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Background: Warfarin is an effective treatment for thromboembolic disease but has a

narrow therapeutic index, and dosage can differ tremendously among individuals. The

study aimed to develop an individualized international normalized ratio (INR) model based

on time series anticoagulant data and simulate individualized warfarin dosing.

Methods: We used a long short-term memory (LSTM) network to develop an

individualized INR model based on data from 4,578 follow-up visits, including clinical

and genetic factors from 624 patients whom we enrolled in our previous randomized

controlled trial. The data of 158 patients who underwent valvular surgery and were

included in a prospective registry study were used for external validation in the real world.

Results: The prediction accuracy of LSTM_INR was 70.0%, which was much higher

than that of MAPB_INR (maximum posterior Bayesian, 53.9%). Temporal variables were

significant for LSTM_INR performance (51.7 vs. 70.0%, P < 0.05). Genetic factors

played an important role in predicting INR at the onset of therapy, while after 15 days

of treatment, we found that it might unnecessary to detect genotypes for warfarin

dosing. Using LSTM_INR, we successfully simulated individualized warfarin dosing and

developed an application (AI-WAR) for individualized warfarin therapy.

Conclusion: The results indicate that temporal variables are necessary to be considered

in warfarin therapy, except for clinical factors and genetic factors. LSTM network may

have great potential for long-term drug individualized therapy.

Trial Registration: NCT02211326; www.chictr.org.cn:ChiCTR2100052089.
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INTRODUCTION

Warfarin is an effective anticoagulant and is the most commonly
used anticoagulant to prevent and treat thromboembolic disease
worldwide (1). The effect of warfarin is measured with a blood

coagulation index known as the international normalized ratio
(INR) (2). Patients with different diseases taking warfarin have

different target INR ranges (e.g., 1.8–2.3, 2.0–2.5, or 2.0–3.0).
However, a particular challenge with the use of warfarin is
its narrow therapeutic index, associated with large individual

variations in daily dose requirements and often leading to
either bleeding or thrombosis (3). This has led warfarin to
becoming one of the top 10 drugs associated with drug-

related hospitalization (4). Thus, warfarin doses required to
achieve the target INR ranges are determined via several

days of testing, which leads to frequent return visits and
blood draws.

A potential strategy for improve warfarin efficacy and safety

is to account for individual genetic variations of CYP2C9 and
VKORC1, along with clinical variations (5). Various warfarin
dosing algorithms have been reported to predict warfarin
dosing; International Warfarin Pharmacogenetics (IWPC) (6),
Gage et al. (7), Lenzini et al. (8), and Lee et al. (9–12) have
developed some predictive formulas for personalized warfarin
dosing to improve anticoagulation control. However, these
models only have about 50% prediction accuracy. Almost all
existing algorithms only cross-sectionally consider the effects of
various fixed variables on warfarin dosing, ignoring time series
variables, meaning that these models fail to reflect real-world
anticoagulation therapy.

Ourmulticenter, randomized, single-blind, parallel-controlled
trial called XY3-WAR (Warfarin Trial of the Third Xiangya
Hospital, Central South University) (13) demonstrated the
utility of genotype-guided dosing of warfarin to optimize
individual warfarin dosing in a Chinese population. The trial
included 660 patients with deep vein thrombosis and atrial
fibrillation who were treated with warfarin for 3 months.
Those data were high-quality time series anticoagulant data.
Long short-term memory (LSTM) has a powerful capacity
for processing long temporal data and solving the problem
of long-term dependencies (14). With the development of
big data in the medical field, LSTM networks have been
increasingly used for various medical tasks. Maragatham used
patients’ electronic medical records to propose a heart failure
prediction model based on LSTM networks, which resulted
shown improved accuracy (15). Syed Hasib used LSTM networks
for forecasting dynamic blood glucose levels of patients with type
2 diabetes mellitus (16). These successful attempt inspired us
that LSTM network might be a potential strategy for warfarin
individualized therapy.

This study first aimed to adopt LSTM networks to develop an
individualized INR model based on the time series anticoagulant
data from the XY3-WAR trial, then use external data from
a prospective study to evaluate this model in the real world.
The study’s secondary aim was to simulate warfarin dosing
individualization using the LSTM_INR model we developed.

