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Electronic cigarettes or e-cigarettes are the most frequently used tobacco product

among adolescents. Despite the widespread use of e-cigarettes and the known

detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the

cardiovascular system are not well-known. Several in vitro and in vivo studies

delineating the mechanisms of the impact of e-cigarettes on the cardiovascular

system have been published. These include mechanisms associated with nicotine or

other components of the aerosol or thermal degradation products of e-cigarettes.

The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA

damage, and macrophage activation are prominent effects of e-cigarettes. Additionally,

oxidative stress and inflammation are unifying mechanisms at many levels of the

cardiovascular impairment induced by e-cigarette exposure. This review outlines the

contribution of e-cigarettes in the development of cardiovascular diseases and their

molecular underpinnings.
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INTRODUCTION

Tobacco consumption has been present in the Americas since prehistoric times (1). After tobacco
was introduced from indigenous inhabitants of the Western hemisphere to Europeans through
members of Columbus’ crew (1), the effects of tobacco use have been a subject of scientific
controversy. In the 16th century, the Spaniard physician and botanist Nicolás Monardes published
a book explaining the therapeutic effects of tobacco use for dozens of health problems (2). Although
in the 17th century, King James I of England spoke about the dangerous effects of tobacco (3),
the systematic observations of the negative health effects of tobacco took longer than expected. In
the first part of the 20th century, pathologists observed a strong association between lung cancer
and cigarette smoking (4). The rate of smoking peaked in the 60s, with about 42% of the adult
population in the United States being tobacco smokers in 1965 (5). By 2019, however, the smoking
rate among adults aged 18 years or older went down to 14.0% (6). Currently, cigarette smoking is
still the leading cause of preventable death, contributing to chronic obstructive pulmonary disease,
several types of cancer, diabetes, and cardiovascular disease (CVD) (7), and is an additive risk factor
in COVID-19 (8).
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Although the use of cigarettes has decreased in the last
few years, addiction to nicotine has continued due to the
introduction of electronic cigarettes or e-cigarettes to the
market. In 2004, a Beijing-based company, Ruyan Group
(Holdings) Ltd., China, patented and launched e-cigarettes (9)
that delivered nicotine to users without burning tobacco (10).
E-cigarettes are battery-powered devices that produce an aerosol
generated by heating a solution (e-liquid) consisting of nicotine,
glycerol, propylene glycol, and flavors. The first generation of e-
cigarettes tried to mimic the experience of smoking conventional
cigarettes. The later generation devices contain high-powered
atomizers and use higher nicotine concentrations in the e-
liquids, increasing the speed of delivery and yield of nicotine
like conventional cigarettes (11). JUUL and other pod-mods use
nicotine formulations derived from the nicotine salts in loose-
leaf tobacco (12, 13). Nicotine salts in pod-mods such as JUUL
reduce harshness and result in a satisfying experience even at
high nicotine concentrations (14). Although e-cigarettes were
initially marketed as a smoking cessation tool, they will likely
lead to future conventional cigarette smoking in people that have
never smoke (15, 16). Especially concerning is the effect of e-
cigarettes on the youth, and it is noteworthy that 19.6% of high
school students used e-cigarettes in 2020 (17). Smokers who use
e-cigarettes in an attempt to stop smoking often end up using
both products. These dual users have been found to have higher
cardiovascular risk factors than single users (18).

Smoking is associated with 11% of cardiovascular deaths
worldwide (19). Currently, heart disease is the leading cause
of death in the United States. Atherosclerosis is a chronic
inflammatory condition associated with the accumulation of
lipids and fibrous elements in the arteries where inflammatory
cells are recruited to the arterial walls. The effects of conventional
cigarettes on the cardiovascular system have been extensively
studied (20, 21). Although e-cigarettes have the potential to
be less harmful than conventional cigarettes due to their
reduced number of harmful chemicals, the precise toxicological
and mechanistic data of the effects e-cigarettes have on the
cardiovascular system remain to be elucidated. A cross-sectional
analysis of cardiovascular symptoms showed that e-cigarette
users have a higher risk of coronary heart disease, arrhythmia,
chest pain, or palpitations (22).

One of the complexities of studying the cardiovascular effects
of e-cigarettes is the large variety of devices and chemical
compositions of e-liquids. Different e-cigarettes’ devices may
produce different chemical products by thermal degradation of
e-cigarette liquids and differences in the size of fine particulate
matter (PM2.5) or ultrafine particles (UFPs). The negative effects
of PM2.5 and UFPs on the cardiovascular system are well-
established (23, 24). In indoor studies, e-cigarettes produce PM2.5

and UFPs concentrations ∼45 and 20 times higher, respectively,
than recommended by the World Health Organization (25).
Additionally, the heating temperature in e-cigarettes creates
metal particles (copper, nickel, and silver) from the atomizer unit
(26) that are delivered into the bloodstream through the lungs.

The literature on the consequences of second-hand e-cigarette
vaping is limited. However, chemical components are partially
exhaled by users of electronic cigarettes. Consequently, it is

important to study the effect of second-hand e-cigarette aerosol
on CVD (27). Furthermore, exhaled nicotine and other e-
liquid components can deposit onto surfaces and subsequently
negatively affect the health of those exposed (third-hand
exposure). In addition, toxicological studies of the components
of e-cigarettes such as glycerol, propylene glycol, and artificial
flavors have been mainly tested via oral administration, but very
few studies have investigated the effect of aerosolizing the content
of e-cigarettes at a high temperature. It is also widely known
that E-liquid thermal decomposition produces the breakdown of
glycerol and propylene glycol into toxic aldehydes, acetaldehyde,
acrolein, and formaldehyde (28, 29). Acrolein produces lipid
peroxidation and modifies the component of high-density
lipoprotein (HDL) Apolipoprorein-I (ApoA-I). This fact leads to
speculation on the role of chronic e-cigarette consumption in
the development of atherosclerosis (30). Additionally, acrolein
produces vascular oxidative stress (31) and platelet activation,
a risk factor for thrombotic vascular events (32). Fortunately,
the concentrations of acrolein produced by e-cigarettes are likely
to be too low to have effects of clinical relevance (33). Given
that the concentration of the carbonyl compounds positively
correlates with the voltage and temperature of e-cigarettes (34),
tight monitoring of the acrolein production from e-cigarettes
may be necessary.

