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Background: The identification of latent atrial fibrillation (AF) in patients with ischemic

stroke (IS) attributed to noncardioembolic etiology may have therapeutic implications.

An artificial intelligence (AI) model identifying the electrocardiographic signature of AF

present during normal sinus rhythm (NSR; AI-ECG-AF) can identify individuals with a

high likelihood of paroxysmal AF (PAF) with NSR electrocardiogram (ECG).

Objectives: Using AI-ECG-AF, we aimed to compare the PAF risk between

noncardioembolic IS subgroups and general patients of a university hospital after

controlling for confounders. Further, we sought to compare the risk of PAF among

noncardioembolic IS subgroups.

Methods: After training AI-ECG-AF with ECG data of university hospital patients, model

inference outputs were obtained for the control group (i.e., general patient population)

and NSRs of noncardioembolic IS patients. We conducted multiple linear regression

(MLiR) and multiple logistic regression (MLoR) analyses with inference outputs (for MLiR)

or their binary form (set at threshold = 0.5 for MLoR) used as dependent variables and

patient subgroups and potential confounders (age and sex) set as independent variables.

Results: The number of NSRs inferenced for the control group, cryptogenic, large

artery atherosclerosis (LAA), and small artery occlusion (SAO) strokes were 133,340,

133, 276, and 290, respectively. The regression analyses indicated that patients with

noncardioembolic IS had a higher PAF risk based on AI-ECG-AF relative to the control

group, after controlling for confounders with the “cryptogenic” subgroup having the

highest risk (odds ratio [OR] = 1.974, 95% confidence interval [CI]: 1.371–2.863)

followed by the “LAA” (OR = 1.592, 95% CI: 1.238–2.056) and “SAO” subgroups (OR

= 1.400, 95% CI: 1.101–1.782). Subsequent regression analyses failed to illustrate the

differences in PAF risk based on AI-ECG-AF among noncardioembolic IS subgroups.
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Conclusion: Using AI-ECG-AF, we found that noncardioembolic IS patients had a higher

PAF risk relative to the general patient population. The results from our study imply the

need for more vigorous cardiac monitoring in noncardioembolic IS patients. AI-ECG-AF

can be a cost-effective screening tool to identify high-risk noncardioembolic IS patients of

PAF on-the-spot to be candidates for receiving additional prolonged cardiac monitoring.

Our study highlights the potential of AI in clinical practice.

Keywords: atrial fibrillation, noncardioembolic ischemic stroke, artificial intelligence, electrocardiogram, deep

neural network, regression analysis

INTRODUCTION

Atrial fibrillation (AF) is a well-known risk factor for ischemic
stroke (IS) and is associated with a five-fold increase in stroke
incidence (1–3). IS patients with identified AF without relevant
arterial stenosis or suspected lacunar syndrome can be classified
as cardioembolic in etiology (4). However, given the often
asymptomatic nature of AF (5, 6), it is sometimes unrecognized
at the time of stroke (7, 8). Misclassification of stroke etiology
because of failure in detecting AF may be devastating for the
patient, as it may lead to recurrent strokes (1, 9, 10). AF
detection may be especially important in cryptogenic stroke
patients for whom imaging results suggest an embolic etiology,
although no potential source is identified. However, short- to
medium-term cardiac monitoring might not be long enough
to sufficiently reveal previously undetected AF, while long-
term cardiac monitoring with insertable cardiac monitors (ICM)
is limited by high cost and the invasiveness of the implant
procedure (11). Furthermore, noncardioembolic stroke with
determined etiologies may increase the rate of undetected AF,
as non-atrial stroke mechanisms and AF may share common
vascular risk factors (12). Therefore, such concerns raise the
question about the target population for whom ICM should be
considered. An alternative method to non-invasively assess AF
risk among patients with noncardioembolic IS on-the-spot would
be of great clinical significance.

A recent study demonstrated that an artificial intelligence
(AI) model could identify individuals with a high likelihood
of paroxysmal AF (PAF) using their normal sinus rhythm
(NSR) electrocardiogram (ECG) (13). This simple, non-invasive,
and inexpensive test could have significant clinical implications
for AF screening as it has the potential to identify patients
with high AF risk, thereby enabling additional prolonged
cardiac monitoring. An elevated risk of PAF in patients with
noncardioembolic IS, if observed using the aforementioned
AI model identifying the electrocardiographic signature of AF
present during NSR (AI-ECG-AF), could affect post-stroke ECG
monitoring strategies among such patients and also demonstrate
the importance of AI algorithms in disease screening, prediction,
and management.