MATERIALS AND METHODS

Study Design and Population
The modeling data set was the time series anticoagulation data
of the XY3-WAR study (13). We excluded patients who did
not take warfarin or were lost follow-up on day 4/5. Finally,
a total of 624 patients with atrial fibrillation or deep vein
thrombosis were enrolled in the modeling data set. The external
validation data set was from a prospective registry study, and a
total of 158 volunteers were enrolled (from the Second Xiangya
Hospital of Central South University, Changsha, China). The
detailed inclusion and exclusion criteria are available in the
Supplementary Methods.

Ethical Considerations
The XY3-WAR study (NCT02211326) was approved by the
Institutional Review Board of the Third Xiangya Hospital of
Central South University, and the institutional review boards
of each participating hospital. The prospective registry study
(www.chictr.org.cn:ChiCTR2100052089) was approved by the
Institutional Review Board of the Second Xiangya Hospital
of Central South University. All subjects provided written
informed consent.

Genetic Analysis
Genotyping for the CYP2C9∗2, CYP2C9∗3, and VKORC1-
1639G>A alleles was performed using the amplification
refractory mutation system. More information on genotyping is
available in the Supplementary Methods.

Model Development
According to the modeling data set of the XY3-WAR study, we
included age, height, weight,VKORC1,CYP2C9, and amiodarone
status data reported in the research; these were defined, fixed
variables. The defined time series variables were adjusted dose at
last follow-up (Dosei−1), INR at this follow-up (INRi), interval
from this follow-up to the subsequent follow-up (Intervali+1),
and adjusted dose at this follow-up (Dosei). Fixed variables
were processed using a feedforward neural network (FNN), and
time series variables were processed using LSTM. The output
was INR at next follow-up. The detailed modeling flow chart
is shown in Figure 1A. FNNs are among the most basic forms
of artificial neural networks with the simplest structure and
are used successfully in many applications. The data from the
input layer were processed by hidden layers, then processed data
were transferred to the output layer to finally generate results.
The whole process proceeded in a single direction (Figure 1B).
LSTM networks are recurrent neural networks that capture both
long-term and short-term dependencies within sequential data.
Differing from the single-direction transfer of FNNs, many of
the units of LSTM networks are linked together in time series
(Figure 1C).

Formula (1) was used for data standardization; 10% of the
modeling data set was randomly set as the test set, and the
remainingmodeling data set was divided into a training set (90%)
and a validation set (10%). We set the mean square error (MSE)
(2) as the loss function of neural networks. The batch size was
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FIGURE 1 | The modeling flow chart (A) including schematic representation of feedforward neural network (B) and long short-term memory network (C).

set to 64, the learning rate was 0.001, and the epoch was 100.
To prevent the model from overfitting, we used early stopping
for regularization. The stopping criteria were based on the loss
function, and training stopped when the loss function did not
decrease after 10 epochs. We used 10-fold cross-validation to
train the model. Mean absolute error (MAE) (3), root mean
square error (RMSE) (4), and prediction accuracy were used to
evaluate the stability of the model. We exported the model at
the last time as the final model. A flow chart of the analysis
used for model development and model validation is shown in
Supplementary Figure S1.
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Model External Validation
To evaluate the LSTM_INR model, we conducted a prospective
registry study at the Second Xiangya Hospital of Central

South University from 2020-12-29 to 2021-08-31. The follow-
up visit data of patients we enrolled were used as the external
validation data set. The evaluation variable was prediction
accuracy (defined as within 70–130% of the true value). SPSS
Statistics for Windows, version 25.0 (IBM Corp., Armonk, NY,
USA) was used for statistical analysis. We used chi-square
analysis to compare the prediction accuracy of various models;
P-values < 0.05 were considered to be statistically significant.
This study compared the prediction accuracy of the LSTM
models we developed withmaximumposterior Bayesian (MAPB)
models developed by Hamberg et al. (11). Furthermore, we
investigated the effects of temporal variables on INR prediction
and genetic factors at different follow-up periods. Subgroup
analysis was used to compare the prediction accuracy of the
LSTM model for patients with different sensitivities to warfarin.
Finally, we simulated individualized warfarin dosing based
on LSTM_INR and developed an application (AI-WAR) for
warfarin individualized therapy.

