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Background: Constant supply of oxygen is crucial for multicellular tissue homeostasis
and energy metabolism in cardiac tissue. As a first response to acute hypoxia,
endothelial cells (ECs) promote recruitment and adherence of immune cells to the
dysbalanced EC barrier by releasing inflammatory mediators and growth factors,
whereas chronic hypoxia leads to the activation of a transcription factor (TF) battery,
that potently induces expression of growth factors and cytokines including platelet-
derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). We report
a hypoxia-minded, targeted bioinformatics approach aiming to identify and validate TFs
that regulate angiogenic signaling.

Results: A comprehensive RNA-Seq dataset derived from human ECs subjected
to normoxic or hypoxic conditions was selected to identify significantly regulated
genes based on (i) fold change (normoxia vs. hypoxia) and (i) relative abundancy.
Transcriptional regulation of this gene set was confirmed via gPCR in validation
experiments where HUVECs were subjected to hypoxic conditions for 24 h. Screening
the promoter and upstream regulatory elements of these genes identified two TFs, KLF5
and SP1, both with a potential binding site within these regions of selected target genes.
In vitro, siRNA experiments confirmed SP1- and KLF5-mediated regulation of identified
hypoxia-sensitive endothelial genes. Next to angiogenic signaling, we also validated the
impact of TFs on inflammatory signaling, both key events in hypoxic sensing. Both TFs
impacted on inflammatory signaling since endogenous repression led to increased NF-
kB signaling. Additionally, SP1 silencing eventuated decreased angiogenic properties in
terms of proliferation and tube formation.
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Conclusion: By detailed in silico analysis of promoter region and upstream regulatory
elements for a list of hypoxia-sensitive genes, our bioinformatics approach identified
putative binding sites for TFs of SP or KLF family in vitro. This strategy helped to identify
TFs functionally involved in human angiogenic signaling and therefore serves as a base
for identifying novel RNA-based drug entities in a therapeutic setting of vascularization.

Keywords: hypoxia, transcription factor, endothelial, angiogenesis, promoter profiling, signaling

INTRODUCTION

Constant supply of oxygen is crucial for cellular and tissue
homeostasis regulating energy metabolism (1). In contrast,
hypoxia is defined as the state that describes an impaired
oxygen partial pressure loss in blood and tissue, eventually
leading to a shortage of oxygen and thus detrimental for organ
function. Besides physiological oxygen levels, also the oxygen
concentration at which endogenous hypoxia gene responses are
activated vary between different tissues and developmental stages
(1). Of note, hypoxia itself can occur naturally, for example
at high altitudes (2) or in a variety of disease models such as
stroke (3), cardiovascular disease (4), and cancer (5). Cellular
or tissue hypoxia is known to regulate gene expression on
multiple levels: at DNA level transcription factors (TFs) are
present, which are activated under hypoxic conditions (e.g.,
HIF-1a), and additionally the activity of histone-modifying
enzymes that modulate chromosomal organization is oxygen-
dependent (6, 7). This complex molecular interplay is resulting
in dynamic chromatin structures leading to active or repressed
genomic sites as shown in earlier studies investigating angiogenic
hypoxic gene signature (8). Hypoxic signaling is causally
linked to inflammation as hypoxia-inducible factor 1 (HIF-1a)
stimulates the expression of NF-kB, which subsequently triggers
the expression of inflammatory genes (9). In a feedback-loop
manner, NF-kB signaling was also shown to transcriptionally
activate HIF-1a and basal NF-kB activity was demonstrated to
be required for HIF-la protein accumulation under hypoxia
(10). Furthermore, hypoxic stress stimulates the induction of
autophagy in order to maintain cellular survival (11, 12). In
cancer, the reciprocal crosstalk between NF-kB and autophagy
can either repress or promote tumorigenesis. Here, stimulus
and context determine the fate of tumorigenesis (13). Taken
together, these information link hypoxia with autophagy, innate
immunity and inflammation via multi-lateral interactions. ECs
form the inner layer of blood vessels and thus act a vital part
in a variety of biological processes such as angiogenesis (14),
inflammation (15), and nutrient supply via the circulatory system
(16). The response of ECs to changes in oxygen availability
crucially depends on how the underlying condition manifests
in a time-dependent manner. As a first response to acute
hypoxia, ECs promote recruitment and adherence of immune
cells to the dysbalanced endothelium by expressing and releasing
inflammatory mediators and growth factors, whereas long-term
hypoxia causes the activation of a TF battery (e.g., HIF-1a),
that potently induces expression of growth factors and cytokines
including platelet-derived growth factor (PDGF) and vascular
endothelial growth factor (VEGF) (17). Abundant expression

