing
clinical literature or explained by clinical experts. Therefore, the
model captures clinically meaningful patterns from the input
variables to predict the onset of CS.

4. DISCUSSION

We first review related works and discuss their novelties and
limitations. Second, we highlight the key contributions of this
work. Third, the limitations of this work are presented.
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TABLE 8 | Model performance on all test patients as well as patients belonging to different care settings at 2 h before the intervention onset.

Care setting # Patients Target prevalence (%) AUC AUPRC BEPR

All test patients 23,315 3.6 0.87 0.32 0.38

ED 2,807 2.5 0.85 0.15 0.12

WARD 1,191 2.5 0.98 0.67 0.60

CC 1,918 5.6 0.78 0.21 0.27

TABLE 9 | Model performance over four different subpopulations.

Subpopulation # Patients Target prevalence (%) AUC AUPRC BEPR Recall@PPV = 0.5 (%)

All 23,315 4 0.87 0.32 0.38 22

AMI 24 33 0.90 0.88 0.75 88

CHF 247 29 0.81 0.57 0.58 80

ECHO 825 15 0.89 0.60 056 68

FIGURE 3 | Top-ranking input features that are predictive of CS.

4.1. Related Works
Much of the currently available literature on CS prediction
focuses on variables that are predictive of mortality in patients
who have already developed CS (21). Factors such as renal
failure, lactic acidosis, cardiac arrest, and number/doses
of vasopressors are consistently associated with short-
term mortality. However, by the time patients are in this
situation, mortality is high irrespective of management. The
need to identify these patients early is being recognized,
increasingly emphasized, and is reflected in contemporary
shock classification scores, such as the SCAI shock staging

system (2). For example, patient in SCAI Stage A is defined as
a patient at risk for developing shock whereas a SCAI Stage
B patient is in beginning shock. Therapeutic interventions
at these earlier stages may alter the trajectory of shock by
preventing more advanced stages and importantly, cardiac
arrest. However, recognizing these stages expeditiously
and initiating appropriate therapy requires a trained
clinician immediately at the bedside to make a subjective
determination, which is not always possible, especially in smaller
hospitals and during nights and weekends when staffing is
less robust.
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FIGURE 4 | For each of the top nine most importance input features, this figure shows the scatter plot of SHAP values against the feature value.

Studies on predicting the likelihood of developing CS are
fewer and have predominantly focused on the acute MI
population (3, 22–25). Age, baseline blood pressure, physical
exam findings, laboratory values including NT-proBNP, success
of revascularization and angiographic findings predict the
likelihood of development of CS in AMI-CS (3). Similar
parameters are implicated in non-ischemic-CS, with the
exception of angiographic and revascularization data (26). There
are also differences in rates of univentricular vs. biventricular
shock development in ischemic and non-ischemic shock which
has management and prognostic implications (27). However,
these were generally retrospective analyses from registries
or randomized clinical trials testing specific therapies, which
may not reflect the general undifferentiated CS population.
Furthermore, identified factors are often non-modifiable, not
available early in the disease process, and often from eras
that don’t reflect contemporary management. Most importantly,
these studies were also not designed with the intent to
prospectively influence management in order to avoid the
development of severe CS. In the current era, the ORBI study
(28) developed and validated a risk score for development of CS

that included 11 variables, including age >70, prior stroke/TIA,
cardiac arrest, anterior STEMI, first medical contact to PCI delay
> 90 mins, Killip class, heart rate >90/min, a combination of
systolic blood pressure <125 and pulse pressure < 45, glycaemia
>10 mmol/L, left main culprit lesion, and post-primary PCI
thrombolysis in myocardial infarction flow grade < 3. The
different scores could identify CS incidence ranging from 1.3 to
31.8%.Whereas, this model showed net clinical benefit compared
to admission hemodynamic parameters, it was restricted to
STEMI patients undergoing primary PCI, where there is already
a heightened clinical suspicion for CS and patients have more
intensive standard monitoring postoperatively.

An important constraint in the aforementioned studies is
that predictors were derived using regression analysis methods.
While regression analysis is well-suited to test associations
between predictors and outcomes, it is not primarily designed
to determine the likelihood of future outcomes (prediction
analysis). Furthermore, regression analysis often assumes that
the relationship between a predictor and outcome remains linear
which may not account for various interactions of different
variables on outcomes, and may have unstable effects when
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there are many predictors relative to number of effects (29). In
contrast, machine learning models don’t have a pre-specified
model to fit; rather the data is evaluated for the best fit and the
model is thus estimated, after which validation and testing are
performed. Different machine learning methods have different
advantages and disadvantages, so multiple methods are evaluated
to provide the most optimal results for the individual question
at hand. For this analysis, we evaluated LR as well as multiple
machine learning models. XGB, a technique that can handle
sparse data, allows parallel decision trees, has enhancements to
avoid overfitting, models non-linear association between inputs
and outputs and interactions between the inputs, provided the
highest precision.

