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Atherosclerotic vascular disease remains the most common cause of ischemia,

myocardial infarction, and stroke. Vascular function is determined by structural and

functional properties of the arterial vessel wall, which consists of three layers, namely

the adventitia, media, and intima. Key cells in shaping the vascular wall architecture

and warranting proper vessel function are vascular smooth muscle cells in the arterial

media and endothelial cells lining the intima. Pathological alterations of this vessel

wall architecture called vascular remodeling can lead to insufficient vascular function

and subsequent ischemia and organ damage. One major pathomechanism driving

this detrimental vascular remodeling is atherosclerosis, which is initiated by endothelial

dysfunction allowing the accumulation of intimal lipids and leukocytes. Inflammatory

mediators such as cytokines, chemokines, and modified lipids further drive vascular

remodeling ultimately leading to thrombus formation and/or vessel occlusion which can

cause major cardiovascular events. Although it is clear that vascular wall remodeling is

an elementary mechanism of atherosclerotic vascular disease, the diverse underlying

pathomechanisms and its consequences are still insufficiently understood.
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INTRODUCTION

Inflammatory mediators such as chemokines and cytokines are quickly released by a multitude
of cell types during inflammation and trauma and thereby orchestrate a vital immune response
and vascular remodeling. These interactions can occur in either an autocrine or paracrine fashion
resulting in structural and functional changes of the vascular wall. However, during chronic
inflammatory conditions these mediators can also cause tissue damage or (irreversible) tissue
remodeling, a term referring to structural and functional changes of the arterial vessel wall (1).
A chronic disease that is characterized by such arterial vessel remodeling is atherosclerotic vascular
disease, which is the most common cause of cardiovascular disease (CVD) (2). Mechanisms
involved in atherosclerotic arterial remodeling include hyperplasia of the arterial intima and
media, changes in vascular collagen and elastin, endothelial dysfunction, and arterial calcification.
Identifying the cross talk between cells of the vasculature which maintain or disrupt vascular
homeostasis and result in vascular remodeling may offer strategic insight for CVD prevention.
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Atherosclerosis is initiated by endothelial dysfunction
allowing lipids to accumulate in the intima, which subsequently
results in intimal inflammation driving (persistent) vascular
changes (3). Various inflammatory mediators comprising
of modified lipids, such as oxidized low-density lipoprotein
(oxLDL), but also chemokines, cytokines and lipid mediators
further foster the endothelial dysfunction and increase vascular
permeability. This increased permeability further stimulates
the influx and accumulation of lipids and immune cells in the
intimal layer of the vascular wall, resulting in a vicious circle
(3). The immune cell infiltration into the vessel wall is further
increased by the upregulation of adhesion molecules on the
endothelium, stimulated by the inflammatory environment. This
further induces the arrest of monocytes and other leukocytes
onto the vessel wall which subsequently transmigrate into the
intima (4, 5). Infiltrated monocytes subsequently differentiate
into macrophages which will engulf excess lipids and develop
into lipid laden foam cells. Due to the excess uptake of lipids,
these foam cells will eventually undergo apoptosis and necrosis,
resulting in the formation of a necrotic core in atherosclerotic
lesions (6). Accumulation of such necrotic debris leads to the
continued release of toxic and pro-inflammatory stimuli in
the intima, further promoting inflammation, remodeling and
vulnerability of the plaque.

Key cells in shaping the vascular architecture are vascular
smooth muscle cells (VSMCs), which are normally present in the
arterial media and express a range of “SMC markers” including
smooth muscle cell myosin heavy chain (MYH11), smooth muscle
cell actin (SM-α), smoothelin and others. These VSMCs are
considered to have a contractile phenotype, which is important
to maintain the vascular tone. However, during atherosclerosis
formation a phenotype switch is induced by inflammatory
mediators resulting in the transition from a contractile phenotype
to a synthetic phenotype. Additionally, VSMCs will proliferate
and migrate from the media into the intima where they will
produce extracellular matrix (ECM) to form a fibrous cap and
stabilize the atherosclerotic lesions. Moreover, VSMCs with a
synthetic phenotype adopt macrophage-like characteristics and
can also develop into SMC-derived foam cells (2). Additionally
and especially in later stages of lesion development, synthetic
VSMCs also produce and secrete matrix metalloproteinases
(MMPs) resulting in greater proteolytic activity toward elastin
and collagen, which destabilizes the plaque and increases the risk
of plaque rupture and thrombus formation (7).

This review aims to draw attention to the main
inflammatory mediators involved in vascular remodeling
seen in atherosclerosis.

CHEMOKINES

Chemokines are a family of chemoattractant cytokines secreted
by various cells, which play a vital role in cell migration from
the bloodstream into tissues. They induce cell movement in
response to and toward a chemokine gradient also referred to
as chemotaxis (8). In addition, chemokines play an important
role in various cellular functions including proliferation, survival

and differentiation (9). Chemokines can be classified into
four structural subfamilies, CC, CXC, CX3C and C based
on the location of the key cysteine residues in the disulfide
bonding which are either juxtaposed (CC) or separated by
1 or 3 amino acids (CXC and CX3C) respectively (10).
Chemokines initiate cellular responses through interaction with
seven-transmembrane G-protein coupled receptors (GPCRs),
more specifically classical chemokine receptors, or with atypical
chemokine receptors (ACKRs), which do not signal through
G-proteins (11).

CC chemokines have at least 27 distinct members reported
in mammals, called CC chemokine ligands (CCL) and are
typically responsible for the induction of leukocyte migration
(10, 11). Currently, 17 different CXC chemokines have been
described in mammals, which can be further subdivided into two
subcategories, based on the presence or absence a specific amino
acid sequence of glutamic acid-leucine-arginine immediately
before the first cysteine of the CXC motif (12). The subgroup
of CXC chemokines with this sequence specifically induce
the migration of neutrophils, while the subgroup without this
sequence typically attract lymphocytes. More unique is CX3CL1,
which possesses three amino acids between the two cysteines and
is also termed CX3C chemokine or fractalkine (12) and the two
C chemokines XCL1 (lymphotactin-α) and XCL2 (lymphotactin-
β) (12).

The remainder of this chapter will focus on individual
chemokines that have been shown to be involved in vascular
remodeling during inflammation with a particular focus
on atherosclerosis.

CCL2
CCL2 (Table 1) also known as monocyte chemoattractant
protein-1 is a member of the CC chemokine subfamily and
exhibits potent chemotactic activity toward monocytes and T
lymphocytes (36). Jones et al. (37) demonstrated that activated
VSMCs isolated from mice secreted more CCL2 and CXCL1
and in vivo knockout of Protease-Activated Receptor 2 (PAR2)
in vascular cells reduced their expression of CCL2/CXCL1 and
resulted in a reduction of macrophage content in atherosclerotic
lesions compared to the control animals. Additional findings
demonstrated increased plaques stability, increased smooth
muscle actin alpha 2 ACTA-2, collagen content and reduced
interleukin-1 (IL)-1 and tumor necrosis factor (TNF)-α. This
suggests that CCL2 acts on macrophage chemotaxis into the
lesion in a paracrine fashion (Figure 2). Furthermore, CCL2
may interact on VSMC via an autocrine mechanism to stimulate
the phenotypic changes toward a synthetic phenotype. Besides
promoting the transmigration of circulating monocytes, CCL2
also promotes cytokine production and adhesion molecule
expression on monocytes (38). CCL2 expression is induced by
inflammatory cytokines, growth factors, or complement factors
in monocytes, ECs, and VSMCs (39, 40). Furthermore, CCL2
seems to be an important chemokine in the development
of atherosclerosis, since its expression has been detected in
atherosclerotic lesions but not in vessels obtained from healthy
individuals (38, 41) and in patients with MI (36, 42). Enhanced
CCL2 within the lesion is correlated with histopathologic,
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TABLE 1 | Overview of chemokines involved in atherosclerosis remodeling and their physiological effect.

Chemokines Receptors Cells affected Proposed effect in

vascular remodeling

References

CCL2 CCR2 Monocytes Recruitment (13)

(14)

(15)

VSMCs Migration via PI3Kγ

signaling

(16)

Activation of NF-kβ and

AP-1 leading to cytokine

secretion

(17)

Proliferation

CCL5 (RANTES) CCR1 Monocytes Recruitment, Arrest,

infiltration

(18)

CCR3 Macrophages Differentiation into foam cells (19)

CCR5 VSMCs Proliferation (19)

Phenotypic switch from

contractile to synthetic

repair cell

CCL19/CCL21 CCR7 Monocytes Recruitment (20)

Macrophages Foam cell formation (21)

(22)

VSMCs Proliferation (22)

Increase MMP-1 expression

CXCL10 CXCR3 CD4+ T lymphocytes Recrutment of CD4+ T

lymphocytes and Tregs

(23)

Endothelial cells Reduced wound healing (24)

CXCL12 CXCR4 Monocytes Recruitment (25)

Macrophages Differentiation into foam cell (25)

VSMCs Migration (26)

Secretion of collagen (27)

(28)

CXCL16 CXCR6 Platelets Deposition on ECs (29)

Macrophages Differentiation into foam cells (30)

(31)

VSMCs Differentiation into foam cells (30)

(31)

CX3CL1

(Fractalkine)

CX3CR1 Monocytes Recruitment and adhesion (32)

(33)

VSMCs Proliferation (34)

(35)

molecular, and clinical hallmarks of plaque vulnerability, clearly
suggesting that this chemokine also plays a role in advanced
stages of lesion development (43). Interestingly, circulating
CCL2 levels also correlate with subclinical atherosclerosis disease
severity in postmenopausal women and may act as a potential
early biomarker in this population (44). Further studies have
demonstrated that circulating myeloid cells deposit CCL2 on
the arterial endothelium to enhance monocyte recruitment and
thereby drive atherogenesis (15).

CCL2 is also involved in vascular remodeling as it has
been shown to stimulate the binding activity of nuclear

factor kappa-light-chain-enhancer of activated B cells (NFκB) to
activator protein-1 (AP-1) in cultured human VSMCs (HVSMCs)
grown from unused portions of saphenous veins harvested
during coronary artery bypass surgery (17). In addition, CCL2
was reported to induce the proliferation and IL-6 secretion
from HVSMCs in vitro (17). Furthermore, recombinant CCL2
stimulated HVSMC proliferation in vitro via AP-1, which
was inhibited by mitogen-activated protein kinase (MEK)-1
and MEK2 inhibitor treatment (17). This suggests that CCL2
induces differential activation of NFκB and AP-1 leading
to cytokine secretion and proliferation in human VSMCs.
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Moreover, pharmacological phosphatidylinositol 3-kinase gamma
(PI3Kγ) inhibition, inactivation of PI3Kγ, as well as genetic
deletion of PI3Kγ in mice was used to study the role of
CCL2 on the platelet-derived growth factor (PDGF) signaling
pathway and migration processes in primary aortic VSMCs
(16). A wound healing assay illustrated that CCL2 is crucial
for VSMC migration via PI3Kγ signaling as blocking the
CCL2/CCR2 pathway or the inhibition of PI3Kγ reduced PDGF-
stimulated aortic VSMC migration by 50% (16). Furthermore,
a low-density lipoprotein receptor knock-out (Ldlr−/−) mouse
model fed a Western diet (WD) for 8-weeks treated with a
PI3Kγ inhibitor showed decreased atherosclerotic lesion size and
increased plaque collagen content (45). Finally, VSMCs isolated
from PI3Kγ-deficient mice (PI3Kγ−/−), or mice expressing an
inactive PI3Kγ, termed PI3KγKD/KD, showed reduced migration
when compared to the control cells in response to CCL2 and
PDGF (16). Combined these results demonstrate that CCL2 plays
a role in lesion formation by promoting VSMC migration in a
PI3Kγ dependent manner but can also result in decreased plaque
stability by reducing the collagen formation.

Another study demonstrated that a CCL2 competitor (PA508)
reduced inflammatorymonocyte recruitment, limited neointimal
hyperplasia, and attenuated myocardial ischemia/reperfusion
injury in an Apolipoprotein E knock-out (Apoe−/−) mouse
model, highlighting the potential of PA508 as novel therapeutic
approach to treat MI (13). However, the study did not examine
mice on a WD to investigate the therapeutic potential of PA508
on atherosclerosis development. Nevertheless, another study
treating Apoe−/− mice, fed with a WD for 6-weeks, daily with
a CCR2 antagonist (INCB3344) revealed reduced circulating
CCR2+ monocytes and diminished atherosclerotic plaques in
both the carotid artery and the aortic root (14), proving the
therapeutic potential of CCL2/CCR2 targeting for atherogenesis.