Thus, in this study, we aimed to retrospectively compare the
risk of PAF between noncardioembolic IS patients and general
patients of Ajou University Medical Center (AUMC) using AI-
ECG-AF. Further, we sought to compare the risk of PAF among
noncardioembolic IS subgroups.

METHODS

Data Sources and Study Population
Noncardioembolic IS patients were identified from AUMC’s
institutional stroke registry, which prospectively collects relevant
data, including stroke etiologies of all hospitalized stroke patients.
For all stroke patients, 48-h ECG monitoring in the stroke unit,
24-h Holter monitoring, and transthoracic echocardiography
were routinely performed to screen for cardiac sources of
embolism. From this database, we identified noncardioembolic
IS patients admitted between March 2008 and August 2018.
Specifically, IS attributed to large artery atherosclerosis (LAA),
and small artery occlusion (SAO), or cryptogenic (“cryptogenic
embolism” or “other cryptogenic”) IS according to the Stop
Stroke Study Trial of Org 10172 in Acute Stroke Treatment (SSS-
TOAST) classification were included (4, 14). In these patients,
corresponding ECG data were sourced from the AUMC’s
institutional ECG database. Patients’ data were included in the
final analysis only when their NSR ECG was available.

For AI-ECG-AF training and validation, we utilized standard
12-lead ECG data from AUMC’s institutional ECG database
originally extracted from the General Electric Healthcare
MUSETM system (Figure 1; Supplementary Methods). The
length of each ECG was 10 s. For our study, we used all the
ECGs acquired within the inclusion period (between June 1994
and August 2018) from all the adult (age ≥18) patients who
measured the standard 12-lead ECG at AUMC. We referred
to the automatic interpretations provided by the ECG machine
for extracting NSR and AF ECGs. NSR ECGs were defined
as cases where automatic interpretations included “normal
sinus rhythm,” “sinus bradycardia,” or “sinus tachycardia,” while
containing no phrases related to any abnormality. AF ECGs were
defined as cases where the automatic interpretations included
“atrial fibrillation” or “atrial flutter,” while not containing the
following phrases: “lead reversal,” indicating that the leads
might have been misplaced; “poor quality,” implying that the
ECG contains artifacts; “pacemaker,” signifying that an artificial
pacemaker might be present. We employed the following
methods to identify and label study groups. To reduce ambiguity,
patients with a diagnosis code for AF in the electronic medical
records (EMR) database of AUMC but no AF ECG record were
considered to have unverified AF and were excluded. NSR ECGs
with at least one AF ECG and no AF ECG recorded from the
same patient were classified as positive and negative for AF,
respectively. NSR ECGs classified as positive for AF that were
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FIGURE 1 | Flow diagram of the patients’ data included in the study. After applying all the exclusion criteria, 392,155 patients with 664,065 NSR ECGs remained,

which were then randomly split into the training dataset and the control group with a ratio of 8:2.

measured 31 days before the first recorded AF (i.e., measured
before the window of interest) were excluded on the assumption
that although structural changes associated with AF would be
present before the first recorded AF, these structural changes
would not have developed at a distant time in the past since
the first recorded AF. Next, to improve the accuracy of data
labeling, a cardiologist (MC) reviewed the raw waveforms of all
the AF ECGs of patients classified as positive for AF and excluded
patients with raw waveforms of the AF ECGs not considered to
be actually AF. TheNSR ECGs of patients with noncardioembolic
IS were also excluded. The remaining NSR ECGs after applying
all the aforementioned inclusion and exclusion criteria were split
into the AI-ECG-AF training dataset and an independent hold-
out dataset that was considered to represent AUMC’s general
patient population and used as the control group in the regression
analyses, with an 8:2 ratio.

AI Model Development and Performance
Evaluation
Only the raw waveforms of the standard 12-lead ECG were used
as the input for themodel.We constructed a convolutional neural
network based on residual networks (15). The architecture of our
model is depicted in Supplementary Figure 1. The details of data
preprocessing and the neural network architecture are described
in Supplementary Methods.

