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Most patients present for catheter ablation of atrial fibrillation (CAAF) with residual or

full effect of vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs). In

daily practice, it has been observed that the activated clotting time (ACT) was actually

poorly sensitive to the effect of DOACs and that patients on DOACs required more

unfractionated heparin (UFH) to achieve the ACT target of 300 s during the procedure,

leading some authors to worry about potential overdosing. Conversely, we hypothesize

that these higher doses of UFH are necessary to achieve adequate hemostasis during

CAAF regardless of the residual effect of DOACs. During CAAF, thrombosis is promoted

mainly by the presence of thrombogenic sheaths and catheters in the bloodstream.

Preclinical data suggest that only high doses of DOACs are able to mitigate catheter-

induced thrombin generation, whereas low dose UFH already do so. In addition, the

effect of UFH seems to be lower in patients on DOACs, compared to patients on VKAs,

explaining part of the differences observed in heparin requirements. Clinical studies could

not identify increased bleeding risk in patients on DOACs compared to those on VKAs

despite similar efficacy during CAAF procedures. Moreover, targeting a lower ACT was

associated with an increased periprocedural thrombotic risk for both DOAC and VKA

patients. Therefore, the low sensitivity of the ACT to the residual effect of DOACs should

not be a major concern in its use in the interventional cardiology laboratory.

Keywords: atrial fibrillation, catheter ablation, direct oral anticoagulant, unfractionated heparin, activated clotting

time

INTRODUCTION

Atrial fibrillation (AF) is associated with a significant thrombotic risk, requiring long-term
anticoagulation in patients with intermediate or high thrombotic risk (1–4). Nowadays, vitamin
K antagonists (VKAs) and direct oral anticoagulants (DOACs) are the main anticoagulants
for stroke prevention in non-valvular AF (1–3). Over the years, catheter ablation of atrial
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fibrillation (CAAF) has become a first- or second-line treatment
for symptomatic AF (5). However, the procedure is associated
with a thrombotic risk and requires the administration of
high-dose unfractionated heparin (UFH; between 50 and
120 units per kg just before or immediately after transseptal
puncture), exposing patients to a risk of bleeding (5); reported
incidences of bleeding (e.g., groin bleeding/hematoma, cardiac
tamponade) and embolic (e.g., transient ischemic attacks,
strokes) complications during hospitalization being ∼1.9
and 0.2%, respectively (6). Before ablation, most patients
receive anticoagulation for at least 3 weeks to reduce the
thromboembolic risk associated with CAAF (5).

Historically, VKAs therapy was interrupted and “bridged”
with low molecular weight heparins (LMWH) before and
after CAAF. In 2014, the COMPARE randomized trial
identified a lower rate of periprocedural stroke and minor
bleeding when warfarin was continued with an INR in the
therapeutic range (i.e., between 2.0 and 3.0) throughout the
periprocedural period, compared with discontinuation with
LMWH bridging (7). With the introduction of DOACs in
non-valvular AF patients, due to the concern of potentially
major bleeding and the lack of a convenient reversal agent,
DOACs were discontinued in the preprocedural period. Since
then, several randomized trials have compared CAAF with
uninterrupted DOAC vs. uninterrupted VKA approaches
and found no significant differences between the two groups
in terms of thrombotic and bleeding complications (8–15).
This approach is now recommended over discontinuation
and bridging (5). An acceptable alternative to avoid high
DOAC peak plasma concentrations during CAAF is
to skip one or two DOAC doses before the procedure
(16). However, clinical trials that analyzed uninterrupted
or minimally interrupted approaches for DOACs were
all underpowered.