Increasing the complexity of the toxicological analysis of
e-cigarettes is the existence of more than 7,000 flavors for
e-liquids in the market (35). Most of these thousands of
flavors have been tested for oral ingestion safety; however,
there is no complete data on their safety of the exposure
to these components once heated and inhaled. For instance,
experimental evidence shows that vanillin, cinnamaldehyde,
eugenol, and acetylpyridine flavors induce nitric oxide and pro-
inflammatory interleukins in endothelial cells (36), and vanilla
custard e-vapor extract increased necrotic and apoptotic HL-1
cardiomyocyte cells (37). Adding to this complexity, e-cigarette
users modify devices and solutions, which may further impact
the toxicological characteristic of e-cigarettes (38). Figure 1

summarizes the proposed mechanisms of e-cigarettes’ effects on
the cardiovascular system.

NICOTINE

Nicotine is the most studied biologically active chemical present
in e-cigarettes, and several of the cardiovascular effects of e-
cigarettes have been attributed to this alkaloid from the tobacco
plant (39). Nicotine is a highly addictive drug, having well-
established effects on the metabolism (40–42) and cardiovascular
system (7, 39, 43). Higher levels of nicotine in e-cigarettes have
been associated with an increase in the frequency and intensity of
combustible cigarette smoking (44).

The acute and chronic effects of nicotine differ as chronic
exposure induces fast desensitization of the nicotine receptors.
For instance, although nicotine in e-cigarettes can acutely
increase blood pressure, chronic smoking has not been linked
to higher blood pressure in most epidemiological studies (45).
Nicotine has systemic hemodynamic effects that are mediated by
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FIGURE 1 | General mechanisms of action by which inhalation of e-cigarettes’

aerosol can promote cardiovascular diseases.

the activation of the sympathetic nervous system. Thus, acute
nicotine treatment can stimulate cardiac output by producing
systemic vasoconstriction and increasing heart rate (45). Nicotine
activates macrophages which infiltrate atherosclerotic lesions
and release cytokines such as the TNF-1β and IL-1β that
increase inflammation (46). The most common complication of
atherosclerosis is the formation of a thrombus that leads to a
stroke or a myocardial infarction. Nicotine has thrombogenic
activity by activating platelets and coagulation cascades (20).

Nicotinic Acetylcholine Receptors
Nicotine binds to the nicotinic acetylcholine receptors (nAChRs),
which are integral membrane proteins that belong to the ligand-
gated ion channel superfamily (47). Several nAChRs subunit
combinations can form great diversity of functional receptors
with a variety of specialized functions and properties depending
on the cell type (48). Although the roles of nAChRs in synaptic
transmission in the central (CNS) and peripheral nervous
systems (PNS) are the most studied, nAChRs are present in
several non-neuronal cells (49). In the cardiovascular system,
vascular endothelial cells and smooth muscle cells (VSMC)
express several subunits of nAChRs (50, 51). The activation
of endothelial cells can lead to the release of vasoconstrictor
substances. For instance, nicotine increases the release of

endothelin-1 from human umbilical vein endothelial cells (52).
Carotid arteries treated with nicotine show an impairment of
endothelial-dependent relaxation associated with a decreased
eNOS expression (53). In aortic smooth muscle cells, nicotine
enhances insulin-induced mitogenesis through up-regulation of
α7nAChR, a phenomenon associated with atherosclerosis (54).
Additionally, nicotine has pro-angiogenic effects through the
activation of α7nAChR (55). Nicotine produces arterial stiffness
through extracellular matrix remodeling by upregulating matrix
metalloproteinases (56). In the right ventricle, nicotine treatment
lead to α7nAChR activation and fibroblast proliferation, collagen
production, and extracellular matrix remodeling (57). Therefore,
genetic or pharmacological inhibition of the α7nAChR rescues
the effects of nicotine on right ventricular fibrosis (57).

pH and Nicotine
E-cigarettes are formulated to have different pH levels, perhaps
designed to increase their sensory impact (58). Traditional e-
cigarette products use e-liquid with free-base nicotine while a
new generation of e-cigarettes, the pod-mods, such as JUUL, use
nicotine salts (12). The pH of the E-liquid is a function of the
concentration of the free-base nicotine and the concentration
of the nicotine salt. If the E-liquid contains free-base nicotine,
the pH is high. If the E-liquid contains nicotine salt, the pH
can be lower as a range from 5 to 7 (12). Previous studies
have reported that the pH of e-liquids ranges from 8 to 10 for
conventional e-cigarettes (59) and around 6 for JUUL (12, 60).
Regarding the health effects, two aspects of e-liquid pH are
often discussed: (1) Different sensory experiences. High pH e-
cigarette aerosol appeared to be harsher, while lower pH close
to physiological levels provides a more satisfying experience
(13, 14). (2) Nicotine in an aqueous solution can exist in two
main forms: monoprotonated [NicH+] and unprotonated [Nic]
forms. The ratio of the concentrations of the unprotonated vs.
protonated nicotine [Nic]/[NicH+] is a function of pH (the
Henderson–Hasselbalch equation):

pH = pKa+ log([Nic]/[NicH+]) (1)

Where pKa is the logarithmic acid dissociation constant.
Protonated nicotine is the ligand of nAChR (61). Theoretically,
high protonated nicotine [NicH+] in the e-cigarette aerosol can
have a greater impact on cells expressing the nAChRs in the
respiratory tract (12). On the other hand, unprotonated nicotine
[Nic] is lipophilic; thus, following inhalation, it would more
readily diffuse across pulmonary cell membrane (12). High [Nic]
can induce a rapid rising phase and higher peak concentrations
in the arterial blood, and as a consequence, greater cardiovascular
effects, increasing the risk of cardiovascular events such as cardiac
arrhythmia, fluctuations of blood pressure and disruption of
hemodynamic processes (62).