We randomly divided the training dataset into five-
folds and performed five-fold cross-validation to select the
best hyperparameters. The models with the best validation
performances were chosen in each fold of the five-fold cross-
validation. During model inference (on the control group and
the NSR ECGs from patients with noncardioembolic IS), output

probability was obtained for each of the five chosen models and
the average probability was used as the final inference output.

A receiver operating characteristics (ROC) curve of the AI-
ECG-AF was created for the control group and the area under
the ROC curve was calculated. We computed the accuracy,
sensitivity, specificity, positive and negative predictive values, and
F1 score of the AI-ECG-AF when the threshold was set at 0.5
by convention. The aforementioned performance metrics were
calculated not only for the first recorded NSR ECG per patient in
the control group to mimic a real screening scenario but also for
all the NSR ECGs in the control group.

Comparison of AF Risk Between Groups
After the AI-ECG-AF development, model inference outputs
were obtained for the NSR ECGs of the control group and
those that were measured within seven days before or after the
admission date of noncardioembolic IS patients. The inference
outputs could be considered to represent the relative probability
of PAF presence in each NSR. The time window of seven
days before or after the admission date of noncardioembolic IS
patients was selected to accurately reflect the state of the patient
at the time of stroke occurrence.

We conducted MLiR and MLoR analyses with the AI-
ECG-AF’s inference outputs (for MLiR) or their binary form
(for MLoR, the threshold set at 0.5) set as the dependent
variables and patient subgroups (LAA, SAO, cryptogenic or
control group, with the control group set as the reference)
and potential confounders (age and sex) set as independent
variables. First, to compare PAF risk based on AI-ECG-AF
between noncardioembolic IS patients and the control group,
noncardioembolic IS patients’ data and the control group data
were included in the regression analyses. Second, to compare
PAF risk based on AI-ECG-AF among noncardioembolic IS
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TABLE 1 | Dataset characteristics.

Training dataset (n = 530,635) Control (n = 133,430) Cryptogenic (n = 133) LAA (n = 276) SAO (n = 290) p-value

Number of patients 313,743 78,412 106 239 271

Sex

Males (%) 140,312 (44.7) 34,982 (44.6) 62 (58.5) 157 (65.7) 159 (58.7) <0.001

Females (%) 173,431 (55.3) 43,430 (55.4) 44 (41.5) 82 (34.3) 112 (41.3)

Age 48.01 ± 14.75 48.01 ± 14.72 62.65 ± 13.93 66.79 ± 12.33 64.29 ± 11.27 <0.001

Positive for AF (%) 4,723 (0.9) 1,169 (0.9)

Each noncardioembolic IS subgroup had a significantly higher proportion of males and higher mean age than the control group.

FIGURE 2 | Flow diagram of the ECGs of patients with noncardioembolic IS.

The NSR ECG data within 7 days before or after the admission date was

available from the institutional stroke registry for 106, 239, and 271 patients

classified as “cryptogenic,” “LAA,” and “SAO” strokes, respectively, and were

included in the final analysis.

subgroups, data for only patients with noncardioembolic IS were
included in the analyses. The methods and results for checking
the overall significance or goodness of fit of these regression
models are specified in Supplementary Methods. Statistical
comparisons of dataset characteristic distributions are specified
in the Supplementary Methods, Supplementary Table 1,
and Supplementary Figures 2–7. All statistical analyses were
performed with the R Statistical Software (version 4.0.4; R
Foundation for Statistical Computing, Vienna, Austria). P-value
< 0.05 was considered significant in all tests.

RESULTS

Dataset Characteristics
Table 1 presents the characteristics of the training dataset and
of the patients from whom AI-ECG-AF’s inference outputs were
obtained. The training dataset had 313,743 patients (44.7% males
and 55.3% females) with 530,635 ECGs (mean age 48.01± 14.75).
The control group comprised 78,412 patients (44.6% males and
55.4% females) with 133,430 ECGs (mean age 48.01 ± 14.72).
The share of ECGs positive for AF in both the training dataset
and the control group was 0.9%. Supplementary Table 2 shows

FIGURE 3 | Performance of the AI model.

the number of ECGs ordered in each medical department in
the control group. Figure 2 illustrates the flow diagram of the
ECGs from patients with noncardioembolic IS. A total of 725,
1,779, and 1,837 patients from AUMC’s stroke registry from
March 2008 to August 2018 were classified as “cryptogenic,”
“LAA,” and “SAO” strokes, respectively. Out of these patients,
217 “cryptogenic,” 483 “LAA,” and 527 “SAO” patients had at least
one NSR ECG recorded within the inclusion period (June 1994 to
August 2018). The number of NSR ECGs measured within seven
days before or after the admission date of these patients were 133,
276, and 290 from 106 “cryptogenic,” 239 “LAA,” and 271 “SAO”
patients, respectively.