During the procedure, repeated measurements of the
activated clotting time (ACT) each 10–15min intervals until
therapeutic anticoagulation and then at 15–30min intervals are
recommended to guide UFH administration (5). The test, which
consists in measuring the time to clot formation in whole blood
after complete activation of the contact pathway (e.g., celite
or kaolin), is poorly sensitive to DOACs, especially to direct
factor Xa inhibitors, even at high concentrations corresponding
to the peak effect (17). An ACT maintained above 300 s is
recommended during CAAF on VKA therapy based on studies
visualizing a lower incidence of thrombi in left heart chambers
and according to observational studies (5, 18–20). This threshold
is applied similarly for CAAF on DOAC therapy despite a lower
level of evidence. However, higher UFH doses are required to
achieve the ACT goal of 300 s when DOACs are on board,
compared to VKAs (8, 15, 18, 21–27), which corresponds to
a potential overdosage according to some authors (21, 28).
Conversely, we hypothesize that these higher doses of UFH are
necessary to achieve adequate hemostasis during the procedure
and that considering the residual effect of DOACs would not
be as important as expected. The following paper will get some
insights into the mechanisms of thrombosis during CAAF and
the possibilities to manage them.

DISCUSSION

Mechanisms of Thrombosis During CAAF
by Thermocoagulation
In addition to possible pre-existing thrombi that may be
dislodged by the catheters or by fluctuations in heart rhythm
during the procedure, several mechanisms have been advocated
to explain thrombi formation during CAAF (29, 30). First, direct
endothelial damage may result from the passage of sheaths and
catheters from the femoral vein to the left atrium and from
thermal injuries during the ablation procedure; radiofrequency
ablation could be more thrombogenic than cryoablation by this
mean (31). Second, the contact pathway is activated on the
surface of foreignmateriel (sheaths, catheters) in the bloodstream
(Figure 1) and by cell debris such as DNA or polyphosphates
released during thermoablation. Occasionally, emboli may also
arise from coagulum or char formation on the ablation electrode,
which can be limited by proper technique and does not seem
to depend on hemostasis and anticoagulation (32). Of those
thrombus/coagulum sources, those formed in the left atrium
are particularly dangerous because they are more likely to
embolize into the systemic circulation, whereas emboli formed
in peripheral veins or right chambers can only embolize into the
systemic circulation through an interatrial communication.

During CAAF, intracardiac ultrasound can be used to
directly visualize thrombi formed in the cardiac chambers. Small
observational studies identified that thrombi form primarily
on transseptal sheaths or on mapping catheters (19, 20, 33–
36). Less frequently, thrombi are also seen in the left atrium,
pulmonary vein or left atrial appendix; however, as some of these
thrombi can be extracted by strong suction through the sheath
during its removal, some authors emphasized that those thrombi
could have been initially related to the sheath or the catheter
itself (35). It should be noted that no thrombi are generally
observed on the ablation lesion itself during the procedure
and radiofrequency ablation is not associated with an increase
in in vivo thrombin generation markers (such as thrombin-
antithrombin complexes), compared with the mapping phase
or with single electrophysiological studies (33, 37–39). Taken
together, these data suggest that sheaths/catheters may be the
main source of intracardiac thrombus formation during CAAF.

The thrombogenicity of catheters has been studied in
preclinical models (40–46). Yau et al. demonstrated in vitro
that clot forms three times faster in the presence of catheters
than in their absence (41). They identified that coagulation was
activated on the surface of catheters via the contact pathway, as
the procoagulant effect of the catheters was reduced or reversed
by corn trypsin inhibitor, in plasma deficient in factor XI or XII,
or in rabbits treated with antisense oligonucleotide for factor XII
or XI (41, 42, 45). Another research group demonstrated that
Ixodes ricinus Contact Pathway Inhibitor (Ir-CPI) also has the
potential to reduce the procoagulant effect of catheters in vitro
(46). Interestingly, they showed that catheters were still able to
induce a procoagulant effect in factor XII deficient plasma which
could be abolished by the presence of Ir-CPI, suggesting that
factor XII is not the only coagulation factor implicated in the
activation of the coagulation cascade by catheters (46). As Ir-CPI
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FIGURE 1 | Contact pathway activation at the surface of catheters and targets of anticoagulant drugs. Factor XIIa auto-activates on contact with negatively charged

surfaces. High molecular weight kininogen (HMWK) is also adsorbed and serves as a cofactor for FXIIa auto-activation. FXIIa then activates FXI to initiate thrombin

generation, but also prekallikrein (PK) to kallikrein, resulting in further FXIIa generation. FXIa activates FIX, which forms the intrinsic tenase with FVIIIa. Intrinsic tenase

and prothrombinase complexes form on negatively charged surfaces, classically on the surface of activated platelets, but possibly also on the surface of catheters.

The thrombin generated then amplifies the reaction by promoting the activation of factors XI, VIII and V, but it is also a potent platelet activator. In addition to the

generation of thrombin initiated by FXIIa, other thrombotic mechanisms take place on the surface of catheters (not shown in the figure): the adsorption of proteins

such as fibrinogen, which promotes the adhesion and activation of platelets and leukocytes, potentially increasing thrombin generation and thrombogenesis (47–51).

FXIIa, kallikrein and thrombin also activate the complement system which promotes platelet activation and thrombin generation (53–57). The effect of anticoagulant

drugs is also depicted: unfractionated heparin (UFH) potentiates the inhibitory effect of antithrombin (AT) mainly on free activated factors X and II, but also to a lesser

extent on free activated factors IX, XI and XII (86); clot-bound FXa and FIIa, and FXa within the prothrombinase complex, are less accessible to inhibition by AT

(87–89). Direct oral anticoagulants (direct F Xa inhibitors (xabans) and the direct thrombin inhibitor (DTI) dabigatran) directly inhibit activated factor II or X, free, within

the prothrombinase complex and clot-bound (89–92). Contact pathway inhibitors specifically target factor XI or XII; truncated antibodies against FXIa or FXIIa are

shown in the figure, but this category also includes small inhibiting molecules, antisense oligonucleotides and small interfering RNAs (82).

is a dual inhibitor of both factor XII and factor XI, it is suggested
that factor XI is also involved in the thrombogenesis mechanism
of catheter-induced thrombosis.

As catheters are the primary site of thrombus formation
during CAAF and as these catheters generate thrombin via the
contact pathway, contact pathway inhibition may represent the
primary target of anticoagulation during CAAF. Although tissue
factor (TF) pathway could also contribute to thrombogenesis
during the procedure (endothelial lesions by the passage of the
sheaths and following cellular destruction during transseptal
puncture or the application of thermal energy), UFH at
concentrations required to block contact activation would also
provide protection on TF-initiated thrombin generation.

Besides direct activation of coagulation upon contact with
negatively charged surfaces, other mechanisms can contribute
to thrombin generation during CAAF. First, proteins such as
fibrinogen are adsorbed to the catheter surface, which promotes
platelet adhesion and activation (47–49). Leukocytes can also
adhere to adsorbed fibrinogen and platelets (50, 51); leukocytes
may then degranulate and promote inflammation. Neutrophils
extracellular traps can also activate the coagulation contact
pathway and contribute to thrombin generation (52). In addition,
the complement systemmay be activated by FXIIa, kallikrein and
thrombin, which may then promote thrombosis through platelet
activation and direct thrombin generation (53–57). However, it
is less clear to what extent these mechanisms would contribute
to thrombogenesis and how clinicians might manage them.
Finally, direct measurement of haemostasis proteins/biomarkers
in cardiac chambers could be more sensitive and help to
understand pathogenesis more precisely (58, 59).

Pharmacological Prevention of Contact
Phase Activation
Among the conventional anticoagulants, heparins are preferred
for contact inhibition in the acute setting [e.g., CAAF,
extracorporeal circuits, mechanical heart valves (MHV)]
(Figure 1). Previous work identified that inhibition of catheter-
induced thrombin generation was more effective with UFH
than with LMWH and poorly effective with fondaparinux,

which was also ineffective at blocking FXIIa- and FXIa-initiated
thrombin generation (41). Similar results were also observed in

a rabbit model of catheter thrombosis (41). This could be due

to the greater anti-IIa activity of UFH, compared to LMWH or

fondaparinux, or to its upstream effect on free FIXa (60).

Whereas, UFH strongly inhibits contact-initiated thrombin

generation, the ability of DOACs to do so may be much less.

For example, only dabigatran concentrations of 200 ng/mL and

above were able to attenuate in vitro polyurethane catheter-

induced thrombin generation, whereas UFH concentrations as
low as 0.02 IU/mL could already do so (43). No data are

available regarding the ability of direct anti-Xa to mitigate

catheter-induced thrombin generation. However, preclinical

studies are available in other contact pathway activation models

such as mechanical heart valves (MHV). As with catheters

models, dabigatran, but also apixaban and rivaroxaban had
limited ability to suppress MHV-induced thrombin generation at

concentrations consistent with those observed in therapeutically

anticoagulated patients (61, 62). Therefore, it is questionable

whether full consideration of residual DOACs levels is relevant
for thrombosis prevention during CAAF.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 864899

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Hardy et al. Uninterrupted DOACs for CAAF

Another important aspect to consider is the
pharmacodynamic interaction between UFH and oral
anticoagulants. Unfortunately, few data are available regarding
this topic. A pharmacokinetic-pharmacodynamic study
performed in CAAF patients identified that the response to
intravenous UFHwas similar between patients on dabigatran and
patients without baseline anticoagulation (same ACT increase
for a given UFH bolus), but was enhanced in patients on VKAs
(increased ACT increase for a given UFH bolus) (63). However,
dabigatran was often skipped for one dose before the procedure,
probably resulting in low plasma concentrations, which limits
the findings of the study. Using thrombin generation, other
authors identified a reduced response to the in vitro addition of
0.1 IU/mL UFH to the plasma of patients on DOACs (both at
Cpeak and Ctrough), compared with the plasma of patients on
VKA or healthy volunteers. The response to UFH was greater
for samples with dabigatran than for samples with direct anti-Xa
inhibitors (64). Finally, Yau et al. identified a synergistic effect on
delaying the time to catheter occlusion in rabbits when low-dose
dabigatran and UFH were administered concomitantly (43).

Monitoring of UFH During CAAF—The
Activated Clotting Time
During CAAF, UFH administration is guided using the ACT. A
variety of devices and cartridges are available, differing in the
activator used (e.g., celite, kaolin, glass beads or a combination of
these) and the method of measurement (e.g., rotation of a tube,
a plunger or movement through capillaries) (17). Systematic
differences exist between available ACT devices [which may
be more than 100 s in heparinized patients (65–68)], which
cannot be used interchangeably (65–71). However, in clinical
guidelines, fixed ACT targets (i.e., 300 s) are proposed without
differentiating devices (5), which adds variability in the level
of anticoagulation achieved from center to center. In addition,
various preanalytical variables may influence the ACT, such as
blood collection technique (e.g., site of blood collection, amount
of blood discarded before sampling, velocity of aspiration during
sampling) and processing (e.g., time-interval between collection
and analysis, agitation of the sample, prewarming of the reagent)
(72, 73). As a result, this could also lead to huge variations in UFH
dose administered.

