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Glucose and cholesterol engage in almost all human physiological activities. As the

primary energy substance, glucose can be assimilated and converted into diverse

essential substances, including cholesterol. Cholesterol is mainly derived from de novo

biosynthesis and the intestinal absorption of diets. It is evidenced that glucose/insulin

promotes cholesterol biosynthesis and uptake, which have been targeted by several

drugs for lipid-lowering, e.g., bempedoic acid, statins, ezetimibe, and proprotein

convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Inversely, these lipid-lowering drugs

may also interfere with glucose metabolism. This review would briefly summarize the

mechanisms of glucose/insulin-stimulated cholesterol biosynthesis and uptake, and

discuss the effect and mechanisms of lipid-lowering drugs and genetic mutations on

glucose homeostasis, aiming to help better understand the intricate relationship between

glucose and cholesterol metabolism.
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INTRODUCTION

As indispensable nutrients, glucose and cholesterol are of prime importance in maintaining human
physiological activities. In normal physiological state, hepatic gluconeogenesis and glycogenolysis
maintain the normal blood glucose level for continuous consumption for energy during fasting.
Glycemic hormones, including glucagon, epinephrine, glucocorticoids, and asprosin, activate a
series of signal pathways of hepatic gluconeogenesis and glycogenolysis (1).Glucagon is of principal
significance in endogenous glucose production among these glycemic hormones. Postprandially,
the elevated blood glucose level incites insulin secretion to stimulate peripheral uptake of blood
glucose, promote hepatic glycogen synthesis, and repress gluconeogenesis, thereby maintaining a
normal blood glucose level (1). Since the blood insulin level increases simultaneously with blood
glucose after feeding, it’s difficult to distinguish the effects of insulin and glucose in vivo. Thus, in the
following review, we may not specify the effect of glucose or insulin in some cases. However, in in
vitro studies (e.g., hepatocytes), when using glucose as a stimulator, it is mostly the effects of glucose
but not insulin. Insulin may inhibit gluconeogenesis via multiple way, such as downregulating the
expression of gluconeogenesis genes, suppressing the secretion of glucagon, reducing white adipose
tissue lipolysis, and cutting down skeletal muscle proteolysis (1). Generally, glucose obtained from
diets, gluconeogenesis, and glycogenolysis can be decreased by experiencing aerobic oxidation
for energy or converting into energy storage substances (such as glycogen and lipids) with the
assistance of insulin. However, individuals with type 1 diabetes mellitus (T1DM) or type 2 diabetes
mellitus (T2DM) exhibit hyperglucagonemia and hyperglycemia because of insufficient insulin
secretion or insulin resistance. Besides, patients with T2DM are also characterized by defected
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hepatic glucose uptake and enhanced hepatic gluconeogenesis,
which collectively accelerate hepatic glucose production (2, 3).
Cholesterol is one of the principal lipids of cell membranes in
eukaryotic cells, and the content of cholesterol influences cell
membranes’ physical properties and functions (1). According
to current knowledge, there are two pathways for a human
to acquire cholesterol: absorbing cholesterol directly from diets
and synthesizing de novo based on acetyl-CoA, an intermediate
product of glycolysis, β-oxidation of fatty acids and catabolism
of amino acids (4, 5). To date, it has been proved that
glucose can not only provide raw materials for cholesterol
synthesis but also serve as a regulator of cholesterol biosynthesis
enzymes and cholesterol uptake (as shown in Figure 1). Clinical
trials indicated that the antidiabetic drug metformin reduced
the blood cholesterol level in both diabetic and non-diabetic
individuals (ClinicalTrials.gov Identifier: NCT01483560) (6, 7).
On the other hand, cholesterol may impact glucose homeostasis,
as dyslipidemic subjects treated with statin tend to develop
new-onset diabetes (NOD) (8, 9). The intricate crosstalk
between glucose/insulin and cholesterol has not been sufficiently
discussed. This review aims to discuss the relevant roles of
glucose/insulin in the biosynthesis and uptake of cholesterol

FIGURE 1 | Effects of Glucose/insulin on cholesterol metabolism. Glucose provides Acetyl-CoA for cholesterol biosynthesis. Glucose/insulin also enhances

cholesterol biosynthesis by stabilizing HMGCR and increasing HMGCR expression. Glucose or insulin activates mTORC1 by repressing AMPK or stimulating

insulin-mediated PI3K/AKT signaling pathway, respectively. The USP20 phosphorylated by mTORC1 prevents HMGCR from being degraded by GP78. PI3K/Akt

signaling pathway also stabilizes HMGCR via inhibiting the recruitment of E3 ligase TRC8. The upregulated mTORC1 can promote the translocation of SREBP2 from