AI Model Performances
Figure 3 depicts the ROC curves of AI-ECG-AF for the control
group. The area under the ROC curve for the first recorded NSR
ECG per patient was 0.784 and that for all the NSR ECGs was
0.757. Supplementary Table 3 presents the accuracy, sensitivity,
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TABLE 2 | Regression analysis results when the control group and noncardioembolic IS patients’ data were included in the analyses.

Variable β SE 95% CI of β OR 95% CI of OR p-value

Multiple linear regression results

Age 0.00545 0.0000324 0.00538–0.00551 <0.001

Sex

Female Reference

Male 0.0243 0.000956 0.0224–0.0262 <0.001

Patient subgroup

Control Reference

Cryptogenic 0.0744 0.0151 0.0447–0.104 <0.001

LAA 0.0413 0.0105 0.0207–0.0620 <0.001

SAO 0.0344 0.0103 0.0143–0.0545 <0.001

Multiple logistic regression results

Age 1.053 1.052–1.054 <0.001

Sex

Female Reference

Male 1.280 1.249–1.313 <0.001

Patient subgroup

Control Reference

Cryptogenic 1.974 1.371–2.863 <0.001

LAA 1.592 1.238–2.056 <0.001

SAO 1.400 1.101–1.782 0.006

Compared to the control group, all stroke etiology subgroups exhibited a significantly higher PAF risk based on AI-ECG-AF.

specificity, positive and negative predictive values, and F1 score
of AI-ECG-AF when the threshold was set at 0.5.

Regression Analyses Results
Table 2 illustrates the results of the regression analyses when
the control group and noncardioembolic IS patients’ data were
included in the regression analyses. All the independent variables
(age, male sex, cryptogenic, LAA, and SAO) were statistically
significantly associated with the dependent variables, with
positive β-coefficient values for all the SSS-TOAST subgroups,
indicating that noncardioembolic IS patients had a higher
PAF risk based on AI-ECG-AF compared to the control
group after controlling for confounders. For the subgroups,
the “cryptogenic” subgroup had the highest β-coefficient value,
followed by “LAA” and “SAO” subgroups. Specifically, the
odds ratio (OR) of inference output ≥0.5 compared to the
control group was 1.974 (95% confidence interval [CI]: 1.371–
2.863) for the “cryptogenic” subgroup, 1.592 (95% CI: 1.238–
2.056) for the “LAA” subgroup, and 1.400 (95% CI: 1.101–
1.782) for the “SAO” subgroup. The MLoR results remained
nearly consistent at different thresholds for the inference output
(Supplementary Table 4). All the independent variables were
statistically significant at a significance level of 0.05 at thresholds
of 0.35, 0.40, 0.45, and 0.55 for the inference output; except
for the “SAO” subgroup, which was marginally significant (i.e.,
p-value between 0.05 and 0.1), all other independent variables
were statistically significant at a significance level of 0.05 at
the threshold of 0.60 for the inference output; for the patient

subgroups, “cryptogenic” subgroup had the highest β-coefficient
values at all the thresholds.

Table 3 presents the results when only noncardioembolic IS
patients’ data were included in the regression analyses. Compared
to the SAO subgroup, the β-coefficients for the LAA subgroup
were not statistically significant at a significance level of 0.05
for both regression models, and those for the cryptogenic
subgroup were statistically significant only for MLiR. At various
thresholds for the inference output in MLoR, the β-coefficients
for both the LAA and cryptogenic subgroups were not
statistically significant, failing to display differences in PAF risk
based on AI-ECG-AF among noncardioembolic IS subgroups
(Supplementary Table 5). Model inference outputs obtained for
the NSR ECGs of the control group and noncardioembolic IS
patients are provided in Supplementary Table 6.