of those cytokines initiates proliferation and migration of
ECs (14) which ultimately supports the formation of fresh
blood vessels in poorly perfused tissue areas. Understanding
the molecular pathways of angiogenic gene patterns can thus
highlight novel therapeutic approaches in the aforementioned
organ disorders.

Herein, we apply a hypoxia-minded, targeted bioinformatics
promoter screening approach followed by experimental
validation of hypoxia-sensitive endothelial genes regulated by
the TFs SP1 and KLF5 including functional hypoxia-regulated
events. Our approach is not limited to a specific biological
setting, thus serves as a general base for identifying novel drug
entities either supporting or inhibiting these networks in a
therapeutic setting.

RESULTS

Bioinformatics Screening Identified SP1
and KLF5 as Potential Drivers of
Endothelial Cell Transcriptional

Response to Hypoxia

Initially, a previously reported RNA-Seq dataset (GSE70335)
derived from human ECs subjected to normoxic or hypoxic
conditions (8) was selected to identify significantly regulated
genes based on (i) fold change (normoxia vs. hypoxia) and (ii)
relative abundancy. Transcriptional regulation of this gene set
was confirmed in vitro via qPCR in validation experiments. In
line with the experimental setup of the reported RNA-Seq dataset,
HUVECs were incubated for 24 h at low oxygen conditions
to validate differential gene expression in qPCR experiments
(Figure 1A). Combining upstream regulatory elements of this
gene set with TF binding matrices in our efficient analysis
pipeline allowed high throughput screening of our gene set for
multiple TF binding sites (Figure 1B). Screening the promoter
and upstream regulatory elements of genes, whose dysregulation
could be validated in qPCR experiments, identified the TFs
KLF5 and SP1 harboring a possible binding site within these
regions in 8 out of the 10 differentially expressed genes.
As the top two TFs in our results they were selected for
further validation experiments (Figure 1C). All results from
the bioinformatics analysis can be found in Supplementary
Material (Supplementary Table 1). Given this prediction, we
examined if hypoxia regulates endogenous SP1 and KLF5
expression in ECs by monitoring their mRNA levels after
various periods of hypoxia. Both, SPI as well as KLF5 mRNA
levels remained constant after hypoxia treatment for 24 h
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FIGURE 1 | Transcription factors SP1 and KLF5 are potential regulators of EC transcriptional response to hypoxia. (A) mRNA levels of selected genes from a

previously reported RNA-Seq dataset were validated in HUVECs after 24 h of hypoxia via gPCR (n = 3). (B) Bioinformatic pipeline for the selection of transcription
factors. (C) In silico prediction of potential binding sites for SP1 and KLF5 in hypoxia-sensitive geneset. (D) gPCR data of SP7 and KLF5 mRNA levels in HUVECs
after 24 h of hypoxia (n = 3). Each dot resembles the mean value of all technical replicates from an independent experiment. *p < 0.05, **p < 0.01, **p < 0.001.