RESULTS

Participants
A total of 624 participants were enrolled in the modeling data
set. The mean weight and height were 62.0 ± 12.2 kg and
161.8 ± 8.1 cm, respectively. Among the enrolled participants,
86.7% had atrial fibrillation, and the remainder (13.3%) had deep
vein thrombosis. There were 316 (50.6%) male participants. The
frequency of VKORC1 AA, VKORC1 GA, and VKORC1 GG were
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TABLE 1 | Demographic and clinical information of modeling dataset and external

validation dataset.

Characteristics Modeling set

n = 624

External

validation set n

= 158

P

Mean ± SD/n (%) Mean ± SD/n (%)

Sex 0.03*

Male 316 (50.6%) 67 (42.4%)

Female 308 (49.4%) 91 (57.6%)

Age 67.5 ± 10.2 53.1 ± 10.3 <0.001
†

Height (cm) 161.8 ± 8.1 161.4 ± 7.5 0.65
†

Weight (kg) 62.0 ± 12.2 60.2 ± 9.1 0.045
†

Indication

Atrial fibrillation 541 (86.7%) 0 (0.0%)

Deep vein thrombosis 83 (13.3%) 0 (0.0%)

Mechanical valve

displacement

0 (0.0%) 80 (50.6%)

Biological valve

displacement

0 (0.0%) 69 (43.7%)

Valvuloplasty 0 (0.0%) 9 (5.7%)

Follow-up time (day) 51.8 ± 23.5 72.1 ± 62.1 0.04
†

%TTR§ 52.5 ± 27.3 27.03 ± 23.36 <0.001
†

Amiodarone use 9 (1.4%) 12 (7.6%) 0.001*

VKORC1 0.04

A/A 500 (80.1%) 139 (88.0%)

A/G 113 (18.1%) 19 (12.0%)

G/G 11 (1.8%) 0 (0.0%)

CYP2C9 0.21

*1/*1 579 (92.8%) 141 (89.2%)

*1/*3 43 (6.9%) 17 (10.8%)

*3/*3 2 (0.3%) 0 (0.0%)

Sensitivity 0.02

Highly sensitive

responders

34 (5.5%) 15 (9.5%)

Sensitive responders 477 (76.4%) 126 (79.7%)

Normal responders 113 (18.1%) 17 (10.8%)

*
χ
2 test.

†
Kruskal-Wallis test.

Continuity correction χ
2 test.

§The percentage of time in the therapeutic range.

80.1, 18.1, and 1.8%, respectively. The frequency of CYP2C9∗1∗1
was 92.8%, which was much higher than those of CYP2C9∗1∗3
(6.9%) and CYP2C9∗3∗3 (0.3%).

For the external validation data set, 158 participants were
enrolled. The mean age was 53.1 ± 10.3 years. The mean weight
and height were 60.2 ± 9.1 kg and 161.4 ± 7.5 cm, respectively.
All participants had undergone cardiac valve surgery: 50.6% of
patients had undergone mechanical valve replacement, 43.7%
patients had undergone biological valve replacement, and
5.7% had undergone valvuloplasty. In this data set, 42.4% of
participants were male. The frequencies of VKORC1 AA and
VKORC1 GA were 88.0 and 12.0%, respectively, and those of
CYP2C9∗1∗1 andCYP2C9∗1∗3were 89.2 and 10.8%, respectively.

TABLE 2 | Prediction accuracy of different models.

Model Prediction accuracy (%) P

LSTM_INR 70.0% (462/660)

MAPB_INR 53.9% (356/660) <0.001*

LSTM_INR_no_time 51.7% (341/660) <0.001
†

LSTM_INR_no_gene 61.5% (406/660) <0.001

*LSTM_INR vs. MAPB_INR.
†
LSTM_INR vs. LSTM_INR_no_time.

LSTM_INR vs. LSTM_INR_no_gene.

Details of demographic and genetic information are shown in
Table 1.