Overall, as CCL2 has been shown to be overexpressed in
atherosclerotic lesions it is likely that it plays a prominent role
in vascular remodeling of VSMCs in atherosclerosis (Figure 1).
CCL2 may stabilize the plaque by fostering migration of medial
VSMCs into the intima and increase their proliferation while
in parallel, recruitment of arterial leukocytes into the lesion
triggers atherogenesis (15). Furthermore, therapeutic strategies,
such as the PI3Kγ inhibition or CCL2/CCR2 pathway inhibition
reveal a decrease in lesion size in mice due to the reduced
VSMCmigration (45) (Table 2). Nevertheless, further research is
necessary to demonstrate whether the putative beneficial effects
of CCL2 on VSMCs, e.g., increased proliferation and subsequent
increase of plaque stability, outbalance its pro-atherogenic effects
on leukocyte recruitment.

CCL5
CCL5, a chemokine which is also known as RANTES, can
bind to a plethora of receptors including CCR1, CCR3 and
CCR5 (Table 1) (48). Platelet-derived deposition of CCL5 on
the activated endothelium results in monocyte arrest (49),
which appears to be dependent on P-selectin (50). Wire-
injury induced neointima formation in the carotid artery
of Apoe−/− mice showed that the systemic inhibition of
CCL5 or P-selectin deficiency hindered neointima formation

as well as monocyte infiltration (50). Furthermore, it could
be demonstrated that CCL5 mRNA and protein levels were
upregulated in the aortic intima of Ldlr−/− mice fed a WD for
3 weeks and a function-blocking antibody to CCR5 significantly
reduced monocyte recruitment into the lesions (18). Further
investigations using a bone marrow transplantation (BMT)
experiment demonstrated that hematopoietic CCL5 regulates
monocyte recruitment and accumulation of macrophages in
the lesions after 3 weeks of cholesterol-rich diet feeding of
Ldlr−/− mice. However, after 6 weeks of cholesterol-rich diet,
CCL5 only plays a minor role in the recruitment of monocytes
into the lesions suggesting that CCL5 only plays a role
in early stages of lesion formation and subsequent vascular
remodeling (18).

Similar results were seen in a 2-week WD Ldlr−/− mouse
model where mice were treated with a CCL5 antagonist (Met-
RANTES). Treated animals had reduced atherosclerotic lesion
size and a reduction in relative lesional foam cell content
compared to the control group (46). Thus, CCL5 mediates
vascular remodeling in atherogenesis via monocyte arrest and
infiltration into the lesion and facilitates the differentiation
and development of monocytes into foam cells, although the
exact underlying mechanisms behind this CCL5-induced foam
cell formation remain to be elucidated. Another study, using
CCL5−/−CCR5–/– mice on a 12-week WD, showed significantly
reduced expression of the synthetic markers osteopontin and
proliferating cell nuclear antigen (PCNA), while the expression
of the contractile VSMC marker SMα was increased in
the thoracoabdominal aorta compared to the control group
(19). Furthermore, in vitro culturing of human aortic SMCs
(HASMCs) with palmitic acid resulted in an increased expression
of proliferative and synthetic phenotypemarkers while inhibition
of CCR5 using the antagonist maraviroc or RNA interference
prevented HASMC proliferation and synthetic phenotype
formation (19). Macrophages from stroke patients, exhibit an
increased expression of CCL5 which signals through CCR5
on VSMCs driving their proliferation and dedifferentiation,
suggesting a paracrine relationship between these macrophages
and vascular VSMCs [(19, 51), p. 153]. These data suggest that
CCL5 induces VSMC proliferation and phenotypic switching
from a contractile to synthetic phenotype via CCR5 (Figure 2).
The latter would argue for a pro-atherosclerotic role of CCL5 and
induction of a synthetic VSMC phenotype promoting vascular
remodeling. However, Lin et al. did not backcross the mice
on an atherosclerotic background such as Apoe−/− or Ldlr−/−,
making it impossible to determine whether CCL5 also promotes
a synthetic VSMC phenotype during atherogenesis.

CCL5 can also heterodimerize with CXCL4, another platelet-
derived chemokine deposited onto vascular endothelium (52).
Enhanced CXCL4 presence in human plasma correlates with
the severity of human atherosclerotic disease and the platelet
specific deletion of CXCL4 decreases atherosclerotic lesions in
mice (53, 54). Furthermore, interfering with this heterodimer
via the use of the cyclic peptide MKEY resulted in decreased
leukocyte recruitment and release of NETs (47). All in all, these
studies suggest that CCL5 at least exerts part of its atherogenic
effects by heterodimerizing with CXCL4.
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FIGURE 1 | Involvement of inflammatory mediators in vascular remodeling in atherosclerosis. Inflammatory mediators, such as interlukin-1β (IL-1β), IL-22, IL-33 and

tumor necrosis factor-α (TNFα) cytokines can influence the progression of atherosclerosis and CVD via the activation of the endothelium resulting in the upregulation of

adhesion molecules. Furthermore, these mediators increase vascular permeability, through IL-1β, IL-22, TNFα and LTB4 and along with the adhesion molecule

upregulation allows for the infiltration of monocytes and other immune cells recruited via chemokine ligand 2 (CCL2), C-X-C Motif Chemokine Ligand 12 (CXCL12),

CCL5, CX3CL1, IL-1β, IL-6, IL-22, TNF-α Leukotriene B4 (LTB4), 5-LO. Mediators like CCL2, CCL19, CXCL10, CX3CL1, IL-1β, IL-22, Prostaglandin E2 (PGE2) and

LTB4 also induce the migration and proliferation of VSMCs into the intima and affect the production of collagen, which, in turn, modulates plaque stability. Foam cell

formation is initiated by CCL2, CCL5, CCL21, CXCL16, IL-22 and TNFα and exhausted foam cells undergoing apoptosis and necrosis to establish the necrotic core of

the lesion. On the other hand, IL-10, a potent anti-inflammatory cytokine, prevents the formation of foam cells and SMC migration and proliferation. As the lesion

grows, blood vessel lumen is narrowing eventually causing vessel occlusion which may lead to major adverse cardiovascular complications. Inflammatory mediators

CXCL12, IL-1β, IL-6, IL-22, soluble suppression of tumorigenesis-2 (sST2), TNFα and Growth/Differentiation Factor-15 (GDF-15) also play a role in the stability of the

lesion by controlling collagen in the fibrous cap. In addition, mediators like LL-22, GDF-15 and PGE2 regulate vasoconstriction and vasodilation of the arteries thereby

controlling blood pressure and ensuring proper vascular function (this figure was made with Biorender.com).

CD146, a cell adhesion molecule expressed on arterial
endothelium was also implicated in CCL5-mediated changes
to the vascular wall. CD146−/−Apoe−/− mice fed a WD
for 24 weeks displayed lesions with a greater neutrophil
and macrophage content correlating with the upregulation
of CCL5 secretion when compared to the control group
(55). Furthermore, neutrophil recruitment was increased
in CD146-deficient mice 12 h after thioglycolate-induced
peritonitis, whereby this increased recruitment correlated with
the enhanced CCL5 secretion in the peritoneal cavity. The
same study showed that mice treated with maraviroc between

week 12 to 24 of WD feeding showed smaller atherosclerotic
lesions and reduced neutrophilia in CD146−/−Apoe−/− mice
to the same level found in Apoe−/− mice (55). These data
suggest that CCL5 plays a prominent role in neutrophil
recruitment and foam cell formation in atherosclerotic
lesions and identifies CD146 agonists as potential therapeutic
targets to lower CCL5 levels (Figure 1). Hence, increased
levels of CCL5 may act as a biomarker for the severity
of atherosclerosis and may even be a potent therapeutic
target for SMC proliferation and phenotype switching
(Table 2).
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TABLE 2 | Targeting chemokines as therapeutic treatments in vascular remodeling and CVD.

Chemokine Therapeutic Treatment Clinical

trials

Animal

experimenta-

tion

Outcomes on atherosclerosis References

CCL2 Pharmacological

phosphatidylinositol

3-kinase gamma (PI3Kγ)

inhibitor

– X Reduces PDGF-Stimulates aortic

VSMC migration by 50%

(16)

CCL2 competitor (PA508) – X Reduces inflammatory monocyte

recruitment

(13)

Limited neointimal hyperplasia and

attenuates myocardial

ischemia/reperfusion injury

CCR2 antagonist

(INCB3344)

– X Reduces circulating CCR2+

monocytes, Diminished

atherosclerotic plaques

(14)

CCL5 CCL5

antagonist (Met-RANTES)

– X Reduced atherosclerotic lesion size (46)

Reduction in foam cells

MKEY – X Decreases leukocyte recruitment into

infarcted tissue Decreases release of

NETs

(47)

CCL19/CCL21 anti-CCL21 monoclonal

antibody

– X Reduction of the infarction size after

AMI

(20)

CXCL10 pharmaceutical antagonist

specific for CXCR3

(NBI-74330)

X Reduced lesion size, CD4+ T

lymphocytes content and increased

Tregs content

(23)

CXCL12 – – – – –

CXCL16 – – – – –

CX3CL1 CX3CL1-Fc fusion protein – X Reduces atherosclerotic lesions size,

independent of the diet

(33)

CCL19/CCL21
Chemokines CCL19 and CCL21 and their receptor
CCR7 (Table 1) are associated with the modulation of
inflammatory responses in lymphoid and nonlymphoid
tissues, including atherosclerotic lesions (56–58). Elevated
levels of circulating CCL19 and CCL21 can be found in
patients with unstable angina pectoris compared to controls
(57) and enhanced levels of these chemokines were also
observed in patients with carotid atherosclerosis, both
systemically (CCL21) and within the lesion (CCL19 and
CCL21) (22).

In a mouse model studying MI, the inhibition of CCL21
via intravenous injection of anti-CCL21 monoclonal antibodies
led to the reduction of the infarction size after acute MI
(20). Anti-CCL21 monoclonal antibody treatment further
resulting in reduced MMP-9 and total collagen content in
the myocardium. CCL21 was also shown to increase the
binding of acetylated LDL (ac-LDL) to macrophages, inducing
the up-regulation of LDL receptor-1 (LOX-1), a scavenger
receptor of ox-LDL which has been shown to drive foam
cell formation (21, 22). Furthermore, the lipid droplet marker
adipose differentiation-related protein (ADRP) was upregulated
in CCL21-treated macrophages indicating that CCL21 induces
foam cell formation (59).

CCL19 has been shown to induce proliferation of VSMCs
and results in increased MMP-1 serum levels (22), which
positively correlates with total plaque burden (60). Using a BMT
experiment of either CCL19−/− or CCL21−/− bone marrow
into Ldlr−/− mice it was further demonstrated that CCL21
directs leukocyte homing into atherosclerotic lesions, whereas
CCL19 induces the activation of leukocytes, lipid uptake by
macrophages and foam-cell formation (61). Thus, CCL19 is
involved in vascular remodeling in atherosclerosis, by inducing
VSMC proliferation and enhancing protein expression of MMP-
1 in VSMCs, which acts to destabilize the plaques, while both
CCL19 and CCL21 foster macrophage foam cell formation
(Figure 1). Blocking CCL19 and/or CCL21 may therefore be a
potent therapeutic target to decrease the lipid content in lesions
and increase plaque stability (Table 2).

CXCL10
EC, VSMCs, and macrophages all express CXCL10 during
atherosclerosis while its receptor CXCR3 is mainly expressed on
CD4+ T cells (Table 1) (62). Evidence from Apoe−/− Cxcl10−/−

mice on a WD for 6 and 12 weeks demonstrated attenuated
lesions, reduced CD4+ T cell content and increased regulatory T
cells (Tregs) markers within the lesions, suggesting an increase
in Tregs within the lesion of Apoe−/− Cxcl10−/− compared

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 May 2022 | Volume 9 | Article 868934

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Evans et al. Mediators of Atherosclerotic Vascular Remodeling

FIGURE 2 | Examples of autocrine/paracrine interactions of inflammatory mediators in vascular remodeling in atherosclerosis. Inflammatory mediators can act in an

autocrine manor, CCL2 and CCL5 for example activate VSMCs to undergo phenotypical changes in atherosclerosis. EC and VSMC derived CCL2 can further foster

cross-talk between them promoting remodeling. CCL2 from ECs triggers synthetic differentiation of VSMCs and CCL2 from VSMCs promotes monocyte recruitment.