(Figure 1D). In line, time lapse hypoxia experiments in HUVECs  levels are significantly elevated compared to normoxic cells
revealed that mRNA levels of both, SPI and KLF5 remain (Supplementary Figure 1). Thus, we hypothesize that mainly
constant during the first 24 h, whereas after 48 h, mRNA SP1 and KLF5 localization but not their expression levels act
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FIGURE 2 | SP1 differentially regulates hypoxic gene expression in ECs in vitro. (A) SP7 mRNA levels in HUVECs after 24 h of hypoxia were detected via gPCR
(n = 4). (B) SP1 protein levels in HUVECs after 24 h after siRNA transfection were detected by Western blot (n = 3). For each sample, 20 g of protein were loaded
onto polyacrylamide gels. Chemiluminescence with an exposure time of 390 s (SP1) or 120 s (GAPDH). (C) mRNA levels of genes, which were upregulated under
hypoxia, were detected using gPCR after siRNA-mediated SP7-knockdown in combination with hypoxia (n = 4). (D) mRNA levels of genes, which were
downregulated under hypoxia, were detected using gPCR after siRNA-mediated SP7-knockdown in combination with hypoxia (n = 4). Each dot resembles the mean
value of all technical replicates from an independent experiment. *p < 0.05, **p < 0.01, **p < 0.001.

as a potential driver of hypoxic gene expression in human ECs

in vitro.

SP1 and KLF5-Knockdown Mediated
Differential Gene Expression After

Hypoxia

Next, we aimed to investigate the effect of TF modulation
on hypoxia-induced endothelial gene transcription. Silencing

of endogenous SP1 with a specific siRNA resulted in a
robust knockdown of SP1 on protein but not on mRNA
level (Figures 2A,B). To examine whether SP1 could influence
expression of selected hypoxia-sensitive genes in ECs, we
quantified relative mRNA levels after siRNA application during
hypoxic conditions in vitro. We observed that six out of
eight genes with a suspected SP1 binding site within their
upstream regulatory elements show altered mRNA levels after
SP1 knockdown under hypoxia (Figures 2C,D).
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For four (ANPTL4, DNAHI11, INHBA, and BGN) of these
five upregulated genes with a predicted binding site the hypoxia-
driven upregulation was augmented after SP1-knockdown, even
though the knockdown did not affect expression of these mRNAs
under normoxic conditions, indicating a selective mechanism of
SP1 between normoxia and hypoxia (Figure 2C). In contrast,
out of the three downregulated genes with a predicted binding
site, two (LRP8 and MCM4) of these were shown to be
unaffected on mRNA levels after SPI repression in hypoxic
environment. Transcriptomic repression as a result of SPI-
knockdown at normoxic conditions was abolished in hypoxic
HUVECs (Figure 2D). In conclusion, SP1 shows a bilateral
function under hypoxic signaling where it can either repress
the upregulation of hypoxia-sensitive genes under hypoxic
conditions or induce the gene expression under normoxic
conditions. The latter only seems to occur if respective genes
are downregulated as a result of hypoxic signaling. Combining
these observations with our finding that SPI mRNA levels
remain unchanged after 24 h of hypoxia in ECs (Figure 1D),
regulation of hypoxic gene expression via SP1 appears to be
mediated via modulation of its activity but not its quantity.
Collectively, we hypothesize that SP1 activity is altered in human
ECs under hypoxemia as transcriptomic regulation patterns
after SP1-knockdown differ between hypoxia and normoxia. We
observed SP1-mediated regulation in both conditions, thus we
claim that not only SP1 but on top chromatin dynamics and
hence, accessibility of binding sites possess a major role in the
regulation of SP1-driven transcription in ECs under hypoxia.

In parallel, our proof of concept experiments revealed that
KLF5 mRNA levels were successfully downregulated by siRNA
after 24 h (Figure 3A). In line, Western blot experiments
confirmed the knockdown of KLF5 also on protein level
(Figure 3B). Assessing mRNA levels of preselected genes after
a combinatory treatment of hypoxia and siRNA transfection,
we observed that KLF5-knockdown was only able to augment
DNAHI1 and INHBA mRNA levels under hypoxia, whereas
mRNA levels of the other predicted genes remain unchanged
(Figures 3C,D). But similar to SP1, a KLF5-knockdown
only affected DNAHII and INHBA mRNA levels under
hypoxic conditions and not under regular culture conditions
(Figures 2C, 3C), further strengthening our hypothesis of a
selective regulatory mechanism induced by either a normoxic or
hypoxic environment.