Nicotine and Metabolic Syndrome
Smoking is a risk factor for insulin resistance in a dose-
dependent manner (63). Smokers have lower glucose uptake
and are more insulin resistant compared to nonsmokers (64).
They also have higher plasma triglyceride (TG) and lower HDL-
cholesterol levels (64). These findings on insulin resistance in
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smokers have been reproduced (65–71) and support other studies
showing that insulin resistance can lead to both dyslipidemia
(72) and endothelial dysfunction (73) seen in smokers. The
degree of insulin resistance was also positively correlated to
tobacco consumption (66), and, in long-term users of nicotine
gum, to serum cotinine levels. Cotinine is a metabolite from
nicotine; serum or urine levels of cotinine are considered to
reflect the degree of nicotine use (63, 74). This implies nicotine
as the causative agent of insulin resistance. In contrast to
its effects on insulin sensitivity, cigarette smoking does not
affect insulin secretion (64, 75, 76). Even acute smoking (one
cigarette) impaired insulin sensitivity in healthy young men (66)
and impaired glucose tolerance and insulin sensitivity in both
smokers and non-smokers (77). Data from the Copenhagen male
study indicated that only those smokers who have characteristic
dyslipidemia associated with insulin resistance were at greatly
increased CVD risk (78). Accordingly, with the effect of nicotine,
e-cigarette users have higher fasting glucose levels than never
users (79). In large-population-based studies, cigarette smoking
was associated with an increased incidence of Type 2 diabetes
mellitus (DM) (80) and metabolic syndrome [as defined by the
National Cholesterol Education Program (81)]. A systematic
meta-analysis confirmed the association between smoking and
DM (82), and an editorial suggested that 12% of DM in the
US is attributable to smoking (83). Cigarette smokers who were
insulin sensitive did not display any abnormalities of lipoprotein
metabolism (84). In contrast, cigarette smokers who were also
insulin resistant had significantly higher plasma concentrations
of TG and VLDL-cholesterol. Insulin resistance predicts the
development of age-related diseases, including hypertension,
stroke, coronary artery disease, cancer, and type 2 DM (85). Thus,
it can be argued that a defect leading to increased CVD risk
in smokers is insulin resistance and that the multiple adverse
consequences associated with insulin resistance, including
dyslipidemia and endothelial dysfunction, are responsible for the
accelerated atherogenesis in these individuals (86).

IMPACT OF E-CIGARETTE EXPOSURE ON
THE GENERATION OF OXIDATIVE STRESS
AND INFLAMMATION

Atherosclerosis is a chronic inflammatory condition associated
with the accumulation of lipids and fibrous elements in
the arteries where inflammatory cells are recruited to the
arterial walls. Increased production of reactive oxygen species
(ROS) is a unifying mechanism for several risk factors that
induce arteriosclerosis, endothelial cell dysfunction, and cardiac
dysfunction (87–91). Increased ROS can produce activation of
pro-apoptotic signaling resulting in cardiac remodeling and
dysfunction (92). Mitochondria are both a major source of
ROS and the primary target of ROS damage (93). Given that
mitochondrial DNA (mtDNA) lacks protection from histones
and has proximity to the source of ROS, it is very susceptible to
oxidative alterations of nucleotides in the sequence of its coding
regions (94). Thus, mtDNA mutations can lead to mitochondrial
dysfunction and inefficient energy production of cardiac cells

(95). Chronic ROS production results in the accumulation of
mtDNA mutations, oxidized proteins, and lipids, leading to
mitochondrial dysfunction and energy deficits in the heart (96).

E-cigarettes induce increased ROS in vitro and in vivo in
endothelial cells (97), which leads to DNA damage (97), mt DNA
mutations (39), and lipid peroxidation, all of which indicate
oxidative stress and ROS- mediated damage of cells. ROS can
directly impair the nitric oxide (NO)-mediated vasorelaxation
by quenching NO (98). Exposure to e-cigarettes aerosols for 12
weeks induced an inflammatory phenotype consisting in high
levels of lipid peroxidation andmitochondrial DNAmutations in
a nicotine-dependent manner (39). Recently, it has been reported
an increase in both lipid peroxidation and inflammation induced
by e-cigarettes were associated with heart fibrosis in rats (99).

The role of inflammation in the development of
atherosclerosis (100) and heart failure (101) is well-established.
Transcriptomic analysis of hearts exposed to e-cigarettes showed
that mice exposed to e-cigarettes had dysregulation of signaling
factors involved in inflammation, circadian rhythm regulation,
and leukocyte extravasation (39). In primary microvascular
endothelial cells, e-cigarettes, and conventional cigarettes
decreased the expression of the tight junctional protein Zonula
Occludens-1 (ZO-1), suggesting that they alter the blood-brain
barrier integrity (102). This effect was also accompanied by the
activation of Nuclear factor-erythroid factor 2-related factor
2 (Nrf2), a main cellular transcription factor of the oxidative
stress response, and Platelet endothelial cell adhesion molecule 1
(PECAM-1), a pro-inflammatory adhesion molecule (102). Also,
this study revealed an upregulation of the inflammatory proteins,
Intercellular adhesion molecule-1 (ICAM-1), and Vascular cell
adhesion protein 1 (VCAM-1) in the brain homogenates of mice
exposed to e-cigarettes (102).