Alternatively, mediators like interlukin-1β, expressed by dendritic cells (DCs) and natural killer (NKs) cells promote the upregulation of adhesion molecule expression by

ECs, transmigration of circulating leukocytes and VSMC proliferation in a paracrine fashion. IL-1β in addition can act upon macrophages to promote IL-1β secretion in

an autocrine manner. IL-6 secreted by ECs, monocytes, T cells, neutrophils and VSMCs promotes adhesion molecule expression by ECs as well as transmigration of

circulating immune cells into the atherosclerotic plaque (this figure was made with Biorender.com).

to the control (63). Furthermore, Ldlr−/− mice fed a 2-week
WD before a collar placement and a further 8 week WD with
daily treatments of a pharmaceutical antagonist specific for
CXCR3 (NBI-74330) demonstrated a reduced lesion size in the
aorta and aortic root compared to the control (23). Further
investigation showed reduced CD4+ T cells in the lesion and
greater expression of genes associated with greater presence
of Tregs in the plaques from mice treated with NBI-74330.
This suggests that CXCL10 plays a prominent role in vascular
remodeling and may be a potential therapeutic target (Table 2).
Further experiments were conducted in Apoe−/− mice fed a WD
for 2 weeks followed by induction of an unstable plaque with
a flow-altering device around the carotid artery. These animals
were further fed a WD for 9 weeks and treated with a bioactivity-
neutralizing monoclonal CXCL10 antibody (MAB466) (64).
The CXCL10 antibody treatment resulted in a more stable
lesion phenotype with increased VSMCs content compared to

untreated controls. Hence, CXCL10 may also influence VSMC
behavior affecting plaque stability, potentially making CXCL10
an attractive therapeutic target for vascular remodeling (65).
Adding to this, in PI3KγKD/KD mice treated with the CXCL10
antibody (MAB466) demonstrated that CXCL10 production by
VSMCs inhibited endothelial healing in a wire induced scratch
model (24). This suggests that CXCL10 also has a paracrine
relationship with endothelial healing and may play a role in
maintaining endothelial dysfunction in atherosclerosis. However,
this would need to be further investigated in an atherosclerotic
mouse model on a WD. Furthermore, studies using an in
vitro model in which human endothelial cells (SGHEC-7) were
co-cultured with the human VSMC cell line SGHVSMC-9
demonstrated that CXCL10 expression contributes to remodeling
by altering the motility and differentiation of the VSMCs (66).
Future studies could investigate the role of CXCL10 on the
phenotypic switching of VSMCs within atherosclerosis.
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CXCL12
The chemokine CXCL12 (Table 1) is highly expressed in human
atherosclerotic lesions (32, 67) and genome-wide association
studies noted that the genomic locus 10q11, hosting the CXCL12
gene and the intergenic single nucleotide polymorphism (SNP)
rs2802492 located near CXCL12, are independently associated
with CXCL12 plasma levels and coronary artery disease (CAD)
risk (68, 69). Furthermore, a causative detrimental role of
enhanced CXCL12 titers in CAD was described (70) and may
also account for CVD in general, rendering CXCL12 a useful
biomarker for CVD risk. In line with this, mouse studies could
show that EC-specific CXCL12 knock out in Apoe−/−mice
fed a WD for 12 weeks reduced the lesion area in the
thoracoabdominal aorta and the aortic arch as well as CXCL12
plasma levels compared to control mice (69). Furthermore, a
positive correlation between CXCL12 plasma levels and lesion
area was seen in the control but not in EC-CXCL12 deficient
mice. Combined, these observations suggest that EC-derived
CXCL12 promotes atherosclerosis and vascular remodeling (69).

In vitro assays exploring the effects of ox-LDL treatment
demonstrated an increase in CXCL12 protein and mRNA
expression compared to untreated controls for both THP-1
cells (human monocyte cell line derived from a patient with
acute monocytic leukemia) and HASMCs (71). Furthermore,
Gao et al. (25) showed that CXCL12-treated THP-1 cells
expressed less ATP Binding Cassette Subfamily A Member 1
(ABCA1) and subsequently resulted in a reduced cholesterol
efflux capacity toward apolipoprotein A1 (ApoA-I). The same
study also revealed that systemic overexpression of CXCL12
in Apoe−/− mice, using a lentivirus, resulted in increased
lesion formation as well as macrophage accumulation in the
plaques. A more detailed analysis demonstrated decreased
ABCA1 mRNA expression in lesional macrophages in Apoe−/−

mice which overexpressed CXCL12 supporting the observations
made in vitro (25). Together, these data suggest that CXCL12
promotes the formation of macrophage-derived foam cells in
atherosclerotic lesions via inhibition of ABCA1 expression. The
potential of CXCL12 to promote foam cell formation by VSMCs
or any other analysis of VSMCs was not investigated in the in
vivo model in this study and should therefore be a subject for
future research.

In contrast to the above described observations, CXCL12 is
upregulated in the artery via lysophosphatidic acid in response
to vessel injury, and the increase in circulating CXCL12 induces
the migration of a subtype of Sca-1+ Lin− smooth muscle
progenitor cells (SPCs) (26, 27). Intravenous injection of CXCL12
in Apoe−/− mice fed a WD resulted in increased plaque
stabilization, characterized by increased collagen content and a
thicker fibrous cap, via the accumulation of SPCs (28). However,
this study analyzed ligated carotid arteries, which display
significant phenotypical differences in their lesion composition
compared to ≪native≫ atherosclerotic lesions.Contrary,
presence of CXCL12 does also induce recruitment of endothelial
cell progenitors and fosters neovascularization in MI (72). While
neovascularlarization in the context of MI seems beneficial
another recent study has shown that active non-canonical
NF-κB signaling in microvessels of carotid atherosclerotic

lesions together with enhanced CXCL12 expresssion and
neovascularization may induce plaque instability (73).

Overall, CXCL12 plays a critical role in the development of
vascular remodeling as demonstrated by EC-derived CXCL12
mediating atheroprogression or the accumulation of VSMCs in
the intima in response to increased CXCL12 titers (Figure 1)
(26, 27, 69). Taken together, CXCL12 may serve as biomarker
for CAD risk (70) and seems to drive macrophage foam cell
formation and lesion growth. On the other hand, animal studies
also suggest that it increases lesion stability by recruitment of
SPCs and infiltration of medial VSMCs. Hence, therapeutical
targeting of CXCL12 should only be cell specific and considered
with great care.

CXCL16
CXCL16 is an atypical chemokine containing a mucin-like
stalk, transmembrane and cytoplasmic domains, which are
not found in other CXC chemokines (74). CXCL16 has two
distinct forms, the membrane-bound form which promotes
the firm adhesion of cells expressing the receptor CXCR6
and the soluble form, generated by proteolytic cleavage of
membrane-bound CXCL16, which acts as a chemoattractant
for CXCR6+ cells (74). CXCL16 (Table 1) is expressed on
stimulated ECs and VSMCs, macrophages, dendritic cells (DC)
and platelets, whereas its receptor CXCR6 is expressed on
memory and effector T cells, natural killer (NK) cells and
NK T cells and is also found on plasma B cells (29, 75).
CXCL16 is expressed in human atherosclerotic plaques and
lesion severity is correlated with increased CXCL16 levels,
as shown in human carotid endarterectomy specimens (76).
It could be demonstrated that CXCL16 expression in the
plaque enhanced platelet deposition on the endothelium (29).
Furthermore, in vitro studies using human umbilical vein
endothelial cells (HUVECs) established that the immobilization
of CXCL16 promoted CXCR6-dependent platelet adhesion to
the endothelium during physiologic flow and at low shear rates
(77). This data implies that CXCL16 may play a role in vascular
inflammation and thrombo-occlusive diseases. However, future
investigations need to assess this relationship also on the
more pathologically relevant arterial endothelium to understand
platelet adhesion in an atherosclerotic model. Zhao et al.
demonstrated that during ischemia reperfusion injury, cardiac
EC-derived CXCL16 recruits CD11b+Ly6Chigh inflammatory
cells and facilitates the release of tumor necrosis factor α (TNFα)
(interferon) IFN-γ and interleukin (IL)-17 in the heart. In line
with this, silencing of CXCL16 by applying a specific shRNA
reduced cardiac apoptosis, inflammation and dysfunction in
ischemia reperfusion induced mice (78).

CXCL16 may also play a role in vascular remodeling through
alteration of foam cell formation as its expression has been
found to be upregulated in lipid-laden intimal macrophages and
VSMCs (30). Moreover, CXCL16 may also directly contribute
to foam cell formation as it is known to be a scavenger
receptor for phosphatidylserine and oxLDL and its expression
is upregulated in lipid-laden intimal macrophages and VSMCs
via an autocrine mechanism (30). Growing evidence highlights
the potential for VSMCs to develop into foam cells (71) and, like
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macrophages, VSMCs also express CXCL16 in response to IFN-
γ stimulation, which also correlates with an increased uptake
of oxLDL by VSMCs (31). Therefore, it can be surmised that
CXCL16 facilitates the development of macrophage and VSMC
foam cells (Figure 1). However, to our best knowledge so far no
therapeutic treatment against CXCL16 has been investigated in
the context of atherosclerosis and chronic vascular inflammation
opening a potential interesting novel avenue of future research.

CX3CL1
CX3CL1 also known as fractalkine is also a chemokine which
can be present as a membrane-bound or soluble form (79).
Both forms activate the chemokine receptor CX3CR1 (Table 1),
where the transmembrane form induces integrin-independent
leukocyte adhesion and the soluble form is a chemoattractant
for leukocytes (80). During atherosclerosis, monocytes
expressing CX3CR1 bind and adhere to the endothelium
which express the membrane-bound form of CX3CL1 (81).
CD16+CX3CR1HIGH monocytes then activate endothelial signal
transducer and activator of transcription 1 (STAT1), NFκB and
p65 phosphorylation to upregulate proliferation and expression
of CX3CL1, IL-1β, Intercellular adhesion molecule 1 (ICAM-1)
and vascular cell adhesion molecule 1 (VCAM-1) by ECs
(82, 83). Hence, the CX3CL1-CX3CR1 axis enhances a pro-
atherosclerotic EC phenotype via the upregulation of adhesion
molecules and inflammatory mediators. In this context, in vitro
studies have shown that CX3CL1 is upregulated on activated
VSMCs and triggers monocyte adhesion to VSMCs (32). Further
work has demonstrated that Cx3cr1−/− animals—post femoral
arterial injury induced via an angioplasty guide wire—were
protected against intimal hyperplasia due to decreased monocyte
trafficking to the lesion compared to the control group (34).
In addition, CX3CR1 deficiency resulted in decreased VSMC
proliferation and intimal accumulation, which is either directly
or indirectly a result of defective monocyte infiltration (34). The
relationship between CX3CL1-CX3CR1 and inhibited VSMC
proliferation and intimal accumulation in vascular remodeling
still needs to be elucidated in detail. One study has demonstrated
that a mononuclear CX3CR1+ cell population residing in
murine bone marrow provides a source of SPCs after wire-
induced vascular injury, which differentiate into VSMCs within
the neointimal plaque (35). Furthermore, BMT of CX3CR1
deficient bone marrow into C57BL6/J mice demonstrated that
Cx3cr1 expression is essential for VSMC differentiation from
SPCs in the vascular wall (35). Thus, CX3CL1 may play a
prominent role in intimal hyperplasia promoting atherosclerosis
through increased VSMC proliferation and monocyte trafficking.
However, it would be worthwhile to perform similar studies
using either an Apoe−/−or a Ldlr−/− mouse fed aWD to provide
results that truly reflect CVD triggered mechanisms.