ER to the Golgi apparatus, where nSREBP2 is produced sequentially by the S1P and S2P. nSREBP2 translocates into the nucleus and binds to SRE sequences to

stimulate HMGCR expression. Meanwhile, PI3K/Akt signaling pathway upregulates HMGCR via promoting SREBP–SCAP complex to migrate into the Golgi. Besides,

glucose and its metabolites inhibit cholesterol uptake by activating ChREBP, which enters the nucleus to augment human PCSK9 expression, thereby increasing

PCSK9-induced LDLR degradation. Moreover, elevated circulating glucose levels can enhance enterocyte NPC1L1 expression via some unknown mechanisms,

thereby strengthening intestinal absorption of cholesterol.

based on the updated findings. Meanwhile, we will briefly
summarize the relevant roles of current cholesterol-lowering
drugs and cholesterol metabolism-related gene mutations in
glucose regulation (as shown in Figure 2).

ROLE OF GLUCOSE IN CHOLESTEROL
METABOLISM

Glucose and Cholesterol Biosynthesis
Glucose Derived Acetyl-CoA Is the Material of

Cholesterol Synthesis
Acetyl-CoA, one of the vital metabolites of glucose, serves as
the direct raw material for endogenous cholesterol synthesis.
Generally, acetyl-CoA deriving from glucose metabolism
participates in various metabolic pathways as a substrate, such as
in the tricarboxylic acid (TCA) cycle, in the acetylation reaction,
and in the synthesis of ketone bodies, fatty acids, and cholesterol.
The TCA cycle is initiated with the condensation of acetyl-CoA
with oxaloacetate by citrate synthase, followed by the generation
of citrate, the first intermediate product of the TCA cycle.

ATP-citrate lyase (ACL), which can convert citrate into
oxaloacetate and acetyl-CoA, is proposed as a new target
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FIGURE 2 | Effects of LDL-C lowering drugs or genetic variants on glucose metabolism. LDL-C lowering drugs or genetic variants disturb glucose homeostasis via

multiple ways. Genetic PCSK9 deficiency impairs pancreatic β-cell insulin secretion while NPC1L1 inhibitors and genetic NPC1L1 deficiency lead to insulin resistance

of hepatocyte. HMGCR inhibitors and genetic HMGCR deficiency impairs pancreatic β-cell insulin secretion and induce insulin resistance of skeletal muscle cell,

adipocyte, and hepatocyte.

to reduce cholesterol synthesis (10). Bempedoic acid (ETC-
1002) has been considered as a first-class lipid-lowering drug
for its ability to inhibit the expression of ACL. Clinic trial
disclosed that patients with hypercholesterolemia treated with
bempedoic acid exhibit a significant reduction of low-density
lipoprotein cholesterol (LDL-C) compared with placebo or
standard treatment (ClinicalTrials.gov Identifier: NCT02988115)
(11, 12). The beneficial effect was also observed in those
who lack ample response to maximally tolerated lipid-lowering
therapies (ClinicalTrials.gov Identifier: NCT02991118) (13).
Meta-analyses of randomized controlled trials have shown that
bempedoic acid treatment resulted in a decreased incidence of
NOD (12, 14).

Glucose/Insulin Regulates HMGCR
It has been known since the 1970s that cholesterol biosynthesis
is induced by feeding but suppressed by fasting, which is closely
correlated with the activity of 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase (HMGCR), the pivotal
enzyme of cholesterol biosynthesis (15). The increased
circulating glucose and insulin levels are the most remarkable
changes after feeding, indicating that glucose/insulin may
account for the change of HMGCR activity. It is found
that the elevated glucose levels tend to downregulate the
expression of adenosine monophosphate-activated protein
kinase (AMPK) by lowering adenosine monophosphate (AMP)/
adenosine triphosphate (ATP) and adenosine diphosphate
(ADP)/ATP ratios (16). The clinical data indicated that the
first-line hypoglycemic drug, metformin, which can repress
gluconeogenesis in hepatocytes via obstructing a mitochondrial

redox shuttle and reduce net glucose uptake from diets by
motivating anaerobic glucose metabolism of enterocytes, tended
to increase AMPK and reduce serum LDL cholesterol and
total cholesterol (17, 18). For example, treatment with 2.55 g/d
metformin for 28 weeks reduced the plasma level of LDL-C by 14
mg/dL in 31 non-diabetic but morbidly obese individuals (7). A
recent observational study including 912 participants indicated
that treatment with 0.1 g/d metformin for 7 years was correlated
with a 11.83 mg/dL reduction of LDL-C levels (17). Another
study further revealed that plasma LDL-C levels were reduced
by 16.79 mg/dL after treated with 2 g/d metformin added to
titrated insulin therapy for 3 years in diabetic participants
(ClinicalTrials.gov Identifier: NCT01483560) (6).