Platelets from healthy volunteers exposed to e-cigarettes
aerosol show an increase in the expression of globular
complement protein C1q receptor (gC1qR) and calreticulin
cC1q receptor (cC1qR), two proteins that are associated with
the atherosclerotic events, platelet activation and aggregation.
In a randomized crossover trial, 25 tobacco smokers were
exposed to sham vaping, e-cigarettes without nicotine, and e-
cigarettes with nicotine. Plasma myeloperoxidase, an enzyme
highly expressed in neutrophils and macrophages used as a
marker of an inflammatory process (103), was increased after
exposure to e-cigarettes with nicotine, but not in patients
exposed to sham vaping or e-cigarettes without nicotine
(43). Other studies have shown increased inflammatory and
oxidative stress in non-smokers even when exposed to e-
cigarettes without nicotine (104). These data suggest a clear
effect of e-cigarettes with nicotine on the production of oxidative
stress and inflammation; however, further work is needed to
uncover the effects of the non-nicotine e-cigarette contributions
to atherosclerosis.

BLOOD LIPIDS

High levels of triglycerides and low levels of high-density
lipoproteins (HDL) are risk factors for cardiovascular disease
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(105, 106). Nicotine promotes loss of body weight and the
disturbance of lipoprotein metabolism through the secretion
of catecholamines, such as norepinephrine. Catecholamine
secretion favors the elevation of LDL and very low density
lipoproteins (VLDL) and is also associated with decreased HDL
levels (107–109). Higher levels of LDL and VLDL are also
known risk factors for cardiovascular diseases (110–112). A
health survey in Korean men showed significantly elevated
triglyceride levels in dual users of conventional cigarettes and e-
cigarettes compared to non-smokers (18). In addition, there was
no significant difference in triglyceride levels between dual users
and conventional cigarette-only smokers. However, another
work has shown that e-cigarette users have higher triglycerides
and lower HDL than never users (79). HDL cholesterol was
significantly lower in both dual users and conventional cigarette
only smokers compared to those who never have smoked
(18). E-cigarette vapers had increased levels of LDL and VLDL
compared to nonsmokers (113). Habitual e-cigarette users had
increased oxidized LDL levels compared with non-user control
individuals (114). Oxidized LDL can lead to atherosclerosis as it
can contribute to the buildup of atherosclerotic plaques (20). In
a gender-specific effect, a plasma lipidome analysis showed that
female but not male e-cigarette users had decreased plasmalogens
levels (115). Plasmalogens have a protective role against lipid
peroxidation (116). Clinical trials, animal experiments, and
surveys have shown associations between e-cigarette use and
negative health outcomes concerning blood lipids and potential
cardiovascular diseases; however, more clinical, animal, and
epidemiological studies will be needed to establish causation with
these negative health outcomes.

FREE FATTY ACIDS

Adipocyte dysfunction produces systemic inflammation, a
pathogenic mechanism underlying the well-known associations
between obesity, cardiovascular pathology, hypertension, and
metabolic syndrome (117). Thus, adipose tissue, an important
regulator of the cardiovascular system (118, 119), produces
bioactive factors that regulate lipid levels and is involved in
inflammation, oxidative stress, and insulin resistance (120).
Epidemiological studies have shown that the combination of
smoking and obesity results in a higher mortality risk (121).
Additionally, smokers have a subclinical systemic inflammation
with decreased adiponectin levels in plasma (122). The role of
the adipose tissue on the effects of smoking in vascular pathology
is highlighted by evidence showing that the epicardial adipose
tissue and subcutaneous adipose tissue in smokers has higher
levels of inflammatory adipokines, namely TNF-α and IL-6 than
found in this tissue in non-smokers (123).

In cultured 3T3L1 adipocytes, nicotine-induced AMP-
activated protein kinase (AMPK) phosphorylation, lipolysis,
and oxidative stress in a concentration-dependent manner
(124). Furthermore, the activation of nAChRs by nicotine
stimulated AMPK activation led to the release of free fatty acids
(FFAs) from rodent adipocytes (125–128). Additionally, systemic
administration of nicotine produced lipolysis by inducing the

release of catecholamines that bind to β-adrenergic receptors
located in adipocytes (129).

In humans, cigarette smoking and obesity have been
associated with increased levels of FFAs (130), which, in turn,
are correlated with an increased risk for CVD (131, 132). FFAs
have been broadly studied in their contribution to the induction
of metabolic changes that lead to metabolic syndrome (133) and
adverse cardiovascular outcomes (134). Increased FFAs produce
a low inflammatory state that is characterized by infiltration
and expansion of lymphocytes and macrophages, which produce
pro-inflammatory cytokines that interfere with insulin signaling
(135). FFAs are likely one of the key elements in ectopic lipid
accumulation, lipotoxicity, mitochondrial dysfunction (136–
138), and cardiomyopathy (132, 139). Improvements in whole-
body insulin sensitivity can be obtained by pharmacological
reduction of chronically elevated plasma FFA levels (140, 141).
Our laboratory has shown that e-cigarettes produce increased
plasma levels of FFA and intramyocardial lipid accumulation
(39). Additionally, we have shown that inhibition of lipolysis
using acipimox inhibited the hepatic metabolic changes induced
by consuming a high-fat diet plus nicotine (142). Increased FFA
promotes inflammation in adipose tissue through the activation
of the toll-like receptor 4 (TLR4) signaling (118, 143). Our team
found that e-cigarettes induce a cardiac inflammatory phenotype
associated with cardiac dysfunction and atherosclerosis (39).
Associated with this phenotype, we also found increased levels of
serum FFA and oxidative stress (39). Therefore, we postulate that
the nicotine present in e-cigarettes increases the levels of FFA and
ROS, leading to atherosclerosis and cardiac dysfunction (39).