Another recent study treated Ldlr−/− mice with a CX3CL1-Fc
fusion protein inhibiting the CX3CR1-CX3CL1 interaction. This
fusion protein treatment significantly reduced atherosclerotic
lesion size, independent of WD diet feeding and reduced
M1-like macrophage and T cell accumulation in the aortic
wall (33). Thus CX3CL1-Fc could be a potent therapeutic
option interfering with vascular remodeling and atherosclerosis

(Table 2). Along this line, another study implemented the use
of a DNA vaccine, a vector that contains genes encoding a
single-chain antibody specific for the mouse dendritic cell (DC)
antigen DEC205 and the receptor CX3CR1 (DEC-CX3CR1)
and a non-DC DNA vaccine (Con-CX3CR1). Both vectors
were injected into Apoe−/−mice fed a normal chow diet (84).
DEC-CX3CR1 vaccinated mice demonstrated a significantly
reduced atherosclerotic plaque size compared to both Con-
CX3CR1 vaccinated and unvaccinated mice (84). Furthermore,
DEC-CX3CR1 mice showed reduced monocyte infiltration and
lipid deposition in the lesions compared to unvaccinated
mice, although the lesional macrophages still possessed an M1
phenotype. Not only does this further support the role of the
CX3CL1-CX3CR1 axis in vascular remodeling (Figure 1), but
it also emphasizes the need to conduct more studies on DNA
vaccination (Table 2) as an effective therapeutic strategy against
atherosclerosis and vascular remodeling. Overall, CX3CL1 plays
an important role in M1 macrophage differentiation and the
migration/proliferation of VSMC resulting in vascular changes
(Figure 1).

CYTOKINES

Cytokines are molecules that are secreted by immune cells and
other specific cell types that modulate the inflammatory immune
response and mediate cell-cell communication. Cytokines are
subdivided into different classes: TNFs, IFNs, ILs, transforming
growth factors (TGFs) including growth/differentiation growth
factors (GDF), colony-stimulating factors (CSFs) and chemokines
as detailed before. In atherosclerosis, pro-inflammatory cytokines
play an important role in the initiation and progression of
the disease and in the instigation of endothelial dysfunction,
upregulation of adhesion molecules and promotion of immune
cell migration as well as their infiltration into the lesion. All
these different factors lead to arterial remodeling and subsequent
changes in vascular function (85). The most important cytokines
that are known to contribute to atherosclerosis lesion remodeling
are IL-1, IL-6, IL-10, IL-22, IL-33, TNF-α and GDF-15 which will
be discussed below in greater detail:

Interleukin 1
IL-1 was one of the first cytokines to be discovered and it is
divided into two related but functionally distinct isoforms: IL-
1α and IL-1β. Here, the main focus will be on IL-1β as this is
a potent driver of the inflammatory response in atherosclerosis
and vascular inflammation. IL-1β is synthesized by many
cells including neutrophils, NK cells, DCs, ECs macrophages,
monocytes and SMCs (Figure 2). In atherosclerosis, its synthesis
is triggered by the uptake of cholesterol crystals by macrophages
activating the NLR family pyrin domain containing 3 (NLRP3)
inflammasome or by the binding of IL-1 family members to their
receptor IL-1R resulting in a positive autocrine inflammatory
feedback loop (86). In addition to cholesterol, monocytic
inflammasomes and the production of IL-1β can be activated by
dying VSMC and in turn promotes VSMC proliferation as shown
in vitro and in vivo in C57BL/6 mice of vein graft injury (87).
IL-1β itself induces the upregulation of adhesion molecules such
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as ICAM1 and VCAM1 as well as the monocyte chemoattractant
chemokine CCL2 (please see section CCL2) on ECs promoting
leukocyte recruitment into the atherosclerotic plaque (Figure 1;
Table 3) (88, 115, 116). Pro-inflammatory cytokine IL-1β has
also an important role in cross-talk between ECs and the
underlying VSMCs. Specific secretion of IL-1β by SMC induces
E-selectin expression by ECs (117). In turn, IL-1β secretion
by activated ECs promotes VSMC proliferative, synthetic and
macrophage-like phenotypes (118). The barrier function of ECs
is crucial to maintain vascular wall homeostasis. However, in
atherosclerotic conditions, dyslipidemia and proinflammatory
cytokines such as IL-1β promote excessive adhesion molecule
expression by ECs leading to endothelial dysfunction and
increased permeability of the EC barrier due to the disruption
of intercellular junctions, resulting in increased leukocyte
infiltration and vascular remodeling (Figures 1, 2; Table 3)
(90). In addition, IL-1β promotes VSMC proliferation by
stimulation of autocrine production of PDGF (Figure 1) and
the production and release of the pro-inflammatory cytokine
IL-6 (Table 3) (92, 93). IL-1β-induced EC dysfunction is also
promoted by plasma trimethylamine-N-oxide (TMAO). TMAO
is an oxidation product of the liver that is made from
compounds synthetized by intestinal bacteria and an elevated
concentration of TMAO increases monocyte mobilization and
activation leading to low-grade inflammation (119). In line
with this, high plasma levels of TMAO are associated with
atherosclerosis and increased risk of CVD. In this context Boini
et al. (119) showed that TMAO increases the assembly and
activation of the NLRP3 inflammasome leading to an increased
production of IL-1β in carotid arteries of WT mice with partially
ligated carotid artery. In addition, in vitro experiments indicate
that TMAO treatment induces NLRP3-dependent endothelial
hyperpermeability by decreasing zonula occludens-1 (ZO-1),
a tight junction protein responsible for junction integrity,
expression in mouse carotid arterial endothelial cells (CAECs)
(119). Therefore, targeting TMAO may help to reduce adverse
remodeling in atherosclerosis by preventing EC leakage and
infiltration of inflammatory cells as well as reducing IL-1β
driven inflammation (119). IL-1β also increases the expression
of dipeptidyl peptidase 4 (DPP4), which is a transmembrane
protein expressed on ECs that is involved in glucose metabolism
and cardiometabolic disease (120). Recent studies showed that
DPP4 inhibition decreases atherosclerotic plaque burden. For
example, Meng et al. investigated the atheroprotective role
of the DPP4 inhibitor trelagliptin on HAECs exposed to IL-
1β in vitro, showing that trelagliptin treatment had a strong
inhibitory effect on the expression of adhesion molecules and
pro-inflammatory chemokines and cytokines that orchestrate
monocyte adhesion on the endothelium (89). Mechanistically,
trelagliptin inhibits IL-1β induced NFκB transcription factor
activation which subsequently prevents the transcription of the
monocyte chemoattractant chemokines CCL2, CXCL1 as well as
the pro-inflammatory cytokine IL-6 and the adhesion molecules
ICAM1 and VCAM1 (mRNA and protein levels) (Table 3) (89).

Results from studies that focus on IL-β antibody blocking
or knock out in vivo are less straightforward. Earlier work
in Apoe−/−mice in which the anti-IL-1β antibody XMA052

MG1K was injected twice weekly during 16 weeks of WD
showed a decrease of aortic lesion area of 37, 22 and 29% with
0.1, 1.0, 10 mg/kg XMA052 MG1K, respectively, compared to
IgG injected control Apoe−/− mice (91). In vitro experiments
performed in the same study revealed reduced release of other
pro-inflammatory cytokines such as IL-6, IL-8, TNF-α and
CCL2 from cultured macrophages and reduced release of the
proteolytic enzymes MMP-3 and MMP-9 from ECs and VSMCs,
after XOMA 052, a human engineered IgG2 anti-IL-1β antibody,
treatment (Tables 3, 4) (91). However, MMP-3 and MMP-9
expression were not affected in vivo, and no difference was
observed in the plaque collagen content suggesting that plaque
stability is not modified by this treatment (91). Yet, when anti-
IL-1β treatment was tested to investigate its role in established
atherosclerotic lesions, it led to adverse remodeling. Cell-specific
effects of the IL-1β antibody (mouse monoclonal antibody,
Novartis, 10mg/kg) were tested by Gomez et al. on VSMC lineage
tracing Apoe−/− mice where the fate and migration of SMCs
can be monitored during the development of atherosclerosis
by using an inducible Cre-flox system to label MYH11+ SMC
specific YFP expression (Apoe−/−Myh11-CreERT2R26R-YFP).
The anti-IL-1β monoclonal antibody treatment did not lead to
any differences in the aortic plaque size compared to IgG treated
control animals after 18 weeks WD. In addition, anti-IL-1β
treated mice showed thinner fibrous caps characterized by a 30%
decrease of collagen, a 40% decrease of VSMC content, though
a surprising 50% increase of lesional macrophages within the
fibrous cap (Table 4) (121). These results indicate that anti-IL-
1β treatment has a detrimental effect on fibrous cap remodeling
promoting plaque instability.

Nevertheless, the Canakinumab Anti-inflammatory
Thrombosis Outcome Study (CANTOS) was the first big scale
clinical trial confirming the potential of anti-inflammatory IL-1β
therapy in CVD. In the CANTOS trial, anti-IL-1β (canakinumab)
treatment resulted in a decrease of inflammatory markers in the
plasma of patients such as high-sensitivity C-reactive protein
(hsCRP) (26–41%) and IL-6 (6–25%) (129–131).

The receptor for IL-1β, IL-1β receptor type 1 (IL-1R1), was
also described to reduce atherosclerotic plaque development
(132, 133). However and in sharp contrast, lack of the IL-1β
receptor antagonist (IL-1ra) promotes atherosclerotic plaque
formation (134). More recent studies further support this
controversial role of IL-1R1 and IL-1ra in atherosclerosis
development and more precisely in atherosclerotic
plaque remodeling.

IL-1R1 deletion has a dual role in plaque stability and outward
vessel remodeling as shown in a female mouse model lacking IL-
1R1 (IL-1R1−/−Apoe−/−) and fed aWD for 30 weeks. Thesemice
showed reduced aortic root lesion size as well as a 50% reduction
of the lumen area of the brachiocephalic artery when compared
to control IL-1R1+/+Apoe−/− mice. However, these reductions
were accompanied by enhanced features of plaque instability,
characterized by decreased VSMCs and collagen content. MMP-
3 expression in the brachiocephalic artery was also significantly
lower in IL-1R1−/−Apoe−/− animals which may explain the
reduced collagen content in the plaques (135). In line with this,
IL-1Ra-deficient mice exhibited considerable inflammation in
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TABLE 3 | Overview of cytokines involved in atherosclerosis remodeling and their physiological effect.

Cytokines Receptors Cells affected Proposed effect in vascular remodeling References

IL-1β IL-1R ECs EC dysfunction (88)

Expression of ICAM1, VCAM1, CCL2 (89)

Leukocyte adhesion and infiltration into the

intima

(90)

Macrophages Expression of IL-6, IL-8, TNFa, CCL2 (91)

VSMCs Proliferation (92)

IL-6 expression (93)

Collagen expression

IL-6 Gp130 ECs ICAM1, VCAM1 expression (94)

(95)

Monocytes Recruitment, infiltration (96)

(97)

VSMCs Recruitment and migration (98)

(95)

Neutrophils Recruitment (96)

(97)

ECM Collagen deposition (99)

IL-10 IL-10R1 Macrophages Prevent proinflammatory cytokines production (100)

(101)

(102)

Prevent foam cell formation

IL-10R2

Promotes M2 macrophage polarization

IL-22 IL-1R1 ECs ICAM1, VCAM1 expression (103)

(104)

(105)

Macrophage Phenotypic change from anti-inflammatory into

pro-inflammatory cell type, Reduced

cholesterol efflux

(105)

VSMCs Migration and proliferation (106)

Phenotypic switch (107)

from contractile into synthetic repair cell (105)

IL-33 ST2 ECs VCAM1, ICAM1, E-selectin, CCL2 expression (108)

Macrophage Inhibits foam cell formation (109)

T cells Differentiation into Th2 cells (109)

TNFa TNF1 TNF2 ECs ICAM1, VCAM1, CCL2 expression (110)

Monocytes Recruitment, Differentiation into macrophages (111)

(112)

Macrophage Foam cell formation (110)

VSMCs Proliferation (113)

(114)

the aorta accompanied by an increased macrophage content
in the adventitia and destruction of the elastic lamina, which
is normally important to maintain arterial wall stability
prevent intima lesion progression (136, 137). Another study
also investigated the role of IL-1Ra in atherosclerosis lesion
development by making use of IL-1Ra+/+ and IL-1Ra+/− mice
(IL-1Ra−/− mice were excluded from this study due to reduced
weight gain and differential cholesterol metabolism) on Apoe−/−

background. Heterozygous and control animals were fed normal
chow diet for 16 weeks and IL-1Ra+/−Apoe−/− mice showed

a 30% increase of atherosclerotic lesion size compared to IL-
1Ra+/+Apoe−/− mice (134). Interestingly, after 32 weeks of
chow diet feeding the lesion size was similar in both groups,
but macrophage accumulation in the lesions was reduced in IL-
1Ra+/−Apoe−/− animals compared to control. VSMCs in the
same lesions showed a 15% decrease compared to control IL-
1Ra+/+/Apoe−/−animals (134). These findings suggest that IL1-
Ra plays an important role in the development of atherosclerotic
lesions and also suggests that it impacts plaque composition,
modulation and stability (Figure 1).
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TABLE 4 | Targeting cytokines as therapeutic treatments in vascular remodeling and CVD.