Model Development
Trend graphs of loss function for 10-fold cross-validation
were shown in Supplementary Figure S2. MSE, MAE,
RMSE, and mean prediction accuracy are shown in
Supplementary Table S1. The loss function trends for each
model were the same—convergence to ∼0.48 triggered early
stopping. MAE was 0.5 ± 0.007 and MSE was 0.7 ± 0.01, which
was slightly higher than convergence of loss function. RMSE
was 0.8 ± 0.008, and prediction accuracy reached up to 70.6
± 1.1%. There were slight variations among the evaluation
parameters, indicating that this modeling process was stable. The
final LSTM_INR model was the last modeling one; MAE was 0.5,
MSE was 0.7, RMSE was 0.8, and prediction accuracy was 71.6%.

Model External Validation
Comparison of LSTM_INR With MAPB_INR
The results are shown in Table 2 and Figure 2. The prediction
accuracy of the LSTM_INR model was up to 70.0%, while that
of the MAPB_INR model was only 53.9% (P < 0.05), indicating
that the LSTM_INR model performed significantly better than
the MAPB_INR model.

The Effect of Temporal Variables
We, respectively, inputted Dataset_N (normal external validation
data set) and Dataset_T (data set without temporal sequence)
into LSTM_INR, and the results are shown in Table 2 and
Figure 2. After removing temporal sequence, the prediction
accuracy of LSTM_INR dropped to 51.7% (P < 0.05).

The Effect of Genetic Factors at Different Follow-Up

Periods
As shown in Table 2 and Figure 2, the prediction accuracy of
LSTM_INR dropped by 8.5% without regard to genetic factors
(P < 0.05). At the onset of anticoagulant therapy, the prediction
accuracy of LSTM_INR was significantly higher than that of
LSTM_INR_no_gene (without genetic factors). After 15 days
of treatment, the difference in prediction accuracy between
LSTM_INR and LSTM_INR_no_gene was not statistically
significant. Details are shown in Supplementary Table S2 and
Figure 3. Regardless of genetic factors, prediction accuracy
increased with time during the initial 15-day therapy period,
while after day 15, prediction accuracy dropped gradually.
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FIGURE 2 | Prediction accuracy of different models. LSTM_INR_no_gene means LSTM_INR model without genotype data; LSTM_INR_no_time means LSTM_INR

model without temporal data; MAPB_INR means INR model based on maximum posterior Bayesian. Two yellow lines show the range of 70–130% of true values.

Plots above the line means overestimated, plots under the line means underestimated.

Prediction Accuracy of Subgroups With Different

Genotypes
Additional subgroup analyses for differentCYP2C9 andVKORC1
genotypes were performed. Three groups were defined based
on the Food and Drug Administration genotype-based dosing
recommendations as follows:

• Highly Sensitive responder: CYP2C9∗1/∗3 and VKORC1 AA,
CYP2C9∗3/∗3 and VKORC1 AA or GG or GA

• Sensitive responder, CYP2C9∗1/∗1 and VKORC1AA,
CYP2C9∗1/∗3 and VKORC1 GG or GA

• Normal responder: CYP2C9∗1/∗1 and VKORC1 GG or GA

We evaluated the prediction accuracy of LSTM_INR

among these three subgroups. The results are shown in

Supplementary Table S3, and the normal responder group has
the highest accuracy of 75.7%, compared with the sensitive
responder group (70.0%) and highly sensitive group (61.7%).
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FIGURE 3 | Sequence diagram of effect of genetic factors on LSTM_INR. *There are significant differences between two groups (P < 0.05).

Simulation of Individualized Warfarin Dosing
For improved application of clinical anticoagulant therapy, we
intended to predict individualized warfarin dosing based on
LSTM_INR. Target INR ranges varied by treatment indication. In
our external validation data set, target INR ranges were as follows:
1.8–2.3 for patients with mechanical valve replacements, 2.0–2.5
for patients with biological valve replacements, and 1.5–2.5 for
patients who had undergone valvuloplasty.