DISCUSSION

In this study, we trained and validated AI-ECG-AF and used
it to compare the risk of PAF between noncardioembolic
IS patients and general patients. The regression analyses
demonstrated that based on AI-ECG-AF, noncardioembolic
IS patients had a higher PAF risk relative to the control
group, after controlling for confounders: For the SSS-TOAST
subgroups, the “cryptogenic” subgroup had the highest OR
followed by the “LAA” and “SAO” subgroups. However,
subsequent regression analyses failed to illustrate the differences
in PAF risk based on AI-ECG-AF among noncardioembolic
IS subgroups.
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TABLE 3 | Regression results when only noncardioembolic IS patients’ data were included in the analyses.

Variable β SE 95% CI of β OR 95% CI of OR p-value

Multiple linear regression results

Age 0.00496 0.000555 0.00386–0.00605 <0.001

Sex

Female Reference

Male 0.0378 0.0140 0.0104–0.0653 0.007

IS subgroup

SAO Reference

Cryptogenic 0.0391 0.0186 0.00260–0.0757 0.036

LAA 0.00731 0.0150 −0.0222–0.0368 0.627

Multiple logistic regression results

Age 1.049 1.034–1.063 <0.001

Sex

Female Reference

Male 1.234 0.890–1.712 0.208

IS subgroup

SAO Reference

Cryptogenic 1.395 0.904–2.168 0.135

LAA 1.151 0.812–1.632 0.428

The threshold for the inference output (dependent variable) was set at 0.5 for the multiple logistic regression. The inference output of 80 (60.2%), 168 (60.9%), and 158 (54.5%) cases

was ≥0.5 for cryptogenic, LAA, and SAO subgroups, respectively.

Using AI-ECG-AF, the increased PAF risk in
noncardioembolic IS demonstrated in our study supports
the recent shifts in IS guidelines that encourage vigorous cardiac
monitoring. Patients with embolic stroke of undetermined
source (ESUS) carry a substantial annual stroke recurrence rate
of 3–6% despite antithrombotic therapy (16, 17). However, the
empirical use of oral anticoagulants for secondary prevention
of stroke without identification of AF has not proven to
be superior to aspirin and increases the risk of bleeding
(18, 19), thus rendering the identification of AF important
for guiding therapy. Accordingly, a recent guideline by the
European Society of Cardiology recommends short-term
ECG recording followed by continuous ECG monitoring for
at least 72 h (Class I recommendation), and additional ECG
monitoring through long-term non-invasive ECG monitors
or ICM (Class IIa recommendation) (20). A guideline in the
United States recommends cardiac monitoring for at least
24 h in patients with IS (Class I recommendation) (21), and
another recommends an ICM in patients with cryptogenic stroke
when external ambulatory monitoring is inconclusive (Class IIa
recommendation) (9).

Our study results did not indicate a difference in risk
among noncardioembolic IS subgroups, which is aligned with
the findings in another recent study that compared PAF
risk between the embolic stroke of undetermined source and
other mechanisms of stroke (excluding AF) using AI-ECG-
AF and illustrated no association (22). Although the relatively
small number of patients with NSR ECGs may have limited
our statistical significance, a recent clinical trial reported AF
detection rates of up to 12.1% with ICM during a period of

12 months in patients with IS attributed to LAA or SAO (23).
Even patients with IS classified as noncardioembolic in etiology
may have an increased risk of subclinical AF (7, 8, 23). This is
reasonable as non-atrial stroke mechanisms and AF may share
common vascular risk factors (12). While the clinical significance
of this finding calls for further research, such results raise the
question about the target population for whom ICM should
be contemplated.

While AI-ECG-AF cannot be considered a confirmatory test
because its accuracy is not yet close to 100%, it is an efficient
screening tool that can non-invasively assess PAF risk on-the-
spot using only ECG as input. Previous studies have been
conducted, or are being conducted, using AI-ECG-AF or a
similar AI model. Raghunath et al. (24), have trained an AI
model predicting new-onset of AF from the 12-lead ECG and
have demonstrated that the model may help identify patients
at risk of AF-related strokes. Further, an ongoing clinical trial
is aiming to prospectively validate an AI-ECG-AF by enrolling
patients with AI-ECG-AF predicted risk of PAF and providing
them with continuous cardiac monitoring devices to observe AF
burden (25).