Cytokines Therapeutic

Treatment

Clinical

trials

Animal

experimentation

Outcomes on atherosclerosis References

IL-1 β Canakinumab X X Decreases aortic lesion area, Decreases IL-6,

IL-8, TNFα, CCL2, Decreases collagen and

VSMC content

(91)

(121)

IL-6 Raloxifene X X Decreases aortic lesion area, Decreases IL-6,

Decreases ICAM1, VCAM1 expression,

Decrease macrophage and VSMC content

(95)

Ziltivekimab X – Decreases of serum CRP (122)

Tocilizumab X – Decreases CRP, Ameliorates FMD, Increase

total cholesterol

(123)

IL-10 Nothing yet – – – –

IL-22 Fezakinumab X – Not published yet (124)

IL-33 Nothing yet – – – –

TNFα Adalimumab X X Decreases VCAM1, E-selectin, CRP, and aortic

stiffness; Increases oxLDL

(125)

(126)

(127)

Etanercept X – Decreases aortic stiffness, Increases

cholesterol and triglycerides

(128)

Taken together, IL-1β is detrimental and promotes early-
stage atherosclerosis development but on the other hand animal
models suggest that it is beneficial in an advanced stage
of the disease to maintain plaque stability and avoid major
cardiovascular complications. Plaque stability also seems to be
affected by interfering with IL1-R1 or IL-1RA. Nevertheless,
it is important to keep in mind that research on mice and
in vitro assays have certain limitations with regards to the
translation to human pathologies. Therefore, efficacy and safety
of the CANTOS trial and its promising beneficial results in
patients with adverse cardiovascular events still hold true even
if research on IL-1β on atherosclerosis in mice and in vitro
findings are sometimes conflictual meaning that the results are
not always consistent from one study to another. In addition,
one should keep in mind that Apoe−/− mice are severely
hypercholesterolemic which does not fully translate with the
CANTOS patients who were under statin treatment. Moreover,
canakinumab in CANTOS was only administered quarterly and
not weekly which may explain why no effects on lesion stability
were reported yet. The latter also underlines the importance of
careful timing of treatment regimens.

Interleukin 6
IL-6 is secreted by various cells including epithelial cells, VSMCs,
vascular ECs, monocytes, and T cells (Figure 2) (138) and
promotes the synthesis of acute phase proteins such as CRP,
amyloid A, β2 protein, hemopexin and haptoglobin. Both CRP
and amyloid A are biomarkers of chronic inflammation and
their levels predict cardiovascular risk (97, 139). In addition, IL-6
shows chemotactic activity for monocytes and neutrophils and
promotes the expression of adhesion molecules (Table 3) (94)
and chemokines leading to vascular remodeling by the induction

of leukocyte adhesion and infiltration into the intima (Figures 1,
2; Table 3) (96, 97). More precisely, paracrine secretion of IL-6
by VSMC induces expression of the adhesion molecule E-selectin
on ECs (117). In addition, in response to IL-6 signaling ECs and
SMC also start to secrete IL-6 (140). TNFα activated ECs also
induce SMC production of IL-6 (141).

Circulating IL-6 is a biomarker for CVD such as acute
coronary syndrome with atherosclerosis (142). A study on
carotid atherosclerosis showed that blood levels of IL-6 and
TNFα were higher in patients with carotid atherosclerosis
compared to control subjects and the cytokine levels increased
with increasing amounts of carotid atherosclerosis stenosis (143).
IL-6 was also shown to promote migration and viability of
macrophages and VSMCs in vitro and regulate ECM deposition
and reorganization (Table 3) (95, 98). One mechanism of
IL-6 driven SMC migration is made via MyD88 and TRIF
action and activation of p38 MAPK and ERK1/2 signaling)
(144). Schieffer et al. investigated the role of IL-6 deficiency
on atherosclerosis development. In this study, IL-6 deficient
Apoe−/− mice (Apoe−/−IL-6−/−) were fed with chow diet for
53 ± 4 weeks and showed a significant decrease in aortic
transcript and protein levels of MMP-9, tissue inhibitor of
metalloproteinase-1, collagen I and V and lysyl oxidase (145),
an important protein for the formation and repair of the
ECM, compared to Apoe−/− control mice (146). Additionally,
Apoe−/−IL-6–/– mice exhibited a decrease in macrophage and
leukocyte infiltration into the lesions, although atherosclerotic
lesion formation was enhanced in Apoe −/−IL-6–/– compared to
Apoe−/− animals (28.1 vs. 14.9% respectively). The latter may be
explained by the observed increase of total cholesterol, LDL, and
very-low-density lipoprotein VLDL in IL-6 deficient animals and
a decrease of plasma IL-10, compared to control mice (146).
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Interestingly, a recent study showed an atheroprotective effect
of raloxifene treatment in male Apoe−/− mice fed a WD for 12
weeks. Raloxifene is a drug that is prescribed to post menopause
women to prevent osteoporosis and is able to inhibit IL-6
binding to the IL-6 receptor subunit GP130, thereby prohibiting
downstream signaling pathways such as STAT3. In this study,
it was observed that daily administration of 5 mg/kg raloxifene
reduced the area of atherosclerotic lesion size in the aorta
and aortic root in Apoe−/− mice compared with untreated
control Apoe−/− mice (95). In addition, raloxifene significantly
decreased the expression of IL-6, ICAM1, and VCAM1 in
the aortic vascular ECs and reduced the lesional macrophage
and VSMC content in these aortic lesions. Mechanistically it
could be demonstrated that raloxifene decreases atherosclerosis
by preventing IL-6-induced phosphorylation of STAT3 and
inhibiting the IL-6/GP130 interaction (Tables 3, 4) (95).

IL-6 secretion by aortic perivascular adipose tissue (PVAT)
also promotes aortic stiffness and remodeling in Ldlr−/− mice
compared to WT C57BL/6 mice fed with chow diet (99). Aortic
stiffness, mediated by changes in the ECM protein expression,
is caused by an increase in cross-linking of collagen (147).
Consistent with other studies, Du et al. (99) also observed an
increase in IL-6-ediated collagen type I expression in the aorta of
Ldlr−/− mice (Table 3). These findings suggest that IL-6may play
an important role in inducing changes in the ECM by increasing
collagen type I expression and thereby promoting subsequent
arterial stiffness and thus vascular remodeling (Figure 1).

RESCUE, a trial to evaluate the reduction in inflammation in
patients with advanced chronic renal disease utilizing antibody-
mediated IL-6 inhibition investigated the effect of ziltivekimab
in patients with high cardiovascular risk (122). Patients in
this study had elevated serum CRP levels and chronic kidney
disease and were randomly allocated into groups with differential
monthly subcutaneous administrations of ziltivekimab (total
of 7.5mg, 15mg or 30mg) or placebo. After 12 weeks of
treatment, CPR levels decreased by 77% in the 7.5mg group
and by 92% in the 30mg group. Biomarkers of systemic
inflammation and thrombosis, relevant to atherosclerosis, were
also reduced in a dose-dependent manner, while no severe side
effects were detected. Due to the COVID-19 pandemic, the
study unfortunately had to be terminated before the planned
secondary 24-week endpoint to avoid exogenous causes of
increased CPR levels and thereby bias the interpretation of the
results. However, it is planned to do a large-scale cardiovascular
outcome trial on the same population to investigate the effect of
ziltivekimab on the recurrence rate of vascular events (Table 4)
(122). Another clinical study investigated the efficiency of an
anti-IL-6 treatment, tocilizumab, on endothelial function in high-
risk CVD patients with rheumatoid arthritis (RA). Tocilizumab
is a humanized monoclonal antibody that targets the soluble
and membrane-bound IL-6 receptor. The study consisted of
three groups, whereby 18 patients received tocilizumab (8 mg/kg
IV) every 4 weeks, 24 patients underwent anti-TNFα treatment
(methotrexate 15–25 mg/week or leflunomide 20 mg/d) and
18 control patients who were treated with synthetic disease-
modifying antirheumatic drugs (123). Endothelial function
was evaluated by flow-mediated dilation (FMD) measurements

before and after 16 weeks of starting the different treatments.
As expected, patients from the tocilizumab treated group showed
the most striking reduction in mean CRP levels compared to the
other treatments. Furthermore, the mean FMD only significantly
improved in the tocilizumab group, increasing from 3.43 to
4.96%. On the other hand, anti-IL-6 treatment greatly enhanced
the atherogenic lipid profile and increased total cholesterol
levels (Table 4) (123). Long-term treatment with tocilizumab
was also addressed in a pilot study with 16 female RA patients
receiving monthly injections with tocilizumab (8 mg/kg IV)
and endothelial function was again measured by FMD. The
endothelial function significantly improved after 6 months of
treatment compared to 16 non-RA control subjects (148). As
underlined by various clinical trials, tocilizumab worsens the
lipid profile, total cholesterol burden, LDL, and triglyceride
profile. However, it does also improve endothelial function and
therefore reduces vascular remodeling. Therefore, to minimize
the detrimental effects of elevated lipids, it would be ideal to for
example combine tocilizumab with statin treatment.

Interleukin 10
IL- 10 is an anti-inflammatory cytokine produced mainly by
macrophages and T cells. IL-10 signaling is mediated through
a two-receptor complex named IL-10 receptor 1 (IL-10R1) and
IL-10R2. The receptor complex is constitutively expressed on
numerous hematopoietic and non-hematopoietic cells such as
epithelial cells and fibroblast and is upregulated upon activation
(149). In atherosclerosis, IL-10 prevents remodeling by inhibiting
macrophage activation and their proinflammatory cytokine
production including TNFα, IL-1β, IL-6, IL-8, granulocyte
stimulating factor (G-CSF) and granulocyte macrophage colony-
stimulating factor (GM-CSF), foam cell formation, MMP
expression, VSMC proliferation and therefore helps to reduce
atherosclerotic plaque formation (Figure 1; Table 3) (101, 150).

In contrast, IL-10 deficiency in Apoe−/− after 16 weeks on
chow diet leads to greater atherosclerosis plaque formation, an
increase in blood cholesterol (e.g., LDL), an increase in Th1 cell
response in the lesion as well as greater tissue factor activities,
systemic coagulation and vascular thrombosis compared to
control (151). In APOE∗3-Leiden mice under cholesterol-
enriched high-fat diet with cuff-induced neointima formation in
the femoral artery, IL-10 deficiency led to increased neointima
formation. On the other hand, in the same mouse model, IL-
10 overexpression by means of single intramuscular injection
of IL-10 resulted in a 45% decrease of neointima surface (152).
However, Ldlr−/− mice transplanted with marrow cells from IL-
10 transgenic male mice on a C57BL/6J background and fed
chow diet for 4 weeks prevents the formation of advanced lesions,
shifts Th1 cells toward Th2 phenotype and decreases IFN-γ levels
in the lesion (153). Interestingly, IL-10 overexpression leads to
increased modified LDL uptake by macrophages, although it
also stimulates its efflux and thus prevents foam cell formation
(Figure 1) (100). Overall, IL-10 diminishes lesion burden by
decreasing proinflammatory cytokine levels and promoting an
anti-inflammatory environment in the lesion with M2 polarized
macrophages as well as Th2 cells and prevents foam cell
formation (100, 154, 155). IL-10 also inhibits VSMCs activation
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in vitro and in vivo. IL-10 treatment of LPS-stimulated rat SMCs
resulted in a decreased NF-κB activation, IL-6 secretion as well
as reduced SMC migration and proliferation (Figure 1). In line
with these observations, in a rat model of intimal hyperplasia,
IL-10 treatment led to reduced SMC proliferation and intimal
growth 14 days after balloon abrasion of the aorta compared with
saline-injected control animals (150).