In a hyperlipidemic, low-density lipoprotein receptor
null mouse model, nicotine stimulated macrophages to
secrete inflammatory cytokines, creating a pro-inflammatory
microenvironment in the sub-endothelium that increased
the aortic lesion size by 2.5 times (46). Human monocytes
are sensitive to cigarette smoking, NF-κB activation, and the
production of pro-inflammatory cytokines such as IL-8 (144).
After infiltration in the arterial wall, monocytes differentiate into
macrophages and engulf oxidized low density lipoproteins (LDL)
with the help of scavenger receptors creating foam cells, which
secrete cytokines that, in turn, recruit more immune cells (145).
In Apolipoprotein E (ApoE) null mice, e-cigarettes induced
a cardiac inflammatory phenotype associated with increased
serum levels of FFA and atherosclerosis (39). Together, this
evidence suggests that the effects of nicotine and e-cigarettes on
FFA, adipokines, and inflammatory cells are potent modulators
of cardiovascular physiology. We depict a possible mechanism
of these effects in Figure 2. Aside from the increase of FFA by
e-cigarettes, the reported changes in adipose tissue by nicotine
warrant further examination of the role of adipocyte tissue on
the recruitment and activation of immune cells to the heart
and vasculature.

SYMPATHETIC DOMINANCE

Cardiac sympathetic activation is a risk factor for cardiovascular
disease (146), and habitual e-cigarette users have an increased
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FIGURE 2 | Effects of e-cigarettes on adipocytes and cardiovascular system.

In adipocyte tissue, nicotine in e-cigarettes produces the release of FFA and

adipokines leading to the activation of macrophages and an inflammatory

phenotype that detrimentally affects the cardiovascular system function.

activation sympathetic system (114). Accordingly, e-cigarettes
have been reported to produce sympathetic dominance in
humans (114) and mouse models (147). Sympathetic and
parasympathetic terminals innervate sinoatrial (SA) and
atrioventricular (AV) nodes in the heart. In contrast, arteries and
veins only receive sympathetic innervation (148). nAChRs are
the key mediators of synaptic transmission in autonomic ganglia
(148). Nicotine binding to nAChRs led to a release of adrenaline
from the adrenal medulla and noradrenaline from postganglionic
sympatric nerves, activating the sympathetic nervous system
(7, 149). Blood vessels have α1 and β2 adrenoreceptors, which
produce vasoconstriction and vasodilatation, respectively. Since
the higher presence of α1 receptor in vessels, high adrenaline
concentrations induce vasoconstriction through activation
of α1 receptors (148). β1 adrenergic receptors are expressed
in the heart, and their activation leads to increased cardiac
contractility and heart rate (148). The chronic activation of the
sympathetic system produces an increased cardiac overload and
inflammation, leading to cardiac remodeling (150). Consistently
with the relevance of this mechanism, β-blockers reduce
heart failure mortality (151). Inhaling e-cigarettes (JUUL with
nicotine) acutely increased sympathetic neural outflow in young,
healthy non-smokers. In contrast, inhalation of a placebo
e-cigarette without nicotine elicited no sympathetic dominance
(152). Therefore, the sympathetic dominance produced by
e-cigarettes is mainly produced by nicotine.

Sympathetic dominance activates the Splenocardiac axis.
In this pro-inflammatory axis, the sympathetic stimulation of
hematopoietic tissues increases circulating pro-inflammatory
monocytes, increasing atherosclerosis and ischemic heart disease
(153). The finding that e-cigarettes activated metabolic activity

on spleen and blood vessel walls suggests the activation of the
Splenocardiac axis (154).

Sympathetic activity plays a central role in the control
of blood pressure. The acute effect of nicotine producing
increased blood pressure has been well-researched through
independent studies on nicotine and other cigarette studies
(155–158). Inhalation of nicotine aerosol equivalent to cigarette
smoking induces acute high magnitude irregular fluctuations
of blood pressure in a pregnant rat model, with the arterial
blood pressure being continuously measured (62). The irregular
fluctuations of blood pressure primarily result from nicotine-
induced cardiac arrhythmia (62) and probably can not be
detected by the intermittent measurement with the conventional
Korotkoffmethod. However, several epidemiological studies have
found inconsistent results in comparing blood pressure levels
among traditional cigarette smokers and non-smokers (159).
E-cigarettes release nicotine and, after thermal degradation of
propylene glycol and glycerin, release aldehydes (160), all of
which can potentially cause an acute increase in blood pressure
(161). As mentioned above, nicotine elevates blood pressure
through the release of norepinephrine and epinephrine (162).
The effects of aldehydes derived from the use of e-cigarettes are
less studied, and the current potential effects and mechanisms
are inferred from animal studies directly exposed to aldehydes.
In rats, inhaled aerosol of acetaldehydes and propionaldehydes
increased blood pressure by activating the sympathetic nervous
system through the stimulation of the release of catecholamines
(163). Previous studies have shown that aliphatic aldehydes,
besides formaldehyde, had sympathomimetic activity. Aliphatic
aldehydes most likely regulate blood pressure by the activation
of the sympathetic system found in a study with anesthetized
rats described above (163). More studies are needed to further
understand the discrepancy between the effects of different types
of aldehydes and the potential acute and chronic effects on
blood pressure.