Since the most common specifications of warfarin in the
market were 2.5 mg/tablet and 3 mg/tablet, we inputted
16 possible prescribed doses (0.625, 0.75, 1.25, 1.5, 1.875,
2.25, 2.5, 3, 3.125, 3.75, 4.375, 4.5, 5, 5.25, 5.625, and 6mg)
into LSTM_INR, set target INR ranges for individuals,
and then model-predicted INR were outputted. The final
optimal individualized warfarin doses we recommended
corresponded to the predicted INR within the target INR ranges
(Supplementary Figure S3).

We developed an application called AI-WAR
(Supplementary Figure S4), in which we embedded
the LSTM_INR model for better warfarin therapy. AI-
WAR offered dose decisions based on LSTM_INR, and
clinicians could choose to accept the dose recommendation
or input their prescriptions manually. Patients then
could receive the final prescribed daily dose via the
AI-WAR. More details about AI-WAR were shown in
Supplementary Material.

DISCUSSION

Based on the powerful capacity of LSTM to process time series

data, we successfully used a time series anticoagulant data set

to develop our LSTM_INR model. The prediction accuracy
with the test set was 71.6%. Lee et al. (9) proposed the use of

LSTM networks to develop an INR prediction model to predict
INRday5 for Korean patients. This study confirmed that LSTM
can be applied to predict INR. However, the in-hospital INRday5

has minimal significance in long-term anticoagulant therapy.
Besides, the study by Lee et al. (9) was limited in that it lacked

prospective evaluation. LSTM_INR we developed was to predict
INR of the next visit, which is appropriate for short - and
long-term anticoagulant therapy.

For further evaluation of LSTM_INR in the real world, we
conducted a prospective study for external validation. With the
external validation data, we compared the prediction accuracy
of LSTM_INR with MAPB_INR. MAPB_INR was developed
by Bayesian forecasting and was proved effective and accurate
in some studies. Based it, Hamberg developed a dose decision
platform (WarfarinDoseCalculator) (17). This platform was
widely used for individualization of warfarin (18). However,
LSTM_INR performed better than MAPB_INR (70.0 vs. 53.9%,
P < 0.05). Then, we evaluated the influence of temporal variables
on the model, finding that the inclusion of temporal variables
significantly increased the accuracy of LSTM_INR (70.0 vs.
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51.7%, P < 0.05). This indicated that temporal variables are
particularly useful in individualized INR prediction.

Given that it is not easy to obtain genotypes in primary
hospitals in China, we evaluated the effect of genetic variables
on LSTM_INR. LSTM_INR had better prediction accuracy than
LSTM_INR_no_gene (70.0 vs. 61.5%, P < 0.05). Although the
difference was statistically significant, the prediction accuracy of
LSTM_INR_no_gene was still as high as 61.5%, which indicated
that it is appropriate for use in primary hospitals. We also
analyzed the effects of genetic variables in different follow-up
subgroups, and we found that genetic factors were important
for INR prediction at the initial therapy period (days 1–15),
while after 15 days of therapy, the effects of genetic factors
were minimal. This result aligned with previous observations
(19, 20). The impact of gene polymorphisms on the initial phase
of warfarin therapy was higher than that on the maintenance
phase. Our results suggested that it was necessary to detect
genotypes for patients at the initiation of therapy, while for
patients who had more than 15 days of therapy, clinical factors
and temporal variables were enough to predict individualized
INRs. These results suggest that LSTM-INR would be useful
for patients initiating anticoagulation therapy; for patients who
have been on warfarin for 15 days, LSTM_INR_no_gene can be
used. Warfarin has a slow anticoagulant effect. After 3–5 days
of taking warfarin at the first time, INR would have significant
fluctuations (21). In that case, LSTM_INR outperformed at the
period of Day7−15 than Day2−7. Besides, all participants enrolled
in XY3-WAR were asked to have regular INR testing during
12 weeks. The follow-up rate as follows: baseline test, 1, 4/5,
8 ± 1 (476/624), 15 ± 1 (421/624), 22 ± 1 (375/624), 28 ±

2 (460/624), 57 ± 3 (399/624), and 87 ± 3 days (38/624).
During the D0−60, most of patients (over 60%) test INR on time,
while after 60 days, a great number of patients dropped out.
In the external validation datasets, the rate of regular follow-
up was 90.8% from days 1–15, but it was 45.38% after day 15.
As results shown, LSTM_INR performed excellent during the
early period (D1−15) but the accuracy decreased at the time
of D15 and D60. There were two main reasons explained it.
One was that the follow-up time of external validation dataset
were not as regular as modeling dataset. Another was that the
sample size of long-term follow-up (>60 days) in the modeling
dataset decreased. So that LSTM_INR could not performed great
after Day60.