Furthermore, Jung et al. investigated more in detail the
protective cellular and molecular mechanisms of IL-10 that
prevent adverse MI LV remodeling. The authors show that
IL-10 promotes M2 macrophage polarization in vitro and in
turn the M2 secretome induces cardiac fibroblast activation,
proliferation, migration and α-SMA expression. In addition, the
same study showed that IL-10 treatment of fibroblasts reduces
the ratio of collagen I to III secretion 7 days post-MI leading
therefore to decrease fibrosis formation (Table 3) (102). These
observations could mean that IL-10 levels may be implicated in
plaque stability.

Systemic treatment with IL-10 is not ideal as it inhibits
inflammation even when it is needed to fight pathogens.
Indeed, long-term treatment of IL-10 increases the prevalence of
intracellular infection such as Chlamydia and Listeria (156). In
this regard, a study has tried cell-specific systems to avoid these
off-target side effects. Exosomes loaded with IL-10 mRNA were
engineered to target inflamed macrophages in the atherosclerotic
lesion. These exosomes were used to treat Apoe−/− mice under
8 weeks high fat diet and resulted in decreased atherosclerotic
plaque formation compared to PBS receiving control or exosome
treatment (157).

Treatments and clinical trials are currently undergoing to
explore the anti-inflammatory properties of IL-10 in various
chronic diseases including RA, multiple sclerosis, allergies and
inflammatory intestinal disease among others. However, IL-10
therapy for atherosclerosis and its effect on vascular remodeling
remains to be investigated.

Interleukin 22
IL-22 is a member of the IL-10 cytokine family and is secreted
by both innate and adaptive immune cells such as activated T
cells especially T helper (Th) 22 cells and Th17 cells, NK cells,
neutrophils, fibroblasts, and macrophages. IL-22 is involved in
many cellular processes including lipid metabolism regulation,
maintenance of bacterial homeostasis in the intestine and tissue
regeneration (158).

The function of IL-22 in atherosclerosis is largely unknown,
although evidence suggests that IL-22 is involved in vascular
remodeling by promoting pro-inflammatory chemokines and
antimicrobial peptide secretion as well as increasing VSMC
migration and proliferation (Figure 1) (159, 160). In addition,
IL-22 regulates adhesion molecule expression by ECs such as
ICAM1 and VCAM1 as well as the production of chemokine
ligands that have been implicated in adhesion, migration
and recruitment of monocytes in atherogenesis (Figure 1)
(103–105) (Table 3). The receptor of IL-22, being IL-22R1,
is widely expressed on VSMCs, macrophages and ECs and
mediates enhanced proliferation and migration through NFκB-,
STAT3-, MAPK- and ERK1/2-dependent pathways in VSMCs

(Figure 1). Furthermore, paracrine IL-22 promotes macrophage
differentiation from anti-inflammatory into a pro-inflammatory
phenotype and impairs the cholesterol efflux capacity of the
cells, thereby promoting foam cell formation (Figure 1) (161,
162). Rattik et al. demonstrated that IL-22-deficient Apoe−/−

mice (IL-22−/− Apoe−/−) fed a WD for 14 weeks had a
significant reduction of atherosclerotic plaque size in both the
aortic root and aorta, compared to control Apoe−/− mice.
In addition, IL-22−/− Apoe−/−mice depicted reduced collagen
content but increased expression of genes associated with VSMC
contraction, namely α-actin, vinculin and caldesmon (Table 3)
(106). The same study also explored the role of IL-22 in tissue
repair mediated by arterial VSMCs in a carotid artery injury
model in C57BL/6 mice. Here, an increased expression of IL-
22 on VSMCs could be observed in the injured compared
with non-injured arteries (106). These results suggest that IL-
22 plays a key role in atherosclerotic plaque formation via the
stimulation of dedifferentiation of contractile VSMCs toward
synthetic repair cells resulting in plaque growth and that IL-
22 is involved in plaque stability by thickening the fibrous cap,
rendering it more stable by promoting lesional collagen content
(Figure 1). IL-22 is therefore a double-edged sword. On the one
hand, IL-22 worsens atherosclerosis by promoting inflammation,
dysregulating macrophage cholesterol metabolism leading to
more foam cell formation and promoting VSMCs proliferation
and fibrous cap thickening (Table 3) (105). While on the other
hand, IL-22 also leads to more stable plaques by increasing
VSMC proliferation and migration into the intima forming a
thick fibrous cap which decreases the risk of rupture and acute
cardiovascular events.

Besides the above described protective effect of IL-22
it was also demonstrated that this cytokine can prevent
atherosclerosis by promoting the expression of antimicrobial
peptides which limit the spread of proatherogenic bacteria such
as Enterobacteriaceae (Klebsiella sp), Prevotellaceae (Prevotella
copri), Lachnospiraceae, Clostridiaceae and Ruminococcaceae.
Additionally, a BMT of IL-22−/− BM into Ldlr−/− mice fed
with WD for 16-weeks revealed larger atherosclerotic lesion
sizes in hematopoietic IL-22-deficient Ldlr−/− mice compared
to the control group (158). In these mice the aortic plaque
was characterized by an increase of T cells and myeloid
cell content as well as enhanced expression of aortic and
intestinal proinflammatory cytokines like IL-1β, TNFα, CCL2
and CCL5. Intestinal gene expression of anti-microbial peptides
C-type regenerating islet derived-3 (Reg3)-b and Reg3-g were
also significantly reduced in hematopoietic IL-22 deficient
Ldlr−/− mice compared to controls and whole metagenome
shotgun sequencing analysis of cecal luminal microbiota revealed
an increase of the above mentioned pro-inflammatory and
proatherogenic bacterial species in absence of IL-22 (158).

However, in sharp contrast, more recently Shi et al. (107)
underlined the pro-atherogenic effects of IL-22 produced by
Th22 cells. After 12 weeks of WD feeding while Apoe−/− mice
were treated with intraperitoneal injections of 2 µg recombinant
mouse IL-22 (rIL-22) three times a week, it could be shown that
IL-22 treatment resulted in larger atherosclerotic plaque sizes in
the aortic root and the aorta as well as an increase in lesional
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macrophages. Th22, Th17 cells as well as DCs, collagen and
serum IL-6 levels were also enhanced compared to PBS-treated
Apoe−/− control mice. In addition, SMC α-actin was reduced
in mice undergoing rIL-22 treatment. These observations were
abolished when mice were treated three times a week with 20
µg anti-IL-22 monoclonal antibody (IL-22 mAb), proving the
causal role of IL-22 in the observed effects. The same study
also showed that BM-derived DCs from Apoe−/− mice treated
with 100 ng/mL rIL-22 followed by stimulation with oxLDL
displayed enhanced maturation properties and were able to
induce differentiation and proliferation of naïve CD4+T cells
into Th17 cells (107). The authors concluded that IL-22 secretion
by Th22 aggravates atherosclerosis by promoting T cells (Th17),
DCs and macrophage infiltration in the plaque and by inducing
the dedifferentiation of contractile SMCs into synthetic SMCs
(Table 3).

Human studies have also observed a correlation between
circulating IL-22 levels and atherosclerosis. 45 patients with
carotid artery disease were selected and were classified as
symptomatic or asymptomatic based on the presence or absence
of cerebrovascular symptoms. Immunostaining of plaques
revealed a 7.15-fold higher IL-22 occurrence in symptomatic
patients compared to the asymptomatic ones (104). Moreover,
significant higher plasma levels of IL-22 were measured in
patients with acute MI compared to healthy controls (163).
Pre-clinical and clinical studies testing fezakinumab, a human
anti-IL-22 mAb, and mAbs targeting the IL-22 receptor are
still ongoing in patients with severe inflammatory diseases
such as psoriasis, atopic dermatitis and rheumatoid arthritis.
The limited results that are already published suggest no
adverse safety concerns and <50% skin improvement, based
on Percentage Change in the Scoring of Atopic Dermatitis
(SCORAD) scores in atopic dermatitis patients (Table 4) (124,
164). Since atherosclerosis is also an inflammatory disease,
interfering with IL-22 or IL-22 receptor may also represent a
promising therapeutic target for CVD, although more elaborate
research is needed to pinpoint the exact mechanisms of action.

Interleukin 33
IL-33, the most recently discovered member of the IL-1 cytokine
family may also play a crucial role in vascular remodeling.
This cytokine is expressed by ECs, VSMCs, epithelial cells and
immune cells such as macrophages and T cells. For example, IL-
33 is released from injured or necrotic ECs and acts as an alarmin
leading to pro-inflammatory responses, both from innate and
adaptive immune cells (165, 166). IL-33 binds to IL-1 receptor
like protein (IL-1RL1 or also known as ST2). ST2 has two forms, a
transmembrane (ST2L) and a soluble (sST2) one, which compete
with each other for IL-33 binding. ST2L is expressed by various
immune cells such as macrophages, T cells (predominantly Th2),
mast cells, and innate lymphoid cells (167). Elevated levels of
IL-33 and its soluble receptor sST2 were observed in patients
suffering from pathologies such as diabetes, obesity, CAD, stroke
and atherosclerosis (168).

IL-33 promotes the expression and secretion of various pro-
inflammatory cytokines, adhesion molecules, proteolytic and
coagulation factors. Investigations of IL-33 in atherosclerosis

revealed that this cytokine stimulates the expression of the
endothelial adhesion molecules VCAM1, ICAM1 and E-selectin
as well as the expression of CCL2 in HUVECs in a concentration-
dependent manner resulting in increased leukocyte adhesion
(Figure 1; Table 3) (108). On the other hand, by binding to
the ST2L, IL-33 can also influence the phenotype and function
of macrophages and T cells (167). Furthermore, Miller et al.
(109) found that IL-33 reduces atherosclerotic lesion size in the
aortic sinus of 6-week-old male Apoe−/− mice fed with WD
for 12 weeks while treated twice weekly with IL-33 injections
(1 µg/injection) compared to the PBS-injected control group. In
the same study, it could be demonstrated using in vitro serum
assays that the atheroprotective effect of IL-33 was due to IL-
33-mediated polarization of T cells into Th2 cells, inhibition
of foam cell formation and an increase of antibody production
targeting oxidized LDL. Nevertheless, plaque stability from the
treated and untreated group remained unchanged, characterized
by similar VSMC and collagen content, suggesting that IL-33
treatment decreases atherosclerosis plaque size without affecting
plaque stability (Table 3) (109).

However, also some controversial results regarding the effects
of IL-33 were found in human and rat studies. In humans,
circulating IL-33 levels were found to correlate with vulnerable
and high-risk plaques in 191 patients with carotid artery
atherosclerosis. Analysis of carotid endarterectomies (CEA) from
these patients also revealed an increased plaque expression of
IL-33 and its receptor ST2 as well as enhanced IL-33 serum
levels in CEA patients with vulnerable plaques compared with
CEA patient with stable plaques (166). In contrast to what was
observed in humans, obese rats showed increased sST2 levels in
the aorta which correlated with an increase in the production of
collagen, fibronectin and profibrotic molecules enhancing ECM
formation and vascular fibrosis (Figure 1) (169). IL-33 seems
to have differential effects on the stability of the atherosclerotic
plaque depending on the species, in humans it was associated
with vulnerable plaques however in rats, IL-33 seems to increase
plaque stability.

In addition, it was found that certain genetic polymorphisms
in the IL-33 locus resulted in deferential atherosclerosis
development in patients with RA. From 576 RA patients carrying
the mutant TT genotype of IL-33 rs3939286 polymorphism
had a significantly lower carotid intima-media thickness (cIMT)
evaluated by carotid ultrasound, compared to the wild-type CC
genotype. The heterozygous CT genotype had an intermediate
cIMT value. Combined, these results suggest a potential
protective effect of the IL-33 rs3939286 T allele in atherosclerosis
development by decreasing IL-33 expression (170).

However, there are also studies showing that atherosclerosis
severity was not affected by IL-33/ST2 signaling. For example,
there were no significant differences in atherosclerotic lesion area
between IL33−/−Apoe−/−, ST2−/−Apoe−/− or Apoe−/− mice
fed with 10-weeks-high cholesterol diet (171).

In conclusion, research on IL-33 and its multiple controversial
effects on atherosclerosis are not yet fully elucidated and
need to be better understood. A potential explanation for the
controversial results are differences in tissue specific expression
patterns, the appliedmodel (e.g., deficiency vs. receptor blocking)
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or the prescribed medication, which should be investigated and
compared more closely in future studies.