If AI-ECG-AF is well validated, it can be a cost-effective
screening tool to identify high-risk noncardioembolic IS patients
of PAF on-the-spot as candidates for receiving additional
prolonged cardiac monitoring. For AF identification, short- to
medium-term cardiac monitoring might not be long enough
to sufficiently reveal previously undetected AF (7, 8, 23), while
long-term cardiac monitoring is expensive and invasive (26).
Moreover, considering the low yield of AF in clinical trials
targeting ESUS patients, the cost-effectiveness of long-term
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cardiac monitoring may be questionable, and whether more
widespread adoption of ICMs translates into health economic
benefits remains unproven (27). The cost-effectiveness of
long-term cardiac monitoring could be improved if low-risk
patients could be excluded (28). With AI-ECG-AF, high-risk
noncardioembolic IS patients of PAF can be selected to receive
additional cardiac monitoring. The threshold of the AI-ECG-
AF’s inference outputs for the selection of patients for additional
prolonged cardiac monitoring at which the health economic
benefits are maximized would need further prospective studies
to be determined. Our study, although retrospective, showed that
AF risk was higher in noncardioembolic IS patients and can serve
as a basis for such prospective validation.

Our study has some limitations. First, we did not add
potential confounders other than age and sex to the regression
analyses. Including more confounders that can be risk factors
for PAF and possibly have varying distributions across different
patient subgroups, such as those with hypertension or diabetes
mellitus, would be ideal. However, incompleteness is a frequently
occurring problem in EMRs (29). For example, the absence of
any diagnostic code in the EMR does not preclude the absence
of the disease because the patients’ thorough evaluation and
all the relevant information entered into the EMR cannot be
guaranteed. Thus, we excluded such data from the analysis.
Second, the performance of the AI-ECG-AF developed in our
study was lower than that developed by Attia et al. (13).
One possible reason for this performance gap might be the
difference in the number of positive AF patients included in
the studies (15,419 [8.5%] vs. 2,173 [0.6%]). Fewer AF-positive
patients in our dataset might have been caused by ethnic or
race differences (30) or lower mean age (48.01 ± 14.72 vs.
60.3 ± 16.7) (31). Another possible reason for the performance
gap might be that we used automatic interpretations provided
by the ECG machine for defining NSR ECGs. Although it has
been shown that the automatic interpretations are most accurate
for NSR ECGs, they are still subject to misinterpretations (32).
Although a cardiologist reviewed AF ECGs to improve accuracy,
reviewing NSR ECGs was not feasible due to the vastness of the
dataset. Moreover, considering interobserver variability, having
at least two cardiologists review and cross-check the AF ECGs
would have provided higher reliability. However, the statistical
significance of the regression analysis was obtained even in a less
favorable environment (in a model with lower discriminability),
and if the model performance had been higher, a more significant
result might have been obtained. Third, using AI-ECG-AF, the
PAF risk could only be evaluated on NSRs because the AI-ECG-
AF was only trained with NSR ECGs. Thus, noncardioembolic
IS patients had to be excluded from the study if none of the
ECGs measured within seven days before or after the admission
date were NSR. To include all ECGs in the analyses, an AI-ECG-
AF trained without excluding abnormal ECGs is needed, and
we leave this as a subject for further study. Fourth, the patients
whose data were included in the regression analyses in our study
have not been confirmed whether they really have PAF. This
would need prospective validation, which was beyond the scope
of our study. However, all the patients were evaluated using the
same AI model and the statistical significance achieved is valid at

a macro scale. Fifth, the retrospective and single-center design
of our study may pose selection bias. The results of our study
are yet to be validated in an entirely independent cohort in a
prospective manner.

CONCLUSION

In conclusion, using the AI-ECG-AF, we found that
noncardioembolic IS patients had a higher PAF risk relative to the
general patient population. The results from our study imply the
need for more vigorous cardiac monitoring in noncardioembolic
IS patients. AI-ECG-AF can be a cost-effective screening tool
to identify high-risk noncardioembolic IS patients of PAF
on-the-spot to be candidates for receiving additional prolonged
cardiac monitoring. Our study highlights the potential of AI in
clinical practice.
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