SP1 Induces Inflammatory Response

and Angiogenesis of Endothelial Cells

Besides the control of hypoxic gene expression, we were
wondering if KLF5 and SP1 actions also affect EC function.
As stated earlier, low oxygen supply and inflammation are
interconnected by HIF-la and NF-kB (18, 19). Using a
Luciferase-based reporter assay, we investigated if TFs could not
only influence hypoxic gene transcription but also inflammatory
response. Applying this construct, we were able to monitor
NF-kB promoter activity dependent on pro-inflammatory
conditions. By stimulating HEK293FT cells with a pro-
inflammatory stimulus in terms of Poly I:C we observed an

enhanced NF-kB signaling. The increased inflammatory response
was attenuated after knockdown of both TFs, SP1 (Figure 4A)
and KLF5 (Supplementary Figure 2A). A hallmark of ECs
is the initiation of angiogenesis. Therefore, we tested whether
siRNA-mediated knockdown of SP1 and KLF5 could interfere
with angiogenic attributes of HUVECs such as proliferation,
migration and tube formation under hypoxic conditions. By
measuring the integration of BrdU into the DNA of dividing
HUVECs, SPI-knockdown cells - similar to hypoxic ECs -
exhibit decreased proliferation under normoxia, but not under
hypoxia (Figure 4B), whereas KLF5-knockdown did not affect
EC proliferation at all (Supplementary Figure 2B). This pattern
appears to be similar to how SP1 seems to control hypoxic
gene expression (Figure 2C). As opposed to this, EC migration
was not affected by neither SPI- (Figure 4C) nor KLF5-
knockdown in vitro (Supplementary Figure 2C). Eventually,
both, EC proliferation and migration result in the formation
of new capillary structures. By culturing HUVECs on a three-
dimensional matrix, hypoxic ECs exhibit less tube formation
compared to normoxic ECs (Figures 4D,E). A knockdown of
SP1 mRNA levels resulted in reduced tube formation after
normoxia as well as after hypoxia (Figures 4D,E). Similar to EC
proliferation and migration a KLF5-knockdown had no effect
on EC tube formation, neither under normoxia nor hypoxia
(Supplementary Figures 2D,E). In conclusion, SP1 might act
as a mediator of inflammatory response via stimulating NF-kB
signaling as well as angiogenic signaling in ECs by initiating EC
proliferation and tube formation.

In addition we analyzed a RNA-Seq data set (GSE116250)
of human left ventricular tissue from donors with ischemic
cardiomyopathy. Five out of the ten genes of interest were also
significantly deregulated between ischemic heart tissue and non-
failing hearts (Figure 5).

DISCUSSION

The epigenetic landscape of hypoxia is complex (20, 21). Multiple
TFs such as HIF-la and EPAS1 have a dynamic functional
pattern in orchestrating gene expression in hypoxia. However, the
interaction of these pioneering TFs with the existing epigenetic
architecture may be key for the fine-tuning of biological
outcomes. Our bioinformatics screening identified SP1 and KLF5
binding sites as common features of deregulated genes in a
dataset from hypoxic HUVECs (8), indicating a broad supporting
involvement of these TFs as intermediaries in oxygen-deficient
conditions. Indeed, the knockdown of SP1 and KLF5 led to
a strong de-repression of multiple predicted hypoxic factors,
implying their roles as likely intermediaries in the process.