Many models have been developed for predicting INR or
individualized dosing for warfarin therapy. However, the relevant
studies have only focused on the initial (10) and the maintenance
(22) phases. In the real world, patients who take warfarin require
long-term or even life-long anticoagulant therapy, so these
preexisting models were not applicable for adjusting warfarin
doses throughout long-term follow-up. Besides, most models
only considered cross-sectional data and ignored the effects of
temporal variables. The LSTM_INR model we developed aimed
to predict the INR of the next visit, which was more appropriate
for real-world anticoagulation scenarios. Beyond that, our
modeling data set enrolled patients with atrial fibrillation and
deep vein thrombosis, while the external validation data set
enrolled patients after valvular surgery. The prediction accuracy

of this model was still about 70%, indicating that this model was
applicable to various indications.

Unlike previous studies, our study further performed
subgroup analyses by genotype. The prediction accuracy
associated with the normal responder group was higher than
those associated with sensitive responder and highly sensitive
responder groups. This result was in accordance with our
previous study (XY3-WAR). In China, most people are sensitive
responders; thus, clinicians prescribe as if the entire population
comprises sensitive responders, which can lead to thrombosis
for normal responders and bleeding for highly sensitive
responder. Thus, our LSTM-INR was beneficial for the normal
responder group.

The accuracy we defined in this study was acceptable
for clinical use (23). However, for better supporting clinical
decision-making, we further evaluated the prediction accuracy of
LSTM_INR within ±20%. There was a no doubt that accuracy
decreased within the range of ±20%. Finally, LSTM_INR only
got the accuracy of 53.93%. But LSTM_INR still has significant
performance than MAPB method. Further, we evaluated the
accuracy in different subgroups. We found LSTM_INR has better
performance in low INR range (≤2) with the accuracy of 57.87%
(239/413). This result indicated LSTM_INR would be more
suitable for real-world treatment of low-intensity anticoagulation
in China (24–26). Many experts recommended the ideal INR
range was 1.8–2.0 in Chinese patients underwent heart valve
replacement. Besides, we found the accuracy of model during
D7−15 was the highest (59.43%), which was corresponding to our
study with±30% range. In that case, we believed LSTM_INR has
clinical significance in supporting decision-making for Chinese
patients in low-intensity anticoagulation management, especially
at the initial 15 days.

To assist clinicians with individualizing warfarin therapy, we
simulated individualized warfarin dosing based on LSTM_INR.
The trend of using mobile applications or electronic systems
for anticoagulation is likely more suitable for long-term
individualized therapy and anticoagulant self-management (27,
28). Thus, we developed an application (AI-WAR) in which
we embedded these were embed in. Unlike other mobile
anticoagulant systems, the critical function of AI-WAR was
dose decision support. This function could help clinicians
improve individualized therapy. In the future, we will conduct
a prospective study to evaluate the clinical efficacy of AI-WAR in
the real world.

Our study had some limitations. First, this study only
recruited participants fromHunan province. However, given that
the racial distribution in Hunan province is similar to that of
China overall, the participants who enrolled in our study can
be considered representative of the Chinese population (29).
Second, the external validation data set was from a prospective
registry study, and the INR of most subjects were not monitored
regularly, while the modeling data set was from a randomized
controlled trial for which nearly all subjects needed to be followed
up at specified times. Thus, the prediction accuracy of models
before day 30 were higher than that after day 30. It is worth
mentioning that in this case, the prediction accuracy of the
models that we developed were still about 60%.
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CONCLUSION

This study innovatively incorporated temporal variables into
LSTM networks to develop an individualized INR prediction
model and successfully simulated individualized warfarin dosing,
which can be applied for adjusting the warfarin doses of patients
throughout long-term follow-up.
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