A comparison study found similar rates of acute increase in
blood pressure when comparing e-cigarette and conventional
cigarette use in smokers (164, 165). E-cigarette devices as
the vape pod, JUUL, increased the blood pressure by 6mm
Hg acutely in comparison to nicotine-free e-cigarettes (152).
Nevertheless, the authors have mentioned that the 6 mmHg of
increase could be underestimated because the participants were
not experienced e-cigarette users, which could be less nicotine
absorption (152). Compared with nonsmokers, conventional
cigarettes and e-cigarettes users have a similar pattern of increase
in systolic blood pressure, with lesser effects in e-cigarette users
(166). A small double-blinded clinical trial revealed that e-
cigarettes with nicotine, but not without nicotine increased the
peripheral systolic blood pressure and heart rate in humans (167).
Conventional smokers with arterial hypertension that switched to
e-cigarettes showed improvements in systolic and diastolic blood
pressure (168). Three other acute comparison studies found that
e-cigarette users had decreased blood pressure when compared to
conventional cigarette users (169–171). Overall, a meta-analysis
of the immediate effects of e-cigarettes found that acute use of
nicotine e-cigarettes was associated with increased heart rate,
systolic blood pressure, diastolic blood pressure (172). In an acute
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study, following 45min of exposure to e-cigarette aerosol, blood
pressure levels rose to similar levels of those who smoked tobacco
cigarettes for 15min, suggesting that a longer time is needed
for e-cigarette exposure than conventional cigarette exposure on
blood pressure (167). One of the acute studies also used carotid-
pulse wave velocity to show that an increase of e-cigarette usage
from 5 to 30min increased arterial stiffness to a similar level to
that of tobacco smokers (164).

A mouse study indicated little changes in blood pressure
among mice that were exposed to filtered air, e-cigarettes, and
conventional cigarettes for 8 months (147). A human study that
lasted 3.5 years, found that there was no significant difference
in long-term changes in blood pressure when comparing daily
e-cigarette users and non-users (173).

Most of the acute comparison studies investigated the
temporary increase of blood pressure levels after a short period
of e-cigarettes use, most likely due to sympathetic nervous
system activation. There are still discrepancies in these acute
studies on whether e-cigarette use induced a lower elevation
in blood pressure when compared to the use of conventional
cigarettes. More data is necessary to fully understand the chronic
implications of e-cigarettes use and the potential effects of the
ingredients on blood pressure.

PLATELET ACTIVATION AND
THROMBOGENESIS

Platelet adhesion is a common trait of CVD (174). A whole-body
e-cigarette mouse exposure protocol showed that e-cigarettes
induce platelet activation with enhanced aggregation (169). Fine
particulate matter also increased platelet adhesion and activation
(175). Exposing mice to e-cigarettes for either 5 or 14 consecutive
days increased the activation of platelets as well as shortened
thrombosis after exposure to e-cigarettes (176).

Mice with short-term whole-body exposure to e-cigarettes
developed a prothrombotic phenotype with hyperactive platelets
and higher integrin and phosphatidylserine expression (176). E-
cigarettes increased phosphorylated protein kinase B (Akt) and
extracellular signal-regulated kinases (ERK), which are involved
in platelet function (176, 177).

Conventional cigarettes and e-cigarettes produced a
significant increase in platelet activation in non-smokers
(178). However, there was also a lower increase of platelet
aggregation following e-cigarette use than with conventional
cigarette use (178). In a similar study comparing acute effects
of conventional cigarette use and e-cigarette use, there was a
similar increase in both groups of Nox2, a protein that regulates
platelet-activation-associated thrombosis (165). In vitro studies
of platelet exposure to e-cigarette aerosol also found increases in
CD40 and P-selectin (175), which are markers for active platelets
and thrombo-inflammation, respectively (161, 179). In in vivo
studies, exposure to e-cigarettes for 5–7 days led to enhanced
P-selectin levels after e-cigarette usage (176).

Clinical studies involving tobacco users with controlled
conventional cigarette compared to e-cigarette with nicotine
use showed acute increases in CD40 and P-selectin markers

in conventional cigarette and e-cigarette users (165, 178, 180).
Another study, looking at e-cigarette use with and without
nicotine, found a similar increase of CD40 and P-selectin in
users of e-cigarettes containing nicotine. In the groups that
inhaled aerosol without nicotine, only CD40 increased (181).
In summary, clinical and preclinical studies indicate that e-
cigarettes consumption increases platelet aggregation, which can
have a negative impact by potentiating cardiovascular events.

VASCULAR TRAUMA AND CORONARY
VASCULAR DISEASE

The effects of conventional cigarettes in vascular injury and
CVD are well-established (7). Daily users of e-cigarettes have
an increased risk factor for myocardial infarction (182). This
risk appeared similar between e-cigarette and conventional
cigarette smokers and was increased in users of both cigarettes
and e-cigarettes (dual users) (183). The Framingham Heart
Study showed a strong association between aortic stiffness
and a higher incidence of cardiovascular events (184). Arterial
stiffening leads to increased cardiovascular risk, including
heart failure, myocardial infarction, and increased mortality.
Hemodamicaly, arterial stiffening leads to increased blood
pressure, cardiac workload, and decreased myocardial perfusion.
Structural components of the arterial wall mainly determine
arterial stiffening. Estimation of arterial stiffness is commonly
measured by aortic-femoral pulse wave velocity (PWV), that is,
the time that it takes for the arterial pulse to propagate from the
carotid to the femoral artery. Several studies have shown that e-
cigarettes increase PWV in humans (43, 164, 185). Mice exposed
to e-cigarettes for 5 days a week for 8 months showed increased
aortic arterial stiffness measured by PWV (147).

