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Background and Purpose: Prognostic models based on cardiovascular hemodynamic

parameters may bring new information for an early assessment of patients with bicuspid

aortic valve (BAV), playing a key role in reducing the long-term risk of cardiovascular

events. This work quantifies several three-dimensional hemodynamic parameters in

different patients with BAV and ranks their relationships with aortic diameter.

Materials andMethods: Using 4D-flow CMR data of 74 patients with BAV (49 right-left

and 25 right-non-coronary) and 48 healthy volunteers, aortic 3D maps of seventeen 17

different hemodynamic parameters were quantified along the thoracic aorta. Patients with

BAV were divided into two morphotype categories, BAV-Non-AAoD (where we include

18 non-dilated patients and 7 root-dilated patients) and BAV-AAoD (where we include

the 49 patients with dilatation of the ascending aorta). Differences between volunteers

and patients were evaluated using MANOVA with Pillai’s trace statistic, Mann–Whitney U

test, ROC curves, and minimum redundancy maximum relevance algorithm. Spearman’s

correlation was used to correlate the dilation with each hemodynamic parameter.

Results: The flow eccentricity, backward velocity, velocity angle, regurgitation fraction,

circumferential wall shear stress, axial vorticity, and axial circulation allowed to

discriminate between volunteers and patients with BAV, even in the absence of dilation.

In patients with BAV, the diameter presented a strong correlation (> |+/−0.7|) with the

forward velocity and velocity angle, and a good correlation (> |+/−0.5|) with regurgitation

fraction, wall shear stress, wall shear stress axial, and vorticity, also for morphotypes and

phenotypes, some of them are correlated with the diameter. The velocity angle proved
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to be an excellent biomarker in the differentiation between volunteers and patients with

BAV, BAV morphotypes, and BAV phenotypes, with an area under the curve bigger than

0.90, and higher predictor important scores.

Conclusions: Through the application of a novel 3D quantification method,

hemodynamic parameters related to flow direction, such as flow eccentricity, velocity

angle, and regurgitation fraction, presented the best relationships with a local diameter

and effectively differentiated patients with BAV from healthy volunteers.

Keywords: 4D flow CMR, finite elements, hemodynamics parameters, Bicuspid aortic valve, congenital heart

disease, aneurysm, magnetic resonance imaging (MRI), vascular disease

INTRODUCTION

Bicuspid aortic valve (BAV) is the most common congenital
heart defect (1), with an estimated prevalence between 1 and
2%, increasing in white population and men (3:1) (2). Ascending
aorta (AAo) dilation is presented in approximately 50% of
patients with BAV, and it is associated with the increased risk
of aortic dissection, rupture, and sudden death (3, 4). The most
common BAV leaflet fusion phenotypes involve the right-left
cusps (BAV-RL), and right-non-coronary cups (BAV-RN), with
the prevalence of around 80 and 17% (4, 5), respectively. Genetic,
histological, mechanical, and hemodynamic factors related to
aortopathy in patients with BAV are still poorly understood (6–
9). Currently, preventive aortic surgery is indicated when the
diameter of the AAo is larger than 50 [mm] in patients with
any of the following risk factors: aortic coarctation, systemic
hypertension, a family history of aortic dissection, or rapid
aortic growth (>3–5 mm/year) in experienced hands (10).
However, these indications are debatable since some aortic events
occur with aortic diameters below the suggested threshold (11).
Therefore, there is a need for a better understanding of the
mechanisms that influence the progression of these structural
changes, which may allow the development of prognostic models
for risk assessment, the indication of surgical correction, and pre-
and post-operative monitoring (12, 13).

Cardiovascular hemodynamic parameters quantified using
4D-flow cardiac magnetic resonance (CMR) are emerging as
the essential biomarkers in the early diagnosis of cardiovascular
diseases, bringing new insights about complex flows as in patients
with BