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Background: Dilated cardiomyopathy (DCM) is characterized by left ventricular
dilatation and systolic dysfunction. The pathogenesis and etiologies of DCM remain
elusive. This study aims to identify the key genes to construct a genetic diagnosis model
of DCM.

Methods: A total of 257 DCM samples from five independent cohorts were enrolled.
The Weighted Gene Co-Expression Network Analysis (WGCNA) was performed
to identify the key modules associated with DCM. The latent mechanisms and
protein-protein interaction network underlying the key modules were further revealed.
Subsequently, we developed and validated a LASSO diagnostic model in five
independent cohorts.

Results: Two key modules were identified using WGCNA. Novel mechanisms related
to the extracellular, mitochondrial matrix or IL-17 signaling pathway were pinpointed,
which might significantly influence DCM. Besides, 23 key genes were screened out
by combining WGCNA and differential expression analysis. Based on the key genes, a
genetic diagnosis model was constructed and validated using five cohorts with excellent
AUCs (0.975, 0.954, 0.722, 0.850, 0.988). Finally, significant differences in immune
infiltration were observed between the two groups divided by the diagnostic model.

Conclusion: Our study revealed several novel pathways and key genes to provide
potential targets and biomarkers for DCM treatment. A key genes’ diagnosis model
was built to offer a new tool for diagnosing DCM.
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INTRODUCTION

Dilated cardiomyopathy (DCM) is defined by left ventricular
dilatation and systolic dysfunction in the absence of known
abnormal loading conditions or significant coronary artery
disease (1). DCM patients usually have a progressively
exacerbated condition and poor prognosis. Deaths could
exist in any stage of DCM. The prevalence of DCM was > 1 per
250 individuals (2). Moreover, the prevalence of cardiomyopathy
had risen by 27% in just 10 years, according to the Global
Burden of Disease study in 2015. The last decades have seen
large advances in our understanding of cardiomyopathy.
DCM could be classified as genetic, mixed, or acquired forms
(3). Mutations in genes that encode cytoskeleton, sarcomere,
transcriptional pathways, nuclear envelope, and mitochondrial
proteins are genetic causes of DCM. Etiologies of acquired DCM
are various, including infections, autoimmunity, toxins, and
endocrine disorders (4). However, numerous cases are always
categorized as idiopathic DCM because of limited diagnostic
conditions, which leads to symptomatic rather than specific
treatment (5). To date, the genetic factors and pathogenesis of
DCM are still not fully understood. Due to unclear etiologies,
there were few specific treatments of DCM. Therefore, further
studies need to be carried out to investigate the potential
mechanisms of DCM. Also, accurate diagnostic approaches are
urgently needed.

Previously, most of the common pathogenic genes of DCM
were identified from basic research, such as TTN and LMNA (6,
7). Few studies used bioinformatic methods to explore potential
genes of DCM. In recent years, high-throughput sequencing
technologies accelerated the development of medical studies,
offering a powerful tool to detect possible gene mutations of
diseases. Machine-learning developed rapidly and is widely used
in medical research artificial intelligence (AI), which is usually
used for dimensionality reduction. Based on that, our study
proposed a genetic diagnosis model of DCM, which might exert
distinct influences for clinical diagnosis.

This study aims to identify underlying genes and construct an
ideal genetic diagnosis model. The microarray data were collected
from the Gene Expression Omnibus (GEO).1 Twenty-three key
genes of DCM were screened out based on WGCNA and
differential analysis, most of whom were never reported before.
Besides, we pinpointed several mechanisms highly associated
with DCM according to functional analysis of key genes.
Furthermore, we built a genetic diagnosis model and validated
it in four cohorts. Additionally, more analyses were conducted to
explore DCM comprehensively in this study.

MATERIALS AND METHODS

Dataset Collection and Preprocessing
Five datasets [GSE5406 (n = 102), GSE57338 (n = 218),
GSE116250 (n = 51), GSE42955(n = 17), GSE19303(n = 48)]
were selected out from Gene Expression Omnibus (GEO)

1http://www.ncbi.nlm.nih.gov/geo/

database using keywords “dilated cardiomyopathy” or “DCM,”
including 257 DCM samples and 179 controls. The screening
criteria were as follows: First, the dataset must include the
DCM cases and controls. Second, all samples should be derived
from ventricular myocytes. Third, the number of samples
should be greater than 10 to ensure the quality of WGCNA.
Fourth, the raw or processed data should be available in
the GEO database for subsequent analysis. Gene expression
matrices of five datasets were extracted using the R. Then, a
gene expression matrix of overlapped genes was obtained after
taking the interaction of five datasets, which was the input file
of WGCNA.

Weighted Gene Co-expression Network
Analysis
Weighted Gene Co-Expression Network Analysis (WGCNA)
has become an effective tool to screen key genes with high
biological significance, which inspired researchers to explore
the mechanisms of diseases. To identify key modules highly
correlated with DCM, WGCNA was performed with WGCNA
package (8) in R. The expression of genes was ranked in
descending order, calculated by the standard deviation (SD).
Then, the top 5,000 genes were selected for further analysis.
Moreover, we performed a hierarchical clustering analysis to
exclude the outlier samples for the rationality of WGCNA.
The Pearson correlations value between each gene pair was
calculated to obtain a gene similarity matrix. Then, the formula,
aij = | Sij | β (aij: adjacency matrix between gene i and j, Sij:
similarity matrix of all gene pairs, β: the soft threshold) was
used to construct adjacency matrix. The optimal β was selected
to satisfy the scale-free distribution by the “pickSoftThreshold”
function in the WGCNA package, making the correlations more
distinguishable. Next, the adjacency matrix was transformed to
topological overlap matrix (TOM) and 1—TOM, reflecting the
similarity and dissimilarity among genes, respectively. Finally, we
utilized the hierarchical clustering method to classify genes into
different modules. The module eigengene (ME) was calculated,
representing the gene expression profiles of each module. The
modules that highly correlated with DCM were key modules for
further analysis. A value of P < 0.05 was considered statistically
significant. The settings of parameters were as follows. The soft
threshold β = 9, minModuleSize = 50, mergeCutHeight = 0.3
and deepSplit= 2.

Protein-Protein Interaction Network
Search Tool for Retrieval of Interacting Genes/Proteins (STRING
version 11.0) is a database to construct a protein-protein
interaction (PPI) network, including human proteins and their
interactions (9). We built a PPI network of the key modules
using the database. Subsequently, we visualized the network with
Cytoscape software (version 3.9.0) (10). The confidence score
was set to 0.4. Then, the cluster with most genes was extracted
with Molecular Complex Detection (MCODE), a plug-in of
Cytoscape, which can analyze the topological characteristics of
the PPI network. The parameters of MCODE were all set using
default settings.
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Gene Ontology and Pathway Analysis
The genes of key modules were subjected to functional
enrichment analysis, including Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
The clusterProfiler R package was used in these processes with an
adjusted P-value < 0.05.

Differential Expression Analysis
The three datasets (GSE5406, GSE57338, GSE116250) were
utilized to identify differentially expressed genes (DEGs) with the
“limma” R package. | log2(foldchange)| > 0.667 and the adjusted
p-value < 0.05 were used as screening criteria. Furthermore, the
up-regulated and down-regulated genes were taken interactions
across three cohorts, respectively. Subsequently, to further
determine highly positively correlated genes in key modules,
intersections were taken again between the results of WGCNA
and differential analysis.

Construction and Validation of
Diagnostic Model
The initial model construction was performed in GSE57338.
Least absolute shrinkage and selection operator (LASSO) is
an algorithm generally used in medical studies to select the
best variables for the diagnostic model (11–13). The optimal
λ was determined by setting cross-fold validation to 10. We
used the “glmnet” (14) R package to perform LASSO, setting
alpha to 1. Four datasets (GSE5406, GSE116250, GSE42955,
GSE19303) were implemented as validation cohorts to verify
the diagnostic performance. Receiver operating characteristics
(ROC) were plotted to assess the diagnostic model. The LASSO
model gave each sample a risk score for the diagnostic prediction.
The median value of risk scores was employed as the criteria for
grouping in GSEA.

Gene Set Enrichment Analysis
To explore potential mechanisms closely associated with the
risk of DCM, we classified the samples of the modeling dataset
into high-risk and low-risk groups according to the median
risk score. Next, the correlations were calculated between the
risk score of each sample and the expression of each gene.
Then, we ranked genes in descending order based on the
correlations. Finally, Gene Set Enrichment Analysis (GSEA) was
performed using two collections (c5.go.v7.4.symbols.gmt and
c2.cp.kegg.v7.4.symbols.gmt) in Molecular Signatures Database.
| NES| > 1.50, adjusted P-value < 0.01, and FDR < 0.01 were
determined as cutoff criteria.

Analysis of Immune Infiltration
The single-sample GSEA (ssGSEA) is an extension of GSEA,
which can generate the enrichment score for an individual
sample. ssGSEA is a widely used algorithm to calculate the
abundance of various immune cells, pathways or functions based
on the gene expression profiles of a given sample (15–17).
To observe differences in immune infiltration between high-
risk and low-risk groups, we used ssGSEA to calculate each
sample’s abundance of infiltrating immune cells with GSVA
v1.42.0 package in R (18). The differences between the two groups

were visualized intuitively in different plots. Additionally, we
calculated the correlation coefficients between the risk scores
of samples and the abundance of immune cells to explore the
primary immune cells that participate in the process of DCM.

Statistical Analysis
Statistical analyses and plotting were conducted in R (version
4.0.5). Pearson’s correlations and Spearman’s correlation were
performed to calculate correlations. The most valuable genes with
non-zero coefficients were selected by LASSO logistic regression.
Statistical significance was considered at P < 0.05.

RESULTS

Data Collection
Based on the criteria mentioned above, five independent datasets
were selected from GEO. The details of these datasets were shown
in Supplementary Table 1, including the basic information of
datasets and functions in our study. The workflow of this study
was shown in Figure 1.

The Construction of Gene Co-expression
Network
GSE5406 dataset was utilized as the training dataset of WGCNA.
Before the network construction, we calculated the gene
correlation matrix in order to meet the scale-free network for
the biological hypothesis. The matrix was further converted
to the adjacent matrix via the soft threshold β. As illustrated
in Figures 2A,B, R2 achieved more than 0.9 when β = 9,
which became the power of our adjacency matrix. To make
the segmentation of modules easier, the topological overlap
matrix (TOM) was transformed from the adjacency matrix and
displayed in Figure 2C. Subsequently, 13 co-expression modules
were identified using the hierarchical clustering method. An
eigengene adjacency heatmap depicted the correlations between
modules (Figure 2D). The eigengene represented the gene
expression profile of each module. To simplify the network, we
merged modules according to the similarity > 0.75 (Figure 2E).
Ultimately, 11 modules were identified, two of which were highly
relevant to DCM (Figure 3A). The purple module had the
strongest positive correlation with DCM, including 221 genes.
The magenta module was significantly negatively correlated
with DCM, including 262 genes. The associations among genes,
module membership, and the presence of disease were shown in
Figures 3B,C.

Functional Enrichment Analysis of Key
Modules
To evaluate the functional enrichment of 2 key modules, we
performed GO and KEGG pathway analysis. Genes of the purple
module were significantly enriched in “extracellular matrix
organization,” “extracellular structure organization,” “external
encapsulating structure organization,” all of which were terms
about extracellular matrix (ECM), as shown in Figure 3D.
KEGG pathway terms were related to “Protein digestion and
absorption,” “Focal adhesion,” and “ECM-receptor interaction,”
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FIGURE 1 | The workflow of this study.

which may play essential roles in DCM (Figure 3E). Meanwhile,
the top 3 GO terms were enriched by genes of the magenta
module, including “response to lipopolysaccharide,” “response
to molecule of bacterial origin,” and “stress response to copper
ion,” which were mainly associated with bacterial infection
(Figure 3F). The KEGG pathways suggested that the IL-
17 signaling pathway and lipid metabolism may be potential
pathways of DCM (Figure 3G).

The Hub Genes of Key Modules
To seek the hub genes and pathways of two modules, the
purple and magenta modules were combined to construct
the PPI network and identify the hub genes using Cytoscape
and MCODE. Consequently, the largest cluster consists of 30

hub genes such as BGN, COL1A1, COL1A2, FBLN1, FBLN2,
THBS1, THBS2 etc., which symbolized genes of two modules
to some extent (Figure 4A). To validate the importance of
these hub genes, we also performed GO and KEGG pathway
analysis (Figures 4B,C). The result was highly like the purple
module’s functional enrichment such as “Extracellular matrix
organization,” and “Focal adhesion,” either GO or KEGG
pathway. Hence, these similar GO terms or KEGG pathways may
have crucial implications for DCM.

Identification of Key Genes
Three datasets (GSE5406, GSE57338, GSE116250) were
enrolled in differential expression analysis, including 205 DCM
samples and 174 controls. According to the filtering criteria
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FIGURE 2 | The construction of weighted gene co-expression network. (A) Scale-free topological indices at various soft-thresholding powers. (B) The correlation
analysis between the soft-thresholding powers and mean connectivity of the network. (C) The heatmap of the topological overlap matrix of genes selected by
WGCNA. (D) The heatmap of the eigengene adjacency. (E) Gene clustering diagram based on hierarchical clustering under optimal soft-thresholding power.
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FIGURE 3 | Correlations between gene modules and DCM; GO, and KEGG enrichment analysis. (A) Correlations between gene modules and DCM status. (B) The
correlation between the purple module memberships and the gene significance for DCM. (C) The correlation between the magenta module memberships and the
gene significance for DCM. (D) Go enrichment analysis of genes in the purple module. (E) KEGG pathway analysis of genes in the purple module. (F) GO enrichment
analysis of genes in the magenta module. (G) KEGG pathway analysis of genes in the magenta module.
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FIGURE 4 | Protein-protein network and functional enrichment analysis of hub genes. (A) The protein-protein network of two modules. (B) GO enrichment analysis
of the hub genes. (C) KEGG pathway analysis of the hub genes.

(| log2(foldchange)| > 0.667 and p-value < 0.05), we obtained
67 up-regulated genes and 71 down-regulated genes from
GSE5406 dataset. GSE57338 dataset has 112 up-regulated genes
and 102 down-regulated genes. GSE116250 dataset has 669
up-regulated genes and 675 down-regulated genes. The result
of the differential analysis was visualized in Figures 5A–F.
Then, to identify the common DEGs of three datasets, we
took intersections of up-regulated and down-regulated genes,
respectively. The Venn diagram depicted the intersections
(Figures 5G,H). As a result, there are 19 common up-regulated
genes and 10 common down-regulated genes. Next, we filtered

the key genes of WGCNA and differential analysis. A total of
23 key genes were identified, including fifteen key up-regulated
genes and eight key down-regulated genes. All 23 genes were
prepared for input variables of LASSO.

Construction and Validation of Genetic
Diagnosis Model
GSE57338 dataset was selected as the modeling dataset because of
the largest sample size (82 DCMs and 136 controls). LASSO was
applied to establish a diagnostic model using 23 genes previously

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 April 2022 | Volume 9 | Article 865096

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-865096 April 20, 2022 Time: 15:42 # 8

Zheng et al. A Diagnostic Model of DCM

FIGURE 5 | Differential expression analysis of three datasets and intersections for key genes. (A–C) Heatmaps of DEGs in three datasets (GSE5406, GSE57338,
GSE116250). (D–F) Volcano plots of DEGs in three datasets (GSE5406, GSE57338, GSE116250). (G) The intersection between the up-regulated genes of three
datasets and genes of the purple module. (H) The intersection between the down-regulated genes of three datasets and genes of the magenta module.
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mentioned. After analyzing, 10 genes had non-zero coefficients
and were used for the final LASSO regression model (Figure 6A).
Among these genes, six (PTN, ECM2, LRRC17, ISLR, DPT,
NPPA) were upregulated in DCM while four (FCN3, VSIG4,
CD163, PLA2G2A) were downregulated. The expression levels
of 10 genes were validated in five datasets, which corresponded
with our results basically (Supplementary Figure 1). The
optimal λ was 0.026 (Figure 6B). The final model equation was:
risk score = 0.376 + 0.050∗PTN + 0.075∗ECM2 + 0.005∗
LRRC17 + 0.074∗ISLR—0.038∗FCN3 + 0.006∗DPT—
0.024∗VSIG4 + 0.038∗NPPA—0.083∗CD163—0.085∗ PLA2G2A.
To validate the 10-gene diagnostic model, GSE5406, GSE19303,
GSE42955, and GSE116250 were adopted as validation datasets.
Then, plus the modeling dataset, a total of five ROC plots
were displayed with AUCs (GSE57338: 0.975; GSE5406: 0.954;
GSE116250: 0.988; GSE42955: 0.850; GSE19303: 0.722). To
analyze the model’s superiority, we compared 10 genes with
NPPB and TNNI3, genes of BNP and troponin, respectively
(Figures 6C–G). The LASSO model performed significantly
better than clinical biomarkers in most cohorts, representing that
a relatively ideal diagnostic model was obtained.

Prediction of Potential Pathways With
Gene Set Enrichment Analysis
Prior to GSEA, the risk score and gene expression correlations
were calculated and used for ranking genes. Then we conducted
GSEA to explore the potential pathways of DCM. The most
significant GO terms and KEGG pathways were exhibited
in Figures 7A,B. Four positively correlated GO terms were
enriched (Figure 7C), including “extracellular matrix structural
constituent,” “cilium organization,” “mitochondrial matrix”
and “collagen containing extracellular matrix.” Notably, terms
about “extracellular matrix” were enriched once again, which
is highly similar to the purple module’s functional enrichment.
Arguably, the “extracellular matrix” is probably an essential
pathway of DCM. The negative enrichment is shown in
Figure 7D. On the other hand, the top 5 positive KEGG
pathways were “valine leucine and isoleucine degradation,”
“butanoate metabolism,” “Parkinson’s disease,”
“graft vs. host disease,” and “citrate cycle TCA cycle”
(Figure 7E). It was immune and molecule metabolism that
genes were mainly enriched in. Relatively, the adverse pathways
were “pathogenic escherichia coli infection,” “apoptosis,”
“acute myeloid leukemia,” “B cell receptor signaling pathway,”
and “chronic myeloid leukemia” (Figure 7F). So, we can
rationally infer that DCM and myeloid leukemia may have
common pathways.

Immune Infiltration Analysis
To gain insight into the immune infiltration of DCM, we used
ssGSEA to calculate the immune cells abundance of the modeling
dataset. Next, the risk score and immune cell abundance
correlations were calculated (Figure 8A). It was noteworthy that
T helper cells, B cells, and Th2 cells were significantly associated
with DCM risk. The correlation of immune cells is plotted in
Figure 8B. Additionally, the median risk score was used to

classify the samples into high-risk and low-risk groups. Then we
compared the immune infiltration of two groups (Figures 8C,D).
The differences in immune infiltration were noticeable between
high-risk and low-risk groups.

DISCUSSION

The pathogenesis of DCM remains unclear, resulting in non-
specific treatments. Mechanical circulatory support and cardiac
transplantation could probably prolong survival and reduce
hospitalization in adults and children (19, 20). Hence, identifying
potential genes and mechanisms of DCM is crucial for exploring
new therapies and improving prognosis.

In our study, there were two modules that had high
correlations with DCM, including the purple and the magenta
module, which consists of 221 and 262 genes, respectively. GO
terms about extracellular matrix (ECM) and focal adhesion
were mainly enriched in the purple module. The maladaptive
remodeling of ECM usually contributes to heart failure, including
abnormal ECM degradation and immoderate ECM deposition.
Then, the systolic and diastolic function of the heart would be
impaired by these alterations (21). Similarly, the ECM-receptor
interaction was also a significant term in KEGG pathways. The
ECM cues were transmitted to intracellular signaling pathways
by integrin, which can regulate cell apoptosis and movement.
The reduction of integrin leads to ventricular dilatation and
failure (22). It should be noted that the decrease of focal
adhesion kinase (FAK) influences the intact function of integrin
in DCM (23). Therefore, the genes in the “focal adhesion”
pathway also play an essential role in the pathogenesis of DCM.
Consequently, pathways related to the extracellular matrix may
become potential intervention targets.

The magenta module was strongly negatively correlated with
DCM. Genes in the magenta module were primarily enriched in
the GO terms, such as “response to lipopolysaccharide,” “response
to molecule of bacterial origin,” “response to oxidative stress.”
It has been revealed that inflammation and oxidative stress are
conducive to the development of DCM (24). Inflammation was
often caused by bacterial infection. Notably, lipopolysaccharide
(LPS) is a component of the outer wall in bacterial cell walls,
exhibiting various biological activities when it acts on human
cells (25). In addition, as one of the endotoxins, LPS can induce
an inflammatory response by multiple cytokines, such as IL-6
(26). Oxidative stress plays a part in the process of heart failure,
especially in DCM (27). Researchers found there was usually an
increase of oxidative stress in the failing myocardium, which was
likely to impact ventricular function in patients with DCM (28).
On the other hand, there were several prominent enrichment
of KEGG pathways of the magenta module, such as “IL-17
signaling pathway,” “Human T-cell leukemia virus 1 infection,”
“Lipid and atherosclerosis.” These pathways were related to
inflammation and immune. Studies have confirmed that IL-17
participates in cardiac remodeling induced by inflammation in
post-myocarditis, resulting in DCM progression. IL-17 signaling
pathway relies on T helper cells greatly. Researchers found that
γδ T cells releasing IL-17 were the main T-cell population

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 April 2022 | Volume 9 | Article 865096

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-865096 April 20, 2022 Time: 15:42 # 10

Zheng et al. A Diagnostic Model of DCM

FIGURE 6 | The construction and validation of the LASSO diagnostic model. (A) The processes of LASSO regression for screening variables and mapping each
variable to a curve. (B) The log (λ) value was optimally selected by 10-fold cross-validation and plotted by the partial likelihood deviance. (C–G) The ROC curves of
the LASSO model, NPPB, and TNNI3 in five datasets (GSE57338, GSE5406, GSE116250, GSE42955, GSE19303).
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FIGURE 7 | Gene Set Enrichment Analysis. (A) The ridge plot of the top 20 GO terms with ranked genes of the modeling dataset. (B) The ridge plot of the top 20
KEGG pathways with ranked genes of the modeling dataset. (C,D) The positive and negative top 5 GO terms with ranked genes of the modeling dataset. (E,F) The
positive and negative top 5 KEGG pathways with ranked genes of the modeling dataset.

observed in the cardiomyopathy samples of mice (29). Studies
also showed that IL-17A, mainly released by Th17 cells, plays a
critical role in the progression of DCM and cardiac remodeling

in mice. IL-17 may lead to the heart-specific upregulation of IL-
6, TNFalpha, and IL-1beta and the recruitment of CD11b (+)
monocyte and Gr1(+) granulocyte populations into the heart
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FIGURE 8 | Immune infiltration analysis. (A) The lollipop plot of the correlation between the risk score and immune infiltration. (B) The heatmap of the correlations
between different immune cells. (C) The heatmap of the immune infiltration in high and low-risk groups. (D) The boxplot of the immune infiltration in high and low-risk
groups. *P < 0.05, **P < 0.01, ***P < 0.001. ****P < 0.0001; ns, no significance.
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(30, 31). For this reason, treatment of anti-IL-17 monoclonal
antibody has been applied in mice with myocarditis and gained
a desirable efficacy of abrogating cardiac fibrosis and slowing
down the aggravation of ventricular function (30). Since that, we
can rationally assume that anti-IL-17 therapy might be a novel
thought for patients with DCM.

In this study, the novel genes were obtained from the
intersection of WGCNA and DEA, including 23 genes. Huang
et al. performed DEA and identified some hub genes of DCM
using GSE5406 dataset, which still differed crucially from our
study (32). Our study enrolled four more datasets and used
a more robust method to filter the DEGs, which was the
combination with WGCNA. Hence, the latent mechanisms
revealed in our study were more convincing and powerful.
Furthermore, we employed a bunch of methods to gain an
insight into DCM, making our study more comprehensive.
Compared to other studies using WGCNA or DEA alone to
identify genes (33, 34), the genes screened from two methods
combined were more persuasive and valuable. These genes were
not only from the key modules highly associated with DCM
but also had differential expression between DCM samples
and controls, which were more likely to be biomarkers in
the foreseen future. Twenty-three key genes were used for
dimensional reduction to build a gene diagnostic model. The
classical LASSO was chosen from various machine-learning
algorithms because of its excellent performance. Based on the
optimal λ, an ideal diagnostic model was established by 10
genes. Except for the modeling dataset (GSE57338), another
four were utilized as validation datasets to make the model
more reliable and rigorous. Reassuringly, all AUCs were greater
than 0.7, ranging from 0.722 to 0.988, which were completely
acceptable. Huang et al. used LASSO to establish a prediction
model of heart failure in DCM patients (32). To validate the
value of genes in the prediction model, we compared it with
our model in several datasets containing 12 genes of the model.
Consequently, our diagnostic model showed a superior ROC
significantly in two datasets (Supplementary Figure 1). Given
the superb performance against the clinical biomarkers and other
studies, our model may provide new diagnostic ideas to improve
clinical practice.

We applied GSEA in exploring the critical mechanisms of
DCM. Surprisingly, terms about extracellular matrix (ECM)
still took a leading role, compared to the result mentioned
previously. Apart from this, the mitochondrial matrix was also
critical for DCM. Gene mutations could lead to mitochondrial
alterations and worsen DCM. For instance, the most common
genetic cause of DCM, truncating titin (TTN) variants,
lead to pronounced mitochondrial dysfunction with increased
ventricular arrhythmias, which are the lethal causes of DCM
(35). KEGG pathways were mainly about metabolism. The citric
acid cycle is a basic metabolism, playing a vital role in multiple
metabolic pathways. Furthermore, Haas et al. (37) found that
several metabolites connected with the citric acid cycle were
significantly up-regulated with 5.7-fold in DCM. It is known
that the citric acid cycle takes place in the mitochondrial matrix.
Therefore, the mitochondrial matrix is inextricably linked to the
metabolic pathways obtained from KEGG analysis. Although

Parkinson’s Disease is hard to associate with DCM, these two
diseases are indeed related. Regardless of the epidemiological
linkages between them, common underlying mechanisms were
proposed by Bhandari et al. (37). Parkin deficiency can result in
the disruption of mitochondria. Then, the disrupted and normal
mitochondria fuse, exacerbating DCM. According to this, the
sharing pathways of Parkinson’s Disease and DCM probably
turn out to be rational therapeutic targets, which will benefit
the patients of two intractable diseases. As we assumed, there is
indeed an association between leukemia and DCM. By regulating
H3K4me2, mixed lineage leukemia 3 (MLL3) might impact
the pathological process of DCM, which is a member of MLL
families. With the increase of MLL3 expression, the H3K4me2
also elevated in the DCM hearts (38). Even if the evidence is still
lacking to demonstrate the relationship between acute or chronic
myeloid leukemia, studies exploring the linkage are promising.

Immune infiltration analysis revealed apparent differences
between the high-risk and low-risk groups according to the
lollipop plot, boxplot, and heatmap. T helper cells, B cells,
and Th2 cells were significantly correlated with the risk of
DCM, according to the analysis. These immune cells, as we
know, are primarily involved in humoral immunity. Humoral
immunity impacts DCM by numerous autoantibodies against
cardiac cell proteins (39). However, immunoadsorption therapy
resists the impaction by removing active autoantibodies
from plasma. Besides, a significant increase of Th2 cells
was observed in DCM patients compared with healthy
volunteers, which is highly consistent with our results (40).
Macrophages usually play a critical role in myocarditis.
However, in our analysis, macrophages showed a negative
correlation with DCM. In mice with dilated cardiomyopathy,
reduction of CCR2- macrophages increased mortality and
hindered ventricular remodeling and coronary angiogenesis,
adaptive processes required to sustain cardiac output in
the face of diminished cardiac contractility, according to a
recent research (41). Another study found that self-renewing
resident cardiac macrophages help to prevent unfavorable
remodeling after myocardial infarction (42). Consequently,
immunotherapy may exert a significant influence among specific
patients with DCM.

LIMITATIONS

We acknowledge some limitations in this study. First, all initial
data were downloaded from the GEO database, lacking our own
clinical data. Second, the keywords “dilated cardiomyopathy”
and “DCM” could hardly cover all the investigations of DCM,
which were suitable for our study. Thirdly, a sudden reduction
of DEGs occurs when we added GSE42955 and GSE19303 into
the differential analysis. In order to preserve the valuable genes
for an ideal LASSO model, we decided to use three datasets to
conduct differential analysis. Besides, DEGs from three datasets
were taken intersections with the genes in the key modules
of WGCNA, which made our key genes more robust and
convincible. To relieve the concern about the left two datasets
(GSE42955 and GSE19303), they were employed as validation
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cohorts to check the performance of the diagnostic model, which
showed acceptable AUCs as well.

CONCLUSION

In conclusion, this study identified 23 key genes and several
crucial pathways of DCM using combined bioinformatic
methods, which may inspire researchers to investigate further.
We also constructed a 10-gene diagnostic model, offering a novel
tool for diagnosing DCM in clinical practice.
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