To differentiate the vascular effects of nicotine and carriers, a
single-blind crossover design study was performed with patients
exposed to vaping without nicotine, vaping with nicotine,
and sham-vaping. Results from these clinical studies showed
that nicotine from e-cigarettes reduced microvessel endothelial
function, increased arterial stiffness, and triggered an increase
in plasma myeloperoxidase (43). Nicotine-free e-cigarettes did
not change microcirculatory function as well as arterial stiffness
and oxidative stress markers (43). In healthy volunteers, two
biomarkers for heightened vascular risk, microvesicles, and
endothelial progenitor cells, were increased following exposure
to e-cigarettes (180), and these effects were shown to be
dependent on nicotine (181). Ex vivo experiments of wire tension
myography and force transduction showed an increased thoracic
aortic tension in response to vasoactive-inducing compounds
in mice chronically exposed to e-cigarettes (147). In animal
models, mice were exposed for 60 weeks to the e-cigarette
with a concentration of nicotine from 0 to 24 mg/mL showed
endothelial dysfunction and an increase in endothelial ROS, in
addition to a thickening of the vessel wall were dependent on
nicotine concentration (186). Experiments in mice showed that
e-cigarettes produced uncoupling of eNOS, and peroxynitrite
formation may lead to vascular endothelial dysfunction (187).
Additionally, ROS causes endothelial dysfunction by directly
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quenching NO (98). On the other hand, flow-mediated dilation,
a marker for the presence of subclinical atherosclerosis,
was studied in conventional cigarettes smokers, e-cigarettes
smokers, and non-smokers. Conventional cigarette smokers
develop impairment of flow-mediated dilation compared to non-
smokers, and electronic cigarette smokers have similar flow-
mediated dilation as non-smokers. Therefore, this work suggests
that the impairment of flow-mediated vasodilation may be
nicotine-independent (188). An article on the beneficial effects
of the switch from traditional cigarettes to e-cigarettes showed an
early beneficial impact on endothelial function after this switch
(189). The improvement in flow-mediated dilatation was mainly
observed in females and non-dual users with little effect in dual
users (189). However, one potential limitation of this study is the
lack of a non-smoker control group.

Pulse wave analysis (PWA) is a technique commonly used
to determine systemic arterial stiffness. The primary outcome
derived from PWA is the augmentation index (AIx), which is
normalized to the heart rate. Several groups have shown an
increase in the AIx after e-cigarette and conventional cigarette
use (43, 167, 185). Chaumont et al. (43) associated these
hemodynamic parameters and ROS changes to nicotine without
the influence of the non-nicotine components in the e-cigarettes.

The two most studied mechanisms for the effect of
conventional cigarettes on vasculature are oxidative stress
and the promotion of a pro-inflammatory state (7). In
endothelial cells, e-cigarette and conventional cigarette extracts
produce DNA damage, ROS generation, and apoptosis;
however, cytotoxic effects were blunted by antioxidants
(97), suggesting a pivotal role of ROS. These effects were
greater in conventional cigarettes than e-cigarettes (97). E-
cigarette exposure caused endothelial dysfunction through
ROS in human endothelial cells derived from induced
pluripotent stem cells (iPSC), and their conditioned
media induced a pro-inflammatory state in macrophages
(190). These effects were potentiated in cinnamon-flavored
products (190).

In human umbilical vein endothelial (HUVEC) cells, e-
cigarettes produced complement deposition, a phenomenon
present in atherosclerotic lesions (191). This inflammatory
phenomenon was related to a reduction of metabolic
activity of endothelial cells (191). Consistently, sections of
aortic root stained with Oil Red O from ApoE KO mice
exposed to e-cigarettes aerosol, producing blood cotinine
levels equivalent to that found in heavy smokers, showed
increased development of atherosclerotic lesions (192).
Additionally, e-cigarettes induced an innate immune response
associated with aberrant neutrophilic activation in human
airway samples (193). A similar model of e-cigarette induced
atherosclerosis showed that damaged mitochondrial DNA
in circulating blood may produce the increase of Toll-like
receptor 9 (TLR9), leading to increased pro-inflammatory
cytokines and macrophages activation (194). Additionally,
pharmacological inhibition of TLR9 can attenuate the e-
cigarettes exacerbated atherosclerosis in ApoE KO mice
(194). Therefore, growing literature shows evidence for
e-cigarette-induced vascular injury.

CARDIAC FUNCTION

Smoking is a significant predictor of mortality in people with
heart failure (118, 195). The components of e-cigarettes or their
heat-produced derivatives have been shown to have an effect
on cardiac physiology. For instance, formaldehyde decreased in
left ventricle end-systolic pressure and cardiac output (196), and
acetaldehyde produced myocardial mitochondrial damage (197).
Nicotine aerosol inhalation induces acute cardiac arrhythmia
where sinoatrial (SA) block, sinus arrest, atrioventricular (A-V)
block and supraventricular escape rhythm were demonstrated by
ECG analysis in rats suggesting a disturbance of parasympathetic
and sympathetic cardiac control mediated by the nAChRs (62).
Mouse models for e-cigarette exposure with pharmacokinetics
resembling human e-cigarettes have been developed (192). In
the ApoE KO mice model exposed to 12 weeks of e-cigarettes
with cotinine levels similar to the range of heavy smokers, RNA-
seq analysis revealed dysregulation of inflammatory pathways
(39). Additionally,M-Mode echocardiographic analysis showed a
decreased left ventricular fractional shortening (LV%FS), ejection
fraction (LVEF), and velocity of circumferential fiber shortening
(VCF) in mice exposed to e-cigarettes with nicotine (39).
However, exposure to e-cigarettes without nicotine did not affect
cardiac function (39). Such changes in cardiac function were
associated with increased ultrastructural abnormalities indicative
of cardiac dysfunction and MDA generation, a marker of
oxidative stress but without hypertrophy (39). These changes
were not associated with changes in the gross morphology of
the heart. Recently, C57BL/6J mice on an HFD were exposed
to e-cigarettes in the presence (2.4% nicotine) or absence (0%
nicotine) of nicotine and saline aerosol for 12 weeks (198).
Indeed, we found a decrease in LV%FS, LVEF, and VCF coupled
with ultrastructural abnormalities indicative of cardiomyopathy
in mice treated with e-cigarette (2.4% nicotine) compared to e-
cigarette (0% nicotine) or saline exposed mice (198). Therefore,
nicotine seems to be necessary for the induction of systolic
dysfunction induced by e-cigarettes in this mouse model (39).
More extended exposure to e-cigarettes of 60 weeks, led to
the development of cardiac left ventricular hypertrophy with
an increased systemic vascular resistance (186). Accordingly,
another study showed that mice exposed to e-cigarettes for
3 months had increased systolic blood pressure and diastolic
blood pressure, associated with cardiac and renal fibrosis and a
systemic inflammatory state (199). Recently, a similar phenotype
produced by e-cigarettes in rats showed fibrosis, inflammation,
and oxidative stress, but with cardiac hypertrophy (99).

CARDIOVASCULAR STUDIES OF
SMOKERS USING E-CIGARETTES AS A
TOOL FOR SMOKING CESSATION

Ameta-analysis of cardiovascular outcomes of smokers switching
from traditional cigarettes to e-cigarettes did not show any
improvement in stroke, myocardial infarction, or coronary heart
disease outcomes (200). However, this work showed a reduction
in adverse respiratory effects in smokers who switched to
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e-cigarettes (200). Additionally, larger studies have shown that
the smokers who do not halt smoking often continue using
both conventional cigarettes and e-cigarettes (dual users) (18).
Compared with those who only smoke conventional cigarettes,
dual users have a higher cardiovascular risk (201).

HEAT-NOT-BURN TOBACCO CIGARETTES
AND CVD SAFETY

The tobacco industry’s most recent development is a product
deemed as a heat-not-burn (HnB) tobacco cigarettes (202, 203).
These products claim to “heat” tobacco (rolled cast leaf sheets
of tobacco soaked in propylene glycol) to temperatures around
350 Celsius rather than burn it at roughly 600◦C. This creates
an aerosol that contains nicotine which can be inhaled by users
and is promoted to be less toxic and harmful than e-cigarette
aerosol or smoke from combusted cigarettes (204). PhillipMorris
International (PMI) is spearheading this new “technology.”
Their new product (I-Quit-Ordinary-Smoking (IQOS) is being
marketed to 1 day replace conventional cigarettes (205). Before
this product gains traction, studies on its acute and long-term
CVD safety are urgently needed.

DISCUSSION: CONCLUSIONS AND
FUTURE

Although the public endorses the perception that e-cigarettes
are safe (206), their long-term effects on human health will
take a long time to be fully elucidated. In the last several
years, e-cigarettes have been progressively regulated. The
tobacco prevention act gave authority to the Food and Drug
Administration (FDA) to regulate the production, distribution,
and marketing of e-cigarettes. The evolving nature of the
presented data in this work calls for more regulation, which
would include additional safety testing for new flavors and
devices that continue to emerge. Studies comparing the CVD
effect of e-cigarettes vs. conventional cigarettes and especially
those who use e-cigarettes to attempt to quit conventional
cigarettes are urgently needed.

The past several years have been important in establishing
the effects of e-cigarettes on CVD. Although the reduction
of conventional cigarettes harm by substituting them with e-
cigarettes remains under discussion, the molecular mechanism
of e-cigarette effects in the cardiovascular system clearly is
emerging. The proposed mechanisms for the effects of e-
cigarettes on CVD are shared with common diseases that
affect the general population. Mechanisms such as oxidative

stress, inflammation, lipid accumulation, and sympathetic
dominance are commonly present in non-smoking patients with
atherosclerosis and diabetic cardiomyopathy (207). This leads to
increased concern for people with metabolic or cardiovascular
comorbidities that use e-cigarettes. Therefore, these shared
mechanisms call for future studies investigating the impact
of e-cigarettes on the cardiovascular disease on susceptible
populations or representative animal models of these conditions.
Additionally, the variety of flavors and delivery systems that
change in different vendors will need to be studied. Future
discussions in the field may be informed by the different effects
of nicotine on the variety of nAChRs and target organs.

Nicotine has a dichotomic role as the main substance in
harm-reduction products and a harmful substance for the
CVS. Therefore, the solution for stopping the deleterious
effects of smoking is nicotine cessation and not shifting the
source of nicotine delivery. Alternatively, e-cigarettes may be
an imperfect, comparatively safer alternative to conventional
cigarettes that could be used as a cessation tool; however,
the efficiency of this intervention is still uncertain. As a
requirement for a specific e-cigarette to be designed as safer
than conventional cigarettes, they need to be compared to
conventional cigarettes. E-cigarette devices and e-liquids keep
changing, and the safety information obtained today may not
be valid in a few years. Likely, the scientific discussion that
started centuries ago about smoking and health for Dr. Monardes
(2) is certain to continue with e-cigarettes. We hope that
consensus will come in a shorter time than the one established for
conventional cigarettes.
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