Tumor Necrosis Factor α

TNFα is a pro-inflammatory cytokine that is expressed
mainly by macrophages, DCs and T cells and activates
various pathways including cell survival, apoptosis, necrosis,
migration, proliferation, barrier disruption, cell adhesion and
actin cytoskeleton modification (172). It has two receptors
TNFR1 and TNFR2, although several studies showed that the
majority of TNFα signaling is mediated through TNFR1 (173–
175). TNFα modulates vascular remodeling by increasing EC
permeability, up-regulation of endothelial adhesion molecules
leading to monocyte adhesion to the endothelium, matrix
degradation and VSMCs proliferation in the intima (Figure 1;
Table 3) (111, 113, 176, 177). TNFα can act both in a paracrine or
autocrine manner. For example, TNFα-activated ECs stimulate
VSMC expression of the pro-inflammatory cytokine IL-6 but
also vascular endothelial growth factor (VEGF) and further
TNFα expression (141). Furthermore, TNFα secreted by ECs
leads to VSMC proliferation as well as promoting synthetic and
macrophage-like phenotype differentiation (118).

Therefore, TNFα is a key atherosclerotic cytokine in
atherosclerosis (178) and its genetic deletion in atherogenic
Apoe−/− mice fed 10 weeks of WD was found to decrease
atherosclerotic lesion size by 50% compared to control Apoe−/−

animals (112). In the same study a BMT of 10-week-old Apoe−/−

mice with age-matched Apoe−/−TNFα−/− BM resulted in a
83% reduction of lesion size after 25 weeks of WD in mice
with hematopoietic TNFα-deficiency (112). Unexpectedly, no
differences in lipid burden, VCAM1 expression, macrophage, B
cell and T cell numbers in the circulation could be observed
comparing TNFα-deficient mice with control animals. These
results suggest that hematopoietic TNFα may not be involved
in monocyte mobilization, since adhesion molecules as well as
macrophage content in the plaques were similar in both groups
(Table 3) (112). Another study using Apoe−/−TNFα−/− mice
found a decreased expression of the adhesion molecules VCAM1
and ICAM1 and the cytokine CCL2 in TNFα-deficient mice
on chow diet compared to Apoe−/− control mice (Table 3)
(110). The same study also described an reduced capacity of
macrophages to phagocytose LDL particles, thereby promoting
foam cell formation as well as an decreased expression level of
the scavenger receptor class A in TNFα-deficient Apoe−/− mice
compared to Apoe−/− controls (110) (Figure 1; Table 3). Taken
together, it seems that somatic TNFα deficiency has a greater
impact on atherosclerosis development as it decreases endothelial
adhesion molecule expression as well as foam cell formation
compared to hematopoietic TNF-α deficiency.

Anti-TNFα therapies in RA patients are also known to
decrease the level of serum chemerin, an adipokine that
has an important role in CVD, although the relationship of
chemerin and TNFα in remodeling remains unknown (179).
Nevertheless, vascular remodeling seems to be affected by
chemerin levels as shown in vitro, where chemerin deficiency
decreases VSMCs proliferation and in vivo where it decreases
neointima hyperplasia after angioplasty (180). Lack of chemerin

also leads to the reduction of pro-inflammatory cytokines, like
TNFα, in the serum suggesting a feedback loop between the
two (179). Another component that modulates TNFα-induced
remodeling is the erythropoietin-producing human hepatocellular
receptor (EphA), which is a receptor tyrosine kinase that
mediates cell-adhesion and leukocyte homing in atherosclerosis
by promoting ICAM1 and VCAM1 expression on ECs (181).
EphA2-deficient Apoe−/− mice which were fed a WD for
12 weeks developed smaller innominate artery and carotid
sinus plaque size compared to Apoe−/−control animals (182).
Furthermore, in vitro knockout of EphA2 inHAECs revealed that
TNFα treatment is unable to induce monocyte adhesion to ECs
lacking EphA2, suggesting that the TNFα-induced expression of
adhesion molecules is inhibited upon EphA2 deficiency (182).

The effect of TNFα on endothelial function may also be
modulated by food consumption. For example, aged garlic
extract (AGE) and its sulfur-containing constituents improve
the endothelial barrier function elicited by TNFα through
stimulation of anti-inflammatory, anti-oxidative and anti-
hypersensitive pathways in humans thereby also preventing CVD
development including atherosclerosis. Active substances in AGE
consisting of S-1-prpenylcysteine (S1PC) particularly interfere
with TNFα-induced hyperpermeability of the endothelium (183).
Therefore, adverse remodeling in atherosclerosis may also be
reduced by food supplements.

Furthermore, tongxinluo (TXL), a traditional Chinese
medicine product has anti-inflammatory as well as vasoprotective
properties. In C57BL/6 mice subjected to carotid artery ligation,
TXL treatment significantly reduced neointima hyperplasia in a
dose-dependent manner by inhibiting macrophage infiltration
as well as VSMCs proliferation in the intima of the artery,
compared to untreated control mice (114). Further analysis
revealed that the protective effects of TXL in hyperplasia are due
to the inhibition of TNFα-induced miRNA-155 expression, a
generally pro-inflammatory acting miRNA (114).

Nevertheless, until recently the therapeutic potential of TNFα
blockage in atherosclerosis by pharmacological inhibitors such as
monoclonal antibodies remained unknown. Oberoi et al. tested
weekly injections of mouse-specific anti-TNFα monoclonal
antibody CNTO5048 (12 mg/kg) in 10-week-old Ldlr−/− mice
fed with high fat, high cholesterol diet for either 6 or 12 weeks.
Plasma inflammatory markers such as IL-6, CCL2 and TNFα
were significantly decreased in mice receiving CNTO5048 after
12 weeks of treatment compared to control animals injected
with IgG antibody (184). However, no differences were observed
in the 6 weeks group, although mRNA expression levels of IL-
6, CXCL1 and ICAM1 in vascular tissue of the aortic arch
were increased after both 6- and 12-weeks treatment. On
the other hand, plasma lipid profiles revealed a significant
increase in VLDL cholesterol and triglycerides due to CNTO5048
treatment. Moreover, atherosclerotic plaque burden was also
augmented in CNTO5048 mice. Detailed examination of the
plaque composition revealed a reduction of intimal VSMC
infiltration and lower collagen type I deposition within the
atherosclerotic plaque in the CNTO5048-treated group which is
associated with plaque instability. These counter-intuitive results
revealing reduced systemic inflammation though enlarged lesion
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growth are most likely due to the enhanced cholesterol levels
observed in the treated group. Yet, analysis of genes regulating
lipid and cholesterol metabolism, such as Apob, Mttp or Apoa5
in the liver, did not reveal any differences between the two
groups (184). In contrast, adalimumab, a human-specific anti-
TNFα monoclonal antibody binding and blocking both soluble
and membrane bound TNFα, administered to Ldlr−/− mice fed
10-weeks of WD, revealed reduced atherosclerotic lesion size by
52% in the anti-TNFα treated mice (2.2 mg/kg twice weekly via
intraperitoneal injection) compared to IgG controls, while the
cholesterol and triglyceride levels did not change between the
groups (185). These differential results may be due to the different
antibodies that were applied, since themousemodel and length of
WD feeding were comparable between the two studies (184, 185).

Various clinical trials have already been conducted to
evaluate the effect of anti-TNFα treatment in patients with
CVD. For example, recent findings reveal a decrease in
cardiovascular biomarkers, such as soluble VCAM1, in patients
after treatment with adalimumab. Psoriasis is well known to
increase CVD risk as well as sharing different biomarkers and
pathophysiological mechanisms such as systemic inflammation
and endothelial dysfunction with CVD, suggesting that this
pathology might benefit from similar therapeutic approaches
(186, 187). Therefore, Zdanowska et al. conducted a study using
34 patients with psoriasis and 8 healthy volunteers between 30
and 73 years old, which were treated with an initial dose of 80mg
and then 40mg of adalimumab every 2 weeks. After 12 weeks
of treatment, soluble VCAM1 serum levels were significantly
decreased comparing psoriasis patients with controls, while E-
selectin was not affected (Table 4) (125). On the other hand,
E-selectin levels were decreased in a bi-yearly study examining
the effect of adalimumab in 17 patients with psoriasis compared
with 24 healthy age-, gender- and BMI-matched volunteers with
the same treatment regimen. Serum levels of E-selectin as well
as plasma levels of IL-22 were significantly decreased compared
to baseline, both after 12 and 24 weeks of treatment (126).
Plasma CPR levels also decreased but only reached a significant
difference compared to baseline after 24 weeks of treatment.
Notably and in sharp contrast to the previously described
beneficial outcomes, circulating oxLDL levels increased during
the 2 years follow-up (Table 4) (126). The atheroprotective
effects of adalimumab may therefore be a cumulative effect
from a repression of inflammation and reduction of cholesterol
uptake by macrophages leading to reduced foam cell formation.
However, since cholesterol uptake by macrophage is decreased,
it causes an augmentation of circulating cholesterol, which is a
side-effect that could be solved with a combinational treatment
with statins.

In addition, adalinumab decreases aortic stiffness as tested in
18 RA patients receiving either a monotherapy of subcutaneous
adalinumab (40 mg/ 2 weeks) or a combination with disease
modifying antirheumatic drugs in comparison to control
patients using methotrexate (MTX). After 3 months of therapy,
adalinumab treatment significantly decreased the aortic stiffness
indices as measured by carotid-femoral pulse wave velocity
(cfPWV) from 8.18 m/s to 7.01 m/s while no difference
was observed in patients using MTX. On the other hand,

there was no significant difference in the disease augmentation
index (AIx), a systemic arterial stiffness parameter (188), or
other cardiovascular risk factors after the adalinumab treatment
(Table 4) (127). Besides adalinumab, also another TNFα inhibitor
called etanercept is used as therapy for patients with various
chronic inflammatory diseases such as RA. Based on a recent
meta-analysis, both treatments significantly decreased vascular
remodeling by limiting aortic stiffness and wave reflection in
RA patients, independently of the treatment duration (duration
varied from 6 to 56 weeks) (Table 4) (128). However, in all
the studies mentioned above, TNFα treatment led to enhanced
cholesterol and triglyceride titers (Table 4).

In conclusion, TNFα therapy holds great promise in reducing
CVD and benefitting cardiovascular patients by decreasing
atherosclerotic plaque size as well as decreasing several
pro-inflammatory markers and ameliorating aortic stiffness.
However, the long-term effects of anti-TFNα treatment and
augmentation of cholesterol levels need to be critically considered
when judging on the superiority of the treatment for CVD
patients in light of the unfavorable lipid profile (128). However,
based on clinical studies, the increase in lipid profiles in patients
undergoing TNF-α treatment could be reduced by combining it
with statin treatment (189).

OTHER MEDIATORS

In addition to chemokines and cytokines also other factors
influence vascular function and composition. Among them are
for example growth factors, prostaglandins and leukotrienes
which will be summarized with respect to their role in vascular
remodeling in the following paragraphs.

Growth Differentiation Factor-15
Growth differentiation factor-15 (GDF-15), also known as
macrophage inhibitory cytokine-1, is a member of the TGF-
β family which is induced under stress conditions such as
oxidative stress, inflammation, ischemia, or mechanical stretch
(190). GDF-15 is known to be expressed in cardiomyocytes,
especially in response toMI, but also by adipocytes, macrophages,
ECs, and VSMCs from both healthy and injured tissues (191). A
receptor for GDF-15 has been identified called glial cell-derived
neurotrophic factor (GDNF) family receptor α-like (GFRAL).
However, this receptor is mainly expressed on human brain stem
cells and based on the various physiological effects of GDF-
15 throughout the body it is hypothesized that other receptors
should exist which are still to be discovered (192). Inflammatory
proteins such as IL-1β, TNFα, IL-2 and macrophage stimulating
factor (MCSF)-1, all of which are upregulated in atherosclerosis,
induce the expression of GDF-15 (192). In line with this, an
increase in circulating GDF-15 protein was recently associated
with an elevated risk of adverse events in patients suffering
from acute coronary syndrome, chronic kidney disease or heart
failure (193–197). For example, the study by Gohar et al. (194),
demonstrated that high plasma levels of GDF-15 in women
with carotid atherosclerotic disease are predictive for secondary
cardiovascular events. However, the effect of GDF-15 on cardiac
remodeling is still poorly understood. One study from Xu et
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al. (198) showed that GDF-15 blocks norepinephrine-induced
myocardial hypertrophy through a novel pathway involving
the inhibition of epidermal growth factor receptor (EGFR)
transactivation. In line with this observation, a recent overview
from Wesseling et al. (199) emphasizes the role of GDF-15
in endothelial dysfunction, hypertrophy, and fibrosis (Table 3).
GDF-15 was also associated with an elevated risk of adverse
events in patients suffering from coronary syndrome, chronic
kidney disease or heart failure (199). Heart failure involves
cardiac remodeling following tissue injury which is caused by
inflammation, volume, or pressure overload (199).