Although the excellent correlation between ACT and UFH
concentrations with in vitro spiking of whole blood (74, 75), the
association between ACT and ex vivo heparin levels assessed with
an anti-Xa assay is poor, especially at high UFH concentrations
such as those used during CAAF (i.e., 1–2 IU/mL) (76). Unlike
UFH, the ACT shows poor sensitivity to DOACs in vitro,
especially to direct factor Xa inhibitors (inability to achieve ACTs
>200 s even at supratherapeutic concentrations), whereas its
sensitivity to dabigatran, the only direct factor IIa inhibitor, is
better (77). When using samples from patients on DOAC, the
correlation with direct factor Xa inhibitors levels is even worse
(28). As a result, and because of uninterrupted preoperative
anticoagulation attitudes, some patients may present in the
interventional cardiology laboratory with therapeutic DOACs

blood levels with only small ACT prolongations, especially for
direct factor Xa inhibitors (78, 79).

Outcomes in Clinical Studies
Some authors suggested that the higher doses of UFH
administered to patients on DOACs, compared with patients
on VKAs, could be detrimental by adding to the residual
effect of uninterrupted DOACs, putting patients at increased
bleeding risk (21, 28). However, meta-analyses of randomized
trials and observational studies comparing uninterrupted VKA
and DOAC treatment approaches are reassuring, identifying no
increase in bleeding risk with DOACs compared with VKAs
(80, 81); dabigatran was even safer than VKAs in the RE-
CIRCUIT randomized trial [absolute risk difference −5.3%
(95% confidence interval: −8.4 to −2.2%), p < 0.001] (10).
Furthermore, these increased doses of UFH appear to be
necessary to prevent thrombosis during CAAF. Indeed, another
meta-analysis identified that, similarly to the uninterrupted
VKAs approach, achieving an ACT>300 s for patients on DOAC
therapy was associated with a reduced risk of thromboembolic
events, compared with an ACT target of <300 s (18). Overall,
this suggests that the lack of integration of DOACs levels by
the ACT and the hassle of administrating higher UFH doses
with the uninterrupted DOAC approach are not worrying in
terms of clinical endpoints. Worse, aiming for lower ACTs for
fear of overanticoagulation could be deleterious by increasing
thrombotic risk.

Future Directions
Due to the expected predominant role of the contact pathway in
procedural thrombosis, contact pathway inhibitors are attractive
for anticoagulation during CAAF. Contact pathway inhibitors
are pharmacologic agents targeting specifically factor XII or XI
using truncated antibodies, small inhibiting molecules, antisense
oligonucleotides (ASO) or small interfering RNAs (82). These
molecules are able to profoundly block contact activation with
no effect on hemostasis initiated by TF exposure. At present,
these molecules have been used successfully in preclinical models
of extracorporeal life support (83, 84), and were associated
with excellent thrombosis prevention with minimal bleeding risk
(sometimes lower than UFH). In human, FXI ASO were more
effective than LMWH to prevent venous thrombosis after total
knee arthroplasty with a lower incidence of clinically relevant
bleeding (85). However, the utilization of these molecules during
CAAF should be done with caution as the contribution of
TF-induced thrombin generation to thrombosis during the
procedure remains unresolved. Whether this mechanism does
significantly contribute to thrombosis, and whether residual
VKAs or DOACs concentrations in the context of uninterrupted
approaches would be enough to counter this specific risk would
deserve to be carefully studied.

CONCLUSION

Although the activated clotting time is poorly sensitive to
the effect of direct factor Xa inhibitors, the latter may not
be very effective in mitigating catheter-induced thrombin

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 March 2022 | Volume 9 | Article 864899

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Hardy et al. Uninterrupted DOACs for CAAF

generation, at least at concentrations encountered in the
interventional cardiology laboratory. Furthermore, the higher
UFH doses required to achieve the ACT target of 300 s
in patients on uninterrupted DOAC therapy, compared
with those required in an uninterrupted VKA approach,
do not appear to dangerously compromise the hemostatic
competence of those patients, as evidenced by available
randomized controlled trials and meta-analysis. Although
the reliability of the ACT for assessing overall coagulation in
the presence of high-dose heparin may still be questioned,
its low sensitivity to the residual effect of direct factor Xa
inhibitors is not a major concern in its use in the interventional
cardiology laboratory.
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