This study reports the key contribution of endothelial TFs
SP1 and KLF5 during human EC hypoxic gene response. To
our knowledge, this is the first study linking in silico and
outcome analysis for identified TFs underlining the importance
of herein presented results. Despite a potential false positive
rate of putative promoter binding predictions, we were able to
identify SP1 and KLF5 as highly relevant biological factors and
model their role within the epigenetic regulation of hypoxia. SP1
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FIGURE 3 | KLF5 does not regulate hypoxic gene expression in ECs. (A) KLF5 mRNA levels in HUVECs after 24 h of hypoxia were detected via gPCR (n = 4).
(B) KLF5 protein levels in HUVECs after 24 h after siRNA transfection were detected by Western blot (n = 4). For each sample, 30 g of protein were loaded onto
polyacrylamide gels. Chemiluminescence with an exposure time of 398 s (KLF5) or 13 s (GAPDH). (C) mRNA levels of genes, which were upregulated under
hypoxia, were detected using gPCR after siRNA-mediated KLF5-knockdown in combination with hypoxia (n = 4). (D) mRNA levels of genes, which were
downregulated under hypoxia, were detected using gPCR after siRNA-mediated KLF5-knockdown in combination with hypoxia (n = 4). Each dot resembles the
mean value of all technical replicates from an independent experiment. *p < 0.05, **p < 0.01, **p < 0.001.

and KLF5 were indeed independently found in other studies as
major players in low-oxygen conditions (22-26). Therefore our
in silico analysis approach depicts a very efficient way to narrow
down a broad range of results coming from high throughput
experiments such as RNA-sequencing to gain precise insights
into the regulatory biology behind a certain setting. This allows
systematic planning of validation experiments underlining a
hypothesis without cost- and time-intensive experiments such as
ChiP-Seq. Comparing our approach with other available methods
(27, 28) it is noteworthy, that our method is meant to be an
upstream step for experimental validation not a stand-alone
method. Also we focus more on identifying major regulatory

key molecules than discovery of novel binding motifs. The
library used in our approach (TFBStools) also contains a wrapper
function for a MEME analysis, which, in line with other tools,
focuses more on “de novo” discovery of motifs. We preferred
to establish a method to efficiently deliver an overview over
regulatory effects in a NGS data set of interest. In the method
proposed by Srivastava et al. (29), for example, the user needs
to create and compile sequence files of the regions of interest
as well as manually select the TFs. Our approach combines all
steps in an easy to use R script where users only need to enter the
organism of interest and a list of genes with identifiers as comma
separated text file.
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Since physiological processes such as angiogenesis and
inflammation take part in multiple disease models, there is
an interest in developing drugs that modulate SP1 signaling
in ECs under hypoxia. Thus, investigating the modulation
of KLF5 and SP1 signaling could give new insights into
the treatment of various disease models. Targeting highly
interconnected intermediaries such as SP1 and KLF5 may
have clinical relevance. In the context of recovery from
myocardial ischemia, hypoxia was reported to have both
beneficial and detrimental effects (22). In line, clinical translation
of our findings to a dataset of human ischemic heart failure
samples (GSE116250) revealed significant deregulation of five
endothelial-cell related genes (Figure 5). Speculatively, the
positive aspects could be directly extracted on a molecular
level by maintaining SP1 or KLF5 levels, as SP1 supported the
angiogenic TNF-a thymidine phosphorylase pathway (23) and
VEGF (24). On the other hand, SP1 (25) and KLF5 inhibition
slowed angiogenesis (26), which may be a useful strategy in
oncotherapy. Moreover, we previously showed that modular SP1

and EN1 transcriptional binding mediates pro-fibrotic effects of
TGEFp signaling, in which EN1 knockout reverses experimental
skin fibrosis (30). Our study showed impaired proliferation,
migration, and consequently tube formation in hypoxic ECs,
which furthermore was intensified after TF knockdown. This
is contrast to in vivo observations where hypoxia induces
aforementioned features. These findings originate in the
different environmental conditions between in vitro and in vivo
studies. ECs in vivo are predominantly quiescent before
they become activated by hypoxic sensing and subsequently
initiate angiogenesis via proliferation and migration. In vitro,
ECs are constantly activated which is underlined by their
constant proliferation.