Growing evidence indicates that GDF-15 has detrimental
effects on endothelial function by causing an increase in adhesion
molecule expression and influencing the balance between
vasoconstriction and vasodilatation (Figure 1). Indeed, GDF-15
leads to endothelial dysfunction by reducing vascular contraction
and relaxation, which ultimately leads to an impaired cardiac
function (Table 3) (190, 200). In addition, GDF-15 is implicated
in cardiac hypertrophy which is described as an increased heart
size and insufficient cardiac output (199). The exact role of
GDF-15 on cardiomyocytes is still not fully understood but
it seems that GDF-15 has both pro-hypertrophic and anti-
hypertrophic effects depending on environmental cues. For
example, GDF-15 promotes cardiac hypertrophy by protecting
cardiomyocytes from apoptotic stimuli (201), but in constrast
GDF-15 also seems to reduce myocardial hypertrophy by
inhibiting the transactivation of EGFR (Table 3) (198). Further
research also suggests that the anti-hypertrophic effects of GDF-
15 on cardiomyocytes may be due to GDF-15-induced activation
of small mother against decapentaplegic (SMAD) 2/3 proteins
(202). GDF-15 also promotes cardiac fibrosis in heart failure and
increases collagen turnover in MI as well as collagen deposition
in atherosclerotic plaques (Figure 1; Table 3) (203–205).

In addition, elevated circulating GDF-15 levels are suggested
as a potential biomarker for cardiovascular risk and outcome
as it is directly linked to atherosclerosis progression. GDF-
15 promotes plaque vulnerability through pro-inflammatory
and angiogenic effects, especially in the early stages of the
disease (205, 206). Furthermore, GDF-15 has been linked to
cardiovascular event prediction in general and identification
of high-risk patients (205, 206). Therefore, monitoring and
targeting GDF-15 in CVD may improve early diagnosis and
treatment strategies (206).

Prostaglandins
Prostaglandins are a group of lipids synthesized at sites of
tissue damage or infection and play an important role in
resolving injury and illness by regulating inflammation, blood
flow and the formation of blood clots (207). The production
of prostaglandins is initiated by cyclooxygenase (COX) which
induces the production of thromboxane A2 (TXA2) and
prostaglandins, such as prostaglandin (PG)-D2, PG-I2, PG-
E2 and PG-F2α (208). TNFα induces the expression of the
prostaglandin endoperoxide synthase COX2 in a variety of cell
types including ECs and VSMCs (186, 209, 210). PGs have also
been found to induce diverse effects on VSMCs. For example,
PG-D2 dictates the balance of VSMC proliferation and apoptosis

and PG-E2 causes VSMCs to contract by inhibiting the potassium
current (211, 212). PG-E2 also regulates VSMC tone through
the prostaglandin E 1 (EP-1) and EP-3 receptors. Furthermore,
EP-1 and EP-3 activation mediates intracellular Ca2+ pathway
activation and the reduction of cAMP induced vasoconstriction
(213). In sharp contrast, PG-E2 stimulation of EP-2 and EP-
4 increases cAMP promoting vasodilation (214). Moreover,
stimulating contractile VSMCs with PG-D2 activates the ERK
pathway resulting in PG-D2 dependent VSMC phenotypic
switching (215, 216). In CVD animal models, e.g. in microsomal
prostaglandin E2 synthase-1−/− (mPGES1−/−) Ldlr−/−mice on
a 3- and 6-month WD, PGES1-deficiency, resulting in reduced
circulating PG-E2 levels and resulted inreduced plaque burden
and foam cell accumulation without affecting the blood pressure
(217). PG-D2 is also induced by TNFα and, in turn, propagates
the dedifferentiation of contractile VSMCs into a synthetic
phenotype via the upregulation of proliferator-activated receptor
(PPAR) (218). Furthermore, the loss of TNFα or the inhibition
of COX2 repressed the induction of intimal thickening in mice
(218). The same study also found that TNFα stimulates the
activity of COX2 and thereby enhances COX2 expression in
contractile VSMCs, while inhibition of COX2 suppressed TNFα-
induced contractile VSMC phenotypic switching and neointima
formation (218). Taken together, PGs have a diverse role in
vascular remodeling (Figure 1), from regulating vasoconstriction
and vasodilation to VSMC proliferation and apoptosis. Yet,
specifically in atherosclerosis PGs like PG-E2 can dictate
lesion size (217) and PG-D2 plays an important role in the
phenotypic switching of VSMCs to their pro-atherosclerotic
synthetic phenotype (218). However, it is difficult to suggest PGs
as a potential therapeutic target as COX2 selective inhibitors
are associated with increased atherothrombotic risk (219).
Therefore, further research is needed to better understand the
role of PGs in vascular remodeling before developing specific
treatment approaches.

Leukotrienes
Leukotrienes (LTs) are biologically active molecules produced
by leukocytes, mastocytoma cells and macrophages in response
to immunological and nonimmunological stimuli. LTs are well
known as allergic, acute and chronic inflammatory mediators
and are involved in several inflammatory conditions such as
human arthritis, asthma, allograft rejection and atherosclerosis
(220, 221). These inflammatory LTs originate from the 5-
lipoxygenase (5-LO) pathway of arachidonic acid metabolism
and, together with the 5-LO-activating protein (FLAP), catalyze
the arachidonic acid metabolism from membrane phospholipids
resulting in the formation of LT-A4, which is an unstable
precursor leukotriene. 5-LO can further be metabolized into
LT-B4 or form cysteinyl-leukotrienes like LT-C4, -D4 and -E4
after conjugation with glutathione (222, 223). Macrophages are
the main producers of 5-LO and a correlation has been found
between macrophage content of 5-LO and 5-LO localized in
DCs, foams cells, mast cells and neutrophils and atherosclerotic
plaque size in humans (224). In addition, clinical, population
genetic, cell biological and mouse studies have all linked the 5-
LO pathway to atherogenesis and arterial wall remodeling (223).
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In atherosclerosis, LTs promote the migration and accumulation
of inflammatory cells into the intima of the vascular wall resulting
in the initiation and progression of the disease (Figure 1).
In addition, the inflammatory response is enhanced by the
activation of leukotriene B4 receptors 1 (BLT1) and 2 (BLT2)
as well as the cysteinyl-leukotrienes receptors (CysL)-T1 and
CysLT2.These receptors are expressed on immune cells and
vascular cells which are associated with atherogenesis such as
ECs, VSMCs and monocytes/macrophages and their activation
through leukotriene binding lead to structural alterations of the
vascular wall and thus vascular remodeling (222, 223).

Direct effects of LTs on blood vessels include left ventricular
contractility modifications, blood pressure regulation, coronary
artery contraction and leukocyte recruitment into the
perivascular space (225–228). In vitro studies revealed that
LT treatment of ECs enhances the surface expression of P-
selectin, secretion of von Willebrand factor and stimulates the
synthesis of platelet activation factors and promotes VSMCs
proliferation (229–231). LT-B4 is expressed on diverse cell types
and for example neutrophils, eosinophils, VSMCs andmonocytes
all respond to LT-B4-dependent cell migration and recruitment
to sites of inflammation (Figure 1) (220, 228, 232). In addition,
the LT-B4-BLT1 pathway mediates VSMC recruitment and
proliferation in the atherosclerotic plaque leading to intima
hyperplasia as shown in rats treated with the BLT receptor
antagonist BIIL 284 (10 mg/kg, once daily for 14 days) after
balloon-induced injury of the carotid artery (233). Overall, it is
clear that LT-B4 plays an important role in leukocyte attraction
and adhesion to the vascular endothelium and the proliferation
and migration of VSMCs (Figure 1) (231, 234).

As 5-LO is the regulator of the production of LT-B4 and
cysteinyl leukotrienes, it is an interesting therapeutic target. 5-LO
inhibition with intake of 0,1% BHB-TZD (5-(3,5-di-tert-butyl-
4-hydroxybenzylidene)thiazolidin-2,4-dione) mixed in food was
described to prevent plaque progression in atherogenic Ldlr−/−

mice fed a WD for 8 weeks (235). Moreover, 5-LO inhibition
with licofelone in rabbits significantly decreased the femoral
artery intima/media ratio as well as macrophage infiltration in
the neointima, CCL2 expression and the activation of NFκB in
the vascular lesion (236). Therefore, licofelone seems to diminish
neointima formation following arterial wall injury and reduces
inflammatory cell recruitment and adhesion into the arterial wall,
thereby reducing atherosclerosis vascular remodeling.

Targeting LT receptors may represent an additional putative
therapeutic target for the treatment of atherosclerosis and for
preventing intimal hyperplasia after angioplasty. The Carotid
Atherosclerosis Progression Study (CAPS) investigated 8 genetic
polymorphisms associated with the leukotriene pathway and
early atherosclerosis and remodeling in 969 patients. However,
no significant effect of these polymorphisms was observed on
atherosclerosis and remodeling risk based on carotid intima-
media thickness (237). This result may be explained by the fact
that most patients only showed signs of early atherosclerosis,
while there was insufficient plaque advancement and stenosis to
demonstrate associations with advanced atherosclerosis. Another
randomly sampled cohort of 470 healthy, middle-aged women
and men from the Los Angeles Atherosclerosis Study (LAAS)

investigated the association between 5-LO gene promoter
polymorphism, dietary arachidonic acid intake and the effect
on atherosclerosis. An increase in intima-media thickness and
atherosclerotic plaques could be observed in patients carrying
two variant alleles of the 5-lipoxygenase compared with patients
with the common allele. In addition, among the persons with
the two variant alleles, the ones ingesting more arachidonic
acid had significantly elevated intima-media thickness compared
to patients with a marine n-3 fatty acid rich diet. These
findings suggest a diet-gene interaction effect which impacts the
development of atherosclerosis (238).

An ongoing clinical study (started in May 2020, estimated
end in December 2023) is examining the role of a cyteinyl
leukotriene antagonist in atherosclerosis (NCT04277702). They
aim to study its effect on lower limb artery re-occlusion rate
in 200 patients with peripheral artery disease after endovascular
treatment. Results will further demonstrate whether LTs are a
promising therapeutic option.

CONCLUSION

Taken together many mediators exert divers and, in some cases,
even opposing functions in atherosclerotic vascular remodeling.
Future studies are needed to demonstrate whether the effects
of CCL2, CCL5, CCL19, CXCL12, CXCL16 and CX3CL1 on
VSMCs like increased proliferation and subsequent increase
of plaque stability but also induction of phenotypic switching
balance out their more pro-atherogenic effects on leukocyte
recruitment and lesional foam cell formation. Hence, while
considering the therapeutic targeting potential of chemokines in
general one should keep in mind that chemokine blocking could
reduce plaque size at costs of reduced lesion stability. Still, some
chemokines may be useful as biomarkers since augmented levels
of CCL5 or CXCL12 correlate with the severity of atherosclerosis
or CAD respectively.

Cytokines like IL1-β, IL-6, IL-22, TNFα and GDF-15 seem
to particularly foster EC activation and drive early atherogenesis
while the effects of IL-33, PGs and LTs are less clear. In addition,
IL1-β and IL-22 are also involved in VSMC proliferation and
phenotypic switching, but animal models also suggest that
IL-1β is beneficial in an advanced stage of the disease by
maintaining plaque stability. Caution is also warranted when
blocking IL-6 and TNFα. Blocking of those two cytokines
enhances total cholesterol burden, LDL, and triglyceride profiles
despite improving endothelial function and reducing vascular
remodeling. Therefore, to minimize the detrimental effects of
elevated lipids, it is important to combine IL-6 and TNFα
blocking with lipid lowering strategies like statin treatment.
On the other hand, fostering beneficial effects of IL-10 for
example to inhibit phenotypic switching of VSMCs could
also be a promising therapeutic approach to delay vascular
wall remodeling.

Overall, it is important keep in mind that tissue specific
expression patterns, the applied model, the prescribed
medication and deficiency vs. receptor blocking all differentially
impact on well-orchestrated immune functions and, in addition,
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time and spatial resolution significantly contribute to the results
summarized above.
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