As an energy-sensing enzyme, AMPK is activated by an
elevation in AMP/ATP and ADP/ATP ratios. AMPK activation
tends to strengthen catabolism (e.g., glycolysis and fatty
acid oxidation) but weaken anabolism (e.g., gluconeogenesis
and cholesterol synthesis) (16, 19). Interestingly, it is shown
that mammalian AMPK can be also restrained directly by
extracellular glucose and intracellular fructose-1,6-bisphosphate
in unchanged cellular energy conditions (20). The activated
AMPK triggered by energy stress is likely to antagonize the
biosynthetic process of cholesterol by suppressing the expression
of the mammalian target of rapamycin complex 1 (mTORC1),
a crucial nutrient sensor, which participates in the activation
of HMGCR on the endoplasmic reticulum (ER) (21). It was
reported that the repression of mTORC1 by AMPK was
related to the upregulation of mTORC1 inhibitor, TSC2 gene
(22). The interaction between circulating insulin and insulin
receptor (INSR) phosphorylates insulin receptor substrates
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(IRSs), which can also enhance mTORC1 expression by initiating
phosphoinositide 3-kinase (PI3K)/Akt (namely protein kinase
B) signaling pathway (23). Furthermore, activation of PI3K/Akt
signaling pathway caused by insulin can stabilize HMGCR via
inhibiting the recruitment of E3 ligase TRC8, which can also
supply an explanation for glucose/insulin-induced cholesterol
synthesis (24).

Recently, Song et al. discovered that feeding would stabilize
HMGCR via facilitating mTORC1 to phosphorylate Ser132 and
Ser134 of the deubiquitylase ubiquitin-specific peptidase 20
(USP20), thereby protecting HMGCR from being degraded (25).
Conversely, AMPK activation by fasting and metformin was
likely to decrease the mTORC1 level, thereby accelerating
HMGCR ubiquitination impelled by the E3 ubiquitin-
protein ligase GP78 (25). Furthermore, USP20 knockout or
administration of GSK2643943A, a specific USP20 inhibitor,
distinctly lessened cholesterol biosynthesis after feeding
compared with controls (25). Hence, it is proposed that the
application of USP20 inhibitors may offer a new insight to lower
cholesterol levels in hyperlipidemia (25).

Glucose/Insulin and SREBP2
Sterol regulatory element-binding proteins (SREBPs), a member
of the membrane-bound transcription factors family, have
received wide attention due to their role in regulating the
synthesis of unsaturated fatty acids, cholesterol, and triglycerides
(26). Three isoforms of SREBPs, namely SREBP1a, SREBP1c,
and SREBP2, are encoded by SREBP1 gene and SREBP2
gene, respectively. SREBP1a and SREBP1c account for the
activation of genes involved in fatty acids and triglyceride
synthesis, such as fatty acid synthase (27), while SREBP2
promotes the transcription of enzymes that participated in
cholesterol synthesis and uptake, including HMGCR, HMG-
CoA synthase, and low-density lipoprotein receptor (LDLR) (27).
When cholesterol is excess, SREBP2 is bound to SREBP cleavage-
activating protein (SCAP) in ER. When the ER is deprived of
cholesterol, the SREBP2-SCAP complex is transported to Golgi
and SREBP2 is cleaved by twoGolgi proteases (the Site-1 protease
(S1P) and S2P) sequentially to release the active nuclear SREBP2
(nSREBP2). The nSREBP2 will be translocated to the nucleus
and bind to nuclear sterol regulatory element (SRE) sequences,
initiating the transcription of downstream genes (28).

Increased circulating glucose promotes insulin secretion
after feeding. PI3K/Akt signaling pathway activated by insulin
drives the movement of the SREBP–SCAP complex to the
Golgi through regulating a series of classic signaling pathways,
including glycogen synthase kinase-3β (GSK3β), and cyclic
adenosine monophosphate (cAMP) response element-binding
protein (CREB)-regulated transcription coactivator 2 (CRTC2)
(27, 29, 30). Moreover, the high-glucose conditions can also
enhance the stability of SCAP by directly stimulating the
N-glycosylation of SCAP, facilitating the relocation of the
SREBP-SCAP complex to the Golgi (31). It has been found
that the mTORC1 upregulated by PI3K/Akt signaling pathway
can decrease the content of cholesterol in ER by prohibiting
membrane-derived cholesterol from arriving lysosomes, thereby

actuating the translocation of SREBP2 from ER to the Golgi
apparatus and activating cholesterol synthesis (28).

AMPK downregulation caused by increased glucose
levels also prevents CRTC2 from phosphorylation, then the
dephosphorylated mTORC2 is transported into the nucleus
where mTORC2 enhances the transcription of gluconeogenic
genes and SREBP2 (32, 33). Recently, a newly synthesized
compound, Kanglexin, blockades SREBP2 signal pathway by
activating AMPK, thus having the potential to lower blood
cholesterol and treat atherosclerosis (34). The above evidence
further elucidates the possibility to target glucose pathways
to inhibit cholesterol biosynthesis and indicates that the
phosphorylation of CRTC2 caused by AMPK may provide
a new target to alleviate dyslipidemia, insulin resistance,
and atherosclerosis.

Glucose and Cholesterol Uptake
Glucose Regulates NPC1L1
The absorption of cholesterol in diets depends on Niemann-Pick
type C1-like 1 (NPC1L1) protein on the apical membrane of
enterocytes, which transports the cholesterol from the intestinal
lumen to enterocytes (35, 36). NPC1L1 expressed in hepatocytes
contributes to uptake of biliary cholesterol back to liver (37,
38). To some extent, NPC1L1 may play a role in preventing
excessive excretion of cholesterol mediated by ATP-binding
cassette transporter G (ABCG)5/8 heterodimer in hepatocytes
and enterocytes. It has been reported that consumption of food
with higher carbohydrate tends to incur higher postprandial
chylomicrons (39). Several in vitro studies revealed that the
promoter activity, mRNA levels, and protein expression of
NPC1L1 in human intestinal Caco2 cells was remarkably reduced
when the medium was deficient in glucose, and the promoter
activity of NPC1L1 could be restored by replenishing glucose
(40–42). The basolateral site of Caco-2/15 cells is responsible for
sensing high glucose concentration (41), which means that the
expression of enterocyte NPC1L1 may be stimulated by elevated
circulating glucose levels. Unfortunately, the detailed mechanism
involved in this process remains to be investigated.

Glucose Regulates PCSK9
PCSK9 is a plasma enzyme mainly secreted by hepatocytes but
also presents in a relatively lower level in extrahepatic tissues,
including the brain and the pancreas (43, 44). Recent research
reveals that the presence of PCSK9 protein cannot be detected
in the plasma of liver-selective PCSK9 knockout mice, indicating
that the liver might be the only source of circulating PCSK9
(44). The circulating PCSK9 increases the circulating LDL-C
level by promoting LDLR degradation (45). PCSK9 binds to
LDLR on the plasma membrane of hepatocytes and the PCSK9-
LDLR complex is then delivered to lysosomal for degradation,
leading to the depletion of LDLR and subsequently elevated
plasma level of LDL-C (46). Individuals with obesity and T2DM
are more likely to display a higher level of PCSK9 compared
with controls (47, 48). This phenomenon is probably related
to the transcription of PCSK9 activated by SREBP2 due to
a SRE contained in the promoter region of the PCSK9 gene
(49). Interestingly, administration of metformin in patients with
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T2DM who had received statin treatment for more than 3
months avoided the statins-caused increase of circulating PCSK9
level in contrast with the controls without metformin treatment
(50). Metformin is primarily known for inhibiting hepatic
gluconeogenesis by directly restricting intracellular glucose
metabolites’ production (51, 52). Our latest finding reveals that
the expression of the carbohydrate-responsive element-binding
protein (ChREBP), a glucose sensor responsive to increased
glucose and its metabolites, is repressed due to the metformin-
induced reduction of intracellular glucose and its metabolites in
human hepatocytes (53). ChREBP upregulates the transcription
genes related to glycolysis and de novo lipogenesis. Previous
studies have proved that the genetic deletion of ChREBP reduced
levels of circulating cholesterol and LDL-C in humans and
mice (54–56). We found that ChREBP activated by increased
intracellular glucose and metabolites translocated to the nucleus,
where it bound to carbohydrate response element (ChoRE) in the
PCSK9 promoter and inducing PCSK9 transcription, eventually
decreasing LDLR and elevating plasma LDL-C levels (53). Both
the nuclear translocation of ChREBP and the expression of
PCSK9 were notably restricted under lower intracellular glucose
states triggered by metformin or glucose deprivation, but were
reversed by replenishing glucose (53). Although it has been
proposed that metformin may directly activate AMPK and
subsequently repress fatty acid desaturase (FADS) to reduce
the production of endogenous arachidonic acid, thus indirectly
contributing to the recycling of LDLR via enhancing membrane
fluidity (17), we observed that PCSK9 downregulation induced
by metformin is unrelated to activation of AMPK and SREBP2
pathway since we did not observed changes in SREBP2 and
PCSK9 expression after treated with metformin and AMPK
agonists (53). The findings indicate that ChREBP has the
potential to serve as a new target for hepatic PCSK9 suppression
to treat dyslipidemia.

CHOLESTEROL-LOWERING DRUGS AND
GLUCOSE METABOLISM

Statins
Statins are the first-line cholesterol-lowering drugs based on their
ability to inhibit HMGCR (57, 58). Statins reduce intracellular
cholesterol and incite SREBP2, upregulating LDLR and LDL-
C uptake, thus reducing circulating LDL-C. Administration of
statins in diabetic patients apparently decreased the occurrence
of atherosclerotic cardiovascular disease, such as myocardial
infarction (59, 60). However, increasing findings indicate that
statins treatment is correlated to elevated occurrence of NOD
(61, 62). Several observational studies and meta-analyses of
randomized controlled trials demonstrated that statin therapy
yields side effects on glucose metabolism, increasing the NOD
risk by around 12% (63–66). Although the definite mechanisms
behind statins-induced NOD are still uncertain, it is disclosed
that statins may indirectly promote NOD by inciting pancreatic
β-cells dysfunction and insulin resistance (61, 62).

Statins and Pancreatic β-Cells Dysfunction
Pancreatic β-cells are the only cell population that recognizes
increased plasma glucose (>100 mg/dL) and secrets insulin,
which is of paramount importance in controlling glucose
homeostasis for its unique hypoglycemic effects, including the
promotion of glycogen synthesis, glucose transport mediated
by glucose transporter 4 (GLUT-4), glucose oxidation in
peripheral tissues, and the suppression of glycogenolysis
and gluconeogenesis.

Pancreatic β-cells dysfunction caused by statins is
characterized by decreased insulin secretion. The latest findings
reveal that pancreatic β-cells of HMGCR knockout mice are
accompanied by severe hyperglycemia due to compromised
insulin secretion and impaired pancreatic β-cell proliferation
(67). The mevalonate pathway initiated by HMGCR produces
isoprenoid, a kind of intermediate metabolite which contributes
to insulin granule exocytosis via enhancing the posttranslational
modification of small G proteins (sGPs), such as Rab5a (62).
Some sGPs function as activators of mTOR, which upregulates
some key pancreatic transcription factors, such as v-maf
musculoaponeurotic fibrosarcoma oncogene homolog A (MafA),
thereby retaining mature β-cell functional mass (68). Statins
lead to isoprenoid deficiency and disturbed protein prenylation,
thus impairing insulin secretion (68). Supplementation of
geranylgeranyl pyrophosphate, one of the intermediates in the
mevalonate pathway, significantly reverses MIN6 cells (a mouse
pancreatic β-cell line) function damaged by atorvastatin (68).
Hence, targeting the mevalonate pathway may also provide a
new strategy for avoiding statin-induced hyperglycemia.

GLUT-2 and ion channels may also partially account for
the correlation between statins and NOD. GLUT-2 transports
glucose from extracellular space to cytoplasm, increasing
cytosolic ATP/ADP ratio as a result of augmented glycolysis in
β-cells (69). The high level of ATP is prone to stimulate instant
calcium influx by blocking K+ -ATP channels and opening
voltage-gated Ca2+ channel (VGCC), thereby causing exocytosis
of insulin secretory vesicles (70, 71). Glucose-induced insulin
secretion is decreased by repression of P2X and P2Y purinergic
receptors (72, 73). It is also found that ATP and ADP present in
the insulin exocytosis granules, enabling them to activate β-cell
purinergic P2 receptors by serving as autocrine activators (74).

GLUT-2 expression in pancreatic β-cells is inversely
proportional to the dosage of atorvastatin and pravastatin (75).
Further study indicates that statins impair GLUT-2 expression,
thus obstructing glucose uptake of β-cells (76). A study using
MIN6 cells implied that statins deceased GLUT-2 expression
by reducing the generation of ATP (77). Furthermore, it is
reported that statins directly suppress VGCC expression in
β-cells, eventually leading to decreased insulin secretion (78, 79).

Some findings indicate that statins promote β-cells apoptosis
via prompting cytochrome c expulsion from mitochondria,
providing another explanation for pancreatic β-cells deprivation
and development of NOD by statins (80). Statins suppress
mitochondrial complex II and III activity and reduce
mitochondrial membrane potential (80, 81), which incites
mitochondrial oxidative stress, eventually decreasing the
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synthesis of ATP and then inhibiting insulin secretion (82). A
further study unveils that simvastatin may also restrain K+-ATP
channels function directly independent of mitochondria (83).

Stains may also reduce insulin secretion by downregulating G
protein-coupled receptor 40 (GPR40) and glucagon-like peptide
1 (GLP-1) receptor (84). GPR40 elevates intracellular free calcium
concentration level via lessening the voltage-gated K+ current
(85). The activated GLP-1 receptor facilitates insulin secretion by
inciting adenylate cyclase, which accelerates the transformation
of ATP to cAMP (86). The downstream molecules of cAMP,
the cAMP-dependent protein kinase (PKA) and Epac (exchange
protein activated by cyclic-AMP) 2, stimulate inositol 1,4,5-
triphosphate (IP3) receptor on the ER and lead to the release
of Ca2+ from ER, thus intensifying insulin secretion (86,
87). GPR40 and GLP-1 suppressed by statins reopen K+-ATP
channels and decrease intracellular Ca2+, further hindering
insulin secretion (84).

Statins and Insulin Resistance
The hypoglycemic effect exerted by insulin is initiated by
the combination of insulin to INSR, thereby triggering the
insulin signaling, including the phosphorylation of IRSs and
then the activation of various kinases (such as Akt, hepatic
p70 S6 kinase (S6K1), and mTOR) (88, 89). The activated Akt
stimulates glycogen synthesis by repressing glycogen synthase
kinase and accelerating glucose uptake via promoting GLUT-4
translocation to the plasma membrane of skeletal muscle cells
and adipose tissue (9, 90). Insulin resistance, which is defined as
loss of appropriate response to ordinary circulating insulin levels
in insulin-targeted cells, such as hepatocytes, adipocytes, and
skeletal muscle cells, is one of the pivotal causes of T2DM (91).
Stains promote NOD not only by impairing pancreatic β-cells’
function, but also by inducing insulin resistance.

As a vital digestive organ, the liver serves as a sensitive sensor
of insulin to maintain glucose homeostasis. Insulin controls
multiple hepatic metabolic pathways, such as glucose output and
lipid synthesis. To date, increasing findings denote that statins
therapy correlates with the aggravation of glycemic control
in the liver (76). Statins stimulate hepatic gluconeogenesis by
activating the key gluconeogenic genes, phosphoenolpyruvate
carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase)
genes (92). The pregnane X receptor (PXR) is a nuclear
receptor and exert multiple functions in mediating hepatic
lipid and glucose metabolism (93). Stains stimulate PXR,
which prompts serum/glucocorticoid regulated kinase 2 (SGK2)
dephosphorylation by the protein phosphatase 2CA (PP2CA)
(92). Then, PXR and the dephosphorylated SGK2 located in the
cytoplasm simultaneously transfer into the nucleus and interact
with the nuclear retinoid X receptor (RXR), thereby upregulating
the expression of PEPCK1 and G6Pase (92). In contrast, a
different study indicates that atorvastatin increases serum glucose
level by activating PXR to hamper the expression of GLUT-
2 and glucokinase, rather than PXR/SGK2-mediated signaling
pathway (76).

As an energy storage organ, adipose tissue also participates
in statins-induced NOD as a result of the weakened insulin
signal transduction process. Statins treatment is associated with

decreased expression of GLUT-4 in adipocytes (94, 95). The
further study indicates that statins reduce GLUT-4 translocation
to the plasma membrane via inhibiting isoprenoid synthesis
(95), which is indispensable for functions of Rab-4 and RhoA,
two proteins facilitating GLUT-4 translocation (96). Statins also
disturb the function of caveolae, where GLUT-4 inserts in the
plasma membrane after being activated by insulin (97). INSR
is extremely abundant in adipocyte caveolae (98, 99), which
means that caveolae is required for correct insulin signaling
in adipocytes. Cholesterol is essential for maintaining the
characteristic shape of caveolae (100). Therefore, statins-induced
cholesterol insufficiency may disrupt caveolar formation, further
interrupting insulin signaling.

Skeletal muscle consumes most of the circulating glucose
(∼75%), and damaged glucose uptake by skeletal muscle results
in T2DM (101). Therefore, statins-induced NOD may partially
depend on skeletal muscle despite unclear mechanisms. Similar
to adipocytes, skeletal muscle cells uptake glucose primarily via
GLUT-4, and the insulin signaling may also be harmed by statins,
resulting in elevated plasma glucose levels (102). It is recently
found that the total expression of GLUT-4 protein in C2C12
myotubes is unaffected despite reduced GLUT-4 membrane
translocation after atorvastatin treatment (103). Furthermore,
simvastatin-related INSR andmTORC2 dysfunctionmay weaken
Akt activation and disturb the phosphorylation of GSK3β in
C2C12 myotubes, thus inhibiting GLUT-4 translocation (104). It
is also proposed that simvastatin may incur insulin resistance in
skeletal muscle by increasing fatty acid production. Simvastatin
leads to acetyl CoA accumulation due to HMGCR suppression
in L6 myotubes. The excess acetyl CoA acts as a precursor
to enhance fatty acid synthesis, which further restrain glucose
uptake by disrupting GLUT-4 translocation (105, 106). Besides
interfering GLUT-4, simvastatin inhibits IR/IRS-1/Akt signaling
cascade and dysregulates glycogen synthesis in skeletal muscle
cells (107).

Mechanisms behind statins-induced NOD are not completely
understood. Unrevealing more mechanisms may help to prevent
the generation of NOD by statins.

Ezetimibe
Ezetimibe is the only inhibitor of NPC1L1 used in the clinic
to lower blood cholesterol by hindering cholesterol uptake
from diet (108). Adding ezetimibe to statin therapy further
reduces the plasma LDL-C both in diabetics and nondiabetics
when compared with statin monotherapy (ClinicalTrials.gov
Identifier: NCT00202878) (109). Long-term combination
therapy with ezetimibe and acarbose improved insulin sensitivity
in a high-fat diet-induced non-alcoholic fatty liver disease
(NAFLD) mouse model by upregulating the mRNA expression
of peroxisome proliferators-activated receptor-alpha (PPAR-
α) 1 and microsomal triglyceride transfer protein (MTP)
in hepatocytes (110). Besides decreasing LDL-C, ezetimibe
ameliorates metabolic syndrome and reduces visceral fat
(111, 112).

Interestingly, hepatic NPC1L1 overexpression inhibits hepatic
gluconeogenesis and ameliorates glucose metabolism in diabetic
mouse models via repressing forkhead box O 1 (FoxO1) and
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reducing G6Pase and PEPCK expression (113). It is reasonable
to estimate that NPC1L1 suppression by ezetimibe may impair
hepatic glucose metabolism and increase the risk of diabetes.
However, we still lack experimental evidence to confirm the
association between ezetimibe and NOD, and the underlying
mechanisms remain to be investigated.

PCSK9 Inhibitors
PCSK9 inhibitors, including anti-PCSK9 monoclonal antibodies
and anti-PCSK9 vaccines (114–116), lower LDL-C by cutting
down PCSK9-mediated LDLR degradation and promote hepatic
LDL uptake from circulation. PCSK9 inhibitors further decrease
blood cholesterol in individuals with statin tolerance (117, 118),
which is partially due to elevated PCSK9 expression by statins-
induced SREBP-2 activation (48, 49). Up to now, only two
anti-PCSK9 monoclonal antibodies, namely evolocumab and
alirocumab, have received approval on the hypercholesterolemia
treatment from the United States Food and Drug Administration
and the European Union (117). Numerous anti-PCSK9 vaccines
are still in preclinical or clinical phases to confirm their safety and
efficacy (115).

Appropriate PCSK9 expression is beneficial to maintain
intracellular cholesterol homeostasis by restricting LDLR level,
thereby avoiding excessive cholesterol accumulation in β-
cell (44). Excess cholesterol in pancreatic β-cells undermines
glucose-stimulated insulin secretion by disturbing the function
of organelles, GLUT-2 and K+ -ATP channels, resulting in
hyperglycemia (119). However, unlike statins, observational
studies and meta-analyses show that alirocumab or evolocumab
does not lead to NOD or aggravate preexisting diabetes mellitus
(120–122). The latest findings reveal that it is the local
rather than circulating PCSK9 accounts for the upregulated
expression of LDLR in pancreatic β-cells, consequently incurring
cholesterol overload and β-cells dysfunction (44). PCSK9 existing
in pancreatic islets is derived from pancreatic δ-cell (44),
which implies that the expression of PCSK9 and LDLR in the
pancreas can be exempt from changes in circulating PCSK9.
Both alirocumab and evolocumab primarily target liver-derived
circulating PCSK9, thereby exerting finite influence on β-
cells dysfunction and NOD (44). Besides, PCSK9 deficiency
does not harm insulin signaling in hepatocytes and skeletal
muscle cells (44). Hence, PCSK9 inhibitors may manage
hypercholesterolemia without disturbing glucose metabolism.

CHOLESTEROL-LOWERING GENE
VARIANTS AND NOD

HMG-CoA Reductatse Gene and NOD
Mendelian Randomization (MR), which utilizes genetic
mutations as an instrumental variable for studying exposure
factors, has emerged as a popular approach to mimic the
association of exposure factors with the corresponding disease.
MR approach is less susceptible to multiple confounding factors
and may supply rational evidence of causation. Researchers
have used this approach to explore the relationship between
statins therapy and the incidence of diabetes (123, 124). A large
genetic analysis based on 2,23,463 subjects showed that the

amount of rs17238484-G allele, an HMGCR genetic variant
used to imitate HMGCR inhibition by statins, is positively
related to the degree of body weight gain and the risk of
developing NOD (124). It is found that each supplementary
rs17238484-G allele is correlated to a statistically significant
odds ratio (OR) of 1.02 for T2DM (124). Meanwhile, genetic
analysis of randomized trials including 12,9170 individuals
observed a statistically significant OR 1.12 for statins-induced
NOD at a mean follow-up of 4.2 years (124). Hence, the
application of HMGCR gene variants proves that statin-
induced HMGCR inhibition might explain the occurrence
of NOD.

NPC1L1 Gene and NOD
Similar to HMGCR alleles, LDL-C-lowering NPC1L1 alleles
are also utilized as genetic alternatives to mimic ezetimibe
efficacy (125). A genetic meta-analysis of 50 775 T2DM
individuals and 270 269 controls observed that per genetically
foreseen 1 mmol/L decrease in LDL-C by NPC1L1 variants is
associated with a significant OR of 2.42 for developing T2DM
(125). Although the cholesterol-lowering effect of ezetimibe
has been widely accepted, the application of ezetimibe is also
likely to augment the risk of T2DM based on this genetic
study (125).

PCSK9 Gene and NOD
PCSK9 genetic variants can be divided into gain of function
(GOF) mutations and loss of function (LOF) mutations
according to their effects on circulating LDL clearance (126,
127). Considering the interaction between LDLR and PCSK9,
flow cytometry analyses detect the expression level of LDLR
in HEK293 cells transfected with PCSK9 variants, which
may be an effective and reliable way to distinguish these
two distinct types of PCSK9 variants (128). PCSK9-GOF
variants tend to increase LDLR degradation in multiple cells,
followed by the high level of plasma LDL-C (129). On the
contrary, PCSK9-LOF mutations are more likely to increase
LDLR expression in various cells, including pancreatic β-
cell, which contributes to LDL-C removal from circulation
but enhances cholesterol accumulation in pancreatic β-cell.
Excess cholesterol accumulation results in β-cell dysfunction,
promoting the development of hypoinsulinemic hyperglycemia
and impaired glucose tolerance (119). Several clinical and
experimental studies unveiled that individuals with PCSK9-LOF
variants tended to have higher circulating glucose levels and
elevated incidence of T2DM despite lower LDL-C levels (125,
130). Familial hypercholesterolemia is mainly caused by LDLR-
LOF or PCSK9-GOF. The probability of patients with familial
hypercholesterolemia developing into T2DM is much lower than
their unaffected relatives (131), which indirectly means that
PCSK9-GOF variants might be associated with NOD. However,
it should be noted that the effect of PCSK9 genetic variants
on T2DM risk is different from alirocumab and evolocumab,
which mainly target liver-derived circulating PCSK9 rather than
systemic PCSK9.
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CONCLUSION

Glucose/insulin promotes cholesterol biosynthesis and
cholesterol uptake, which indicates that drugs targeting
lowering glucose may help to control hypercholesterolemia.
On the contrary, cholesterol-lowering drugs or genetic variants
could impair glucose homeostasis and lead to diabetes by
decreasing pancreatic β-cell insulin secretion or inducing insulin
resistance of skeletal muscle cells, adipocytes, or hepatocytes.
Understanding the crosstalk between glucose metabolism and
cholesterol metabolism, such as glucose-ChREBP/HMGCR-
cholesterol pathway, may help to locate safe therapeutic targets
for controlling both glucose and cholesterol dysregulation.
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