In summary, we have developed an intuitive in silico approach
to screen for TF regulation, allowing the modeling of significant
biological processes including, but not limited to, hypoxia.
A potential mediator by which SP1 affects EC function could
be Activin A - an INHBA homodimer - and ANGPTL4, as
these could already be shown to inhibit tube formation and
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FIGURE 5 | Volcano plot showing results of differential gene expression analysis of human heart tissue from ischemic heart failure in comparison with healthy
controls. Red dots show significantly deregulated genes with logFC > | 0.585| and adjusted p-value < 0.05. Genes of interest are labeled.

proliferation of normoxic as well as hypoxic ECs (31-34).
This could explain the attenuated tube formation ability and
proliferation of ECs after SP1-knockdown.

MATERIALS AND METHODS

In silico Prediction of Transcription

Factor Binding Elements

The whole TF-analysis is presented as an easy-to-use script
for the R programming language. Except for initially setting
organism of choice; no advanced programming skill are necessary
and the script runs automatically. All user inputs are described
as comments within the R-script. After termination, CSV-files
containing the results from promoter screening as well as the
actual gene-TF prediction are saved to the current working
directory. The session info is also saved as a txt-file.

The computation was performed on a Windows 10 machine
with Intel i5 CPU and 32 GB memory, but is expected to
also work on smaller systems with a longer but reasonable
timespan for computation. Analysis follows our previously
applied promoter profiling method (30). Upstream (—800 bp
from TSS) sequences for genes of interest were retrieved using
the bioMart package (v 2.48.3) in R (v. 4.1.1). Position weight
matrices for human TFs were retrieved using JASPAR2018
package (v 1.1.1). Sequence scanning was performed using
searchSequence function provided by TFBStools package (v.
1.30.0). All resulting hits were ranked by calculated binding score
in a decreasing order and the top one percent was kept. Using
the built-in function TFMPvalue, p-values for the related binding
scores are calculated. Since we select only scores within the 1%-
quantile, p-values are always significant, but can be stored for
further inspection. Multiple hits for a TF-gene combination were

TABLE 1 | siRNAs for transfection.

Name Company Catalog #
Control siRNA-A Santa Cruz sc-37007
KLF5 siRNA Santa Cruz sc-37718
SP1 siRNA Santa Cruz sC-29487

eliminated. Unique hits were counted and divided by the number
of overall genes of interest to obtain the enrichment ratio.

RNA-Seq Analysis of Human Left
Ventricle Tissue

Raw reads were obtained from NCBI Sequence Read Archive
(SRA) using fastq-dump function implemented in sratoolkit."
Alignment to reference genome (GRCh38) and read mapping
was performed using Rsubread (35). Differential gene expression
was performed using our previously published tool tRomics (36).
Genes with logFC > | 0.585| and adjusted p-value < 0.05 were
considered differentially expressed.

Cell Culture and Transfection

HUVECs (Lonza, Switzerland) were cultured in EBM™.2
Endothelial Cell Growth Basal Medium-2 (Lonza, Switzerland),
supplemented with Hydrocortisone, hFGF-B, VEGE R3-IGF-1,
Ascorbic Acid, hEGE, GA-1000 (Lonza, Switzerland) and 10%
FBS (Gibco, Ireland). The cells were incubated in a humidified
incubator (Binder, Germany) at 37°C and 5% CO,. For hypoxia
studies, HUVECs were incubated at 0.2% O, for 24 h 1 day
after seeding the cells. Transfection of siRNAs (Table 1) was
performed 1 day after seeding the cells. The siRNAs were diluted
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TABLE 2 | gPCR primer sequences.

Target Fwd primer sequence (5'—3’) Rev primer sequence (5 —3’)
ANGPTL4 TCCTGGACCACAAGCACCTA  ATCGTGGCGCCTCTGAATTA
BGN GGACACACCGGACAGATAGA  CATCATGAATGGCCCATCGTC
CLSPN ~ GGTGAAGGCCCCCAAAATCC  AACGCTGCTTCAAGGCTTCC
DNAH11  CAGTATTTGGAAAGCGAGGACA AGTTTATGGTTTGCATCTCTTGGA
FEN1 TGAGAAGGGAGAGCGAGCTTA  GCCAGGCCTTGAATTCCCAT
HPRT1 AGGACTGAACGTCTTGCTCG GTCCCCTGTTGACTGGTCATT
LRP8 GATGAGTCCGAGGCCACTTG ~ GACACTCGTTCAGCCAGGTA
MCM4 GACATGGCGGTGCTAAAGGA  GCTGTCGAGGGTATGCAGAA
MCM10  TCCCAACCCCTACAGACGAT ATCAGTTTTCGGCCGGTCAT
PTGIS TGGAGAGTTACCTGCTGCAC TGTGGGAGAGTGGTCGTCT
SP1 AGGCGAGAGGCCATTTATGT TCTTCTCACCTGTGTGTGTACG

TABLE 3 | Antibodies for Western blot experiments.

Antigen Company Catalog# Origin  Working dilution
GAPDH Abcam ab8245 Mouse 1:30,000
KLF5 Abcam ab24331 Rabbit 1:500

SP1 Abcam ab13370 Rabbit 1:2,500
Anti-mouse-HRP  Cell Signaling 7076 Horse 1:10,000
Anti-rabbit-HRP Cell Signaling 7074 Goat 1:10,000

in Opti—MEMTM I Reduced Serum Medium (Gibco, Ireland) to
a final concentration of 10 WM. Separately, Lipofectamine 2000
(Invitrogen, United States) was diluted 1:125 in Opti—MEMTM
I Reduced Serum Medium. Both mixes were combined after an
incubation time of 5 min at room temperature and incubated for
another 20 min at room temperature. HUVECs were incubated
in the transfection mix for 4 h at 37°C and 5% CO,. Afterward,
medium was changed to regular culture medium and HUVECs
were cultured for 24 h either at normal (21% O;) or hypoxic
conditions (0.2% O3). All experiments were performed in passage
five to nine cells.

HEK293FT were cultured in DMEM, high Glucose (Gibco,
Ireland), supplemented with 10% FBS (Gibco, Ireland) and
1% Penicillin/Streptomycin (Gibco, Ireland). For plasmid
transfection, 100 ng of DNA was diluted in Opti-MEM™ 1
Reduced Serum Medium. In parallel, Lipofectamine 2000 was
diluted 1:125 in Opti-MEM™ I Reduced Serum Medium and
combined with the diluted DNA after 5 min incubation time at
room temperature. The mix was incubated for further 20 min
at room temperature and added to the cells afterward. After 4 h
incubation time at 37°C and 5% CO;, medium was changed.

RNA Isolation and Quantitative

Real-Time PCR

RNA was isolated via QIAzol Lysis Reagent (Qiagen, Germany)
according to the manufacturers instructions. Subsequently, 600-
1,000 ng of RNA were transcribed using an Oligo-dT c¢cDNA
synthesis protocol (Bio-Rad, United States). For each qPCR
reaction 20 ng cDNA were used and mRNA levels were assessed
by using the ABsolute™ Blue QPCR Mix, SYBR Green, Low
ROX (Thermo Fisher, United States) in a QuantStudio™ 7 Flex
Real-Time PCR system (Applied Biosystems, United States). Data

were analyzed via standard curve method and mRNA levels
of every gene were normalized to the relative levels of HPRTI
mRNA. All primers used in these experiments are listed in Table 2
[INHBA (QT00201586) and KLF5 (QT00074676) primers were
purchased from Qiagen (Germany)].

Protein Isolation and Western Blot

Protein extraction and Western blotting was performed
similar to our previous work (37). Cells were washed with
PBS, centrifuged, resuspended in cell lysis buffer (Bio-Rad,
United States) and sonicated by a Bioruptor® Pico sonication
device (Diagenode, Belgium). From each sample either 20
or 30 ug of protein were loaded onto polyacrylamide gels
for electrophoretic band separation and transferred to a
nitrocellulose membrane (Bio-Rad, United States). Blocking
of membranes was performed by incubation for 1 h in 5%
blocking milk solution. The membranes were incubated together
with the primary antibody overnight at 4°C on a rotator. After
rinsing, the membranes were exposed to secondary IgG-HRP
antibodies, ultimately being washed again and visualized with
luminol-containing substrate solution or Clarity Western
ECL Substrate (Bio-Rad, United States). Protein levels were
normalized to GAPDH protein levels. Precision Plus Protein™
WesternC™ Blotting Standard (Bio-Rad) was utilized as a
protein standard. Antibodies used for detection can be found in
Table 3.

Luciferase Reporter Assay

A Luciferase Reporter Assay in HEK293FT cells was used
to determine the activity of inflammatory NF-kB signaling
as previously described (38). In a 48-well format, 175,000
HEK293FT cells were co-transfected with the pSGNluc plasmid,
a P-galactosidase control plasmid (Promega, United States) and
respective siRNA as described earlier. The pSGNluc plasmid
contains multiple NF-kB binding sites and therefore, enables
evaluating NF-kB activity via detection of Luciferase activity.
After transfection, medium was changed to serum-free medium
containing 300 ng/ml Poly I:C incubated on HEK293FT cells
for 24 h at 37°C and 5% CO,. Luminescence was detected
using a Synergy HT Multi-Detection Microplate Reader (BioTek,
United States) and in the end, Luciferase activity was normalized
to B-galactosidase activity.

Tube Formation Assay

Wells of a 96-well plate were coated with 40 pul Matrigel Basement
Membrane Matrix, LDEV-free (Corning, United States) and
incubated for 30 min at 37°C prior to seeding the cells. At the
end of the treatment, 10,000 HUVECs were transferred onto the
Matrigel Matrix and incubated at 37°C and 5% CO,. Brightfield
images were captured 24 h after seeding using a Cytation 1 Cell
Imaging Multi-Mode Reader (BioTek, United States). Total tube
length was determined with Image] by the Angiogenesis Analyzer
tool (39).

Scratch Wound Healing Assay
A two-dimensional Scratch Wound Healing Assay was used
to determine migration ability of HUVECs. In a 96-well plate,
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30,000 HUVECs were seeded per well and treated on the next
day as described. After the treatment, cells were stained with
5 pg/ml Hoechst 33342 (Thermo Fisher, United States) for
15 min at 37°C and 5% CO,. Next, a wound was scratched into
the cell layer using a 20 pl pipette tip (Sarstedt, Germany). To
remove dead cells, the plate was washed once with PBS and fresh
medium was added. Subsequently, images were captured every
2 h for 16 h using a Cytation 1 Cell Imaging Multi-Mode Reader
(BioTek, United States) with the first images being taken directly
at the start. For the duration of the imaging process, the cells
were incubated in a BioSpa 8 Automated Incubator (BioTek,
United States) at 37°C, 21% O, and 5% CO,. Migration was
analyzed with Image] by measuring the covered area for every
timepoint and calculating the migration index.

Proliferation Assay

Proliferation of HUVECs was assessed by Cell Proliferation
ELISA, BrdU (colorimetric) (Roche, Switzerland). A total of 5,000
HUVECs were seeded in a 96-well plate 1 day prior to the
transfection and hypoxia treatment. After 24 h incubation at
either normoxic or hypoxic conditions, medium was changed
to medium containing BrdU (1:1,000) and incubated for further
24 hat37°C, 21% O, and 5% CO,. After the incubation time, the
assay was performed according to the manufacturers manual and
absorbance was measured using a Synergy HT Multi-Detection
Microplate Reader (BioTek, United States).

Statistics

All statistics were performed with GraphPad Prism (v 8.3.1)
(GraphPad, United States). Statistical significance between two
groups was determined either by Students t-test or Welch’s
t-test. Statistical significance among three or more groups
was determined by ANOVA. All values are displayed as
means =+ SEM. Statistical significance was considered for
p <0.05.
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