The use of machine learning in risk prediction for CS is
in its infancy. Zweck et al. (30) utilized machine learning to
phenotype CS using retrospectively collected data, and were able
to identify and validate three distinct phenotypes with prognostic
implications. Bai et al. (31) evaluated LR, least absolute shrinkage
and selection operator (LASSO), support vector regression
(SVM) and tree-based ensemble machine learning models
(LightGBM) and XGB to predict CS risk in STEMI patients.
The linear models built on LASSO and LR had the highest
predictive power with AUC of 0.92. Eight predictors, including
Age, CKD, WBC, Hgb, AST, LDH, Shock index, and delay to
first medical contact > 12 h, were predictive of development of
in-hospital CS. The specific timing of CS development was not
evaluated. Rahman et al. (32) utilized machine learning methods
in an attempt to identify a cohort of patients at higher risk of
developing CS from a population of patients admitted to three
hospitals with acute decompensated heart failure. A novel feature
of this study is continuous monitoring of EHR data. The high-
risk cohort had 10.2 times higher prevalence of developing CS
within the next 24 h compared to the low-risk group, although
the overall positive predictive value of the model at various
thresholds was under 10%.

4.2. Contributions
Our results substantially expand on the currently available
methods. First, the model is not restricted to a subpopulation
of patients (e.g., post-STEMI or ADHF), but rather evaluates
a general population of hospitalized patients who are at risk
for CS development. Second, the model was derived with
data from a large regional healthcare system with community
hospitals, mid-level hospitals, and tertiary academic hospitals.
This limits selection bias and allows generalizability. Third, the
model is designed to continuously monitor EHR data rather
than using a single snapshot of clinical variables, to provide real
time actionable data. The 2-h time frame for earlier prediction
allows notification and time for clinicians to immediate mobilize
necessary resources for more advanced interventions during
working and off hours, and allow time to arrange transfer
to higher levels of care if necessary. Fourth, the model can
be utilized in various care locations, such as ED, wards, or
CC, with highest discrimination in general hospital wards
where the level of intensive physical monitoring is lowest and
risk of delays in treatment the highest. Finally, subpopulation
analysis, such as those with prior AMI or CHF shows varying

discriminatory capacity, which may be utilized in targeting
disease-specific therapies.

The input features that had the most impact in predicting
CS were, in decreasing order, age, male gender, troponin
levels, glucose levels, temperature, pulse pressure, and immature
granulocytes. These demographic variables or examination and
laboratory values are routinely measured in clinical care and
don’t require additional resources, yet were powerful predictors
of CS. Algorithms such as these may provide an opportunity
for earlier recognition of shock and facilitate management,
particularly in populations who have delayed recognition and
poorer outcomes with current standard practices. Variables
such as lactate and creatinine which are validated predictors
of outcomes after CS had lower impact, likely because patients
are detected prior to significant end-organ hypoperfusion and
dysfunction. Importantly, the model could provide meaningful
discrimination between cardiogenic and septic shock. Often
cardiogenic shock misdiagnosed as septic shock leads to a series
of management decisions (e.g., intravenous fluids) which have
the potential to worsen CS and create additional problems such
as need for intubation. Predictive models such as these could
heighten early suspicion of CS, particularly in ED or units
where septic shock is much more commonly observed and
clinical management of hypotensive patients is geared toward
sepsis protocols.

Practical applications of models such as these could be varied,
depending on clinical situation. It can be implemented in a
dashboard in the patient chart without a specific alert. Other
models, such as the sequential organ failure assessment score
(SOFA score) are already routinely implemented in modern
EHRs in this manner. It can be implemented as an electronic alert
in the EMR at a certain threshold with the decision for further
interventions left at the discretion of the provider. Alternatively,
more active interventions, such as activation of rapid response
teams or shock team alert could also be automatically triggered.
In an individual patient, progressively more aggressive measures
could also be activated depending on timing and risk of
developing CS. It is important to have reliable models that
meaningfully impact diagnosis and treatment with reasonable
likelihood but are not too repetitive in order to avoid situations
where clinicians get notification fatigue and disregard the alerts.

4.3. Limitations
We did not individually adjudicate CS events but rather the
diagnosis was based on ICD codes. This may have decreased
sensitivity and/or specificity but likely incorporated events that
the treating clinicians deemed relevant. We mitigate this by
using CS-specific interventions to make CS labels more accurate.
Another limitation was the inability to extract some data that
we deem relevant predictors. For example, left ventricular
ejection fraction measurements were recorded as a free-text
value in a separate echocardiographic reading software which
is then imported as PDF document into the primary EHR
and is not extractable. Similar limitations were present for
angiographic and hemodynamic data. Integration of various
EHR platforms and uniform recording methods may expand
utility of EHR data. Artificial intelligence methods to extract
relevant values were in progress but were not available for
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this analysis. Third, the use of first intervention timing as
opposed to a blood pressure threshold to delineate CS onset has
limitations. However, as increasingly recognized by the SCAI
shock classification and others, CS occurs on a continuum rather
than at a specific discrete BP threshold, and the ancillary findings
in addition to BP that used in prospective clinical trials to
diagnose cardiogenic shock, such as physical findings of cool
extremities or altered sensorium, or hourly urine output at
onset of shock, are not readily available from retrospective EMR
records. Implantation of MCS devices takes time to arrange,
and a patient may, in some cases, have already been diagnosed
with CS 2 h prior to the initiation of MCS. However, the
vast majority of patients had inotropes/vasopressors which are
instituted rapidly after diagnosis rather than a MCS device as
the first intervention. Fourth, the time to CS onset and the
time to intervention may differ across different institutions and
changing institutional practice protocols over time. Finally, this
model was derived from retrospectively obtained data used for
clinical purposes. Prospectively collected data (e.g., continuous
hemodynamic monitoring, serial lactate) may improve precision
for CS prediction but is not widely practical in routine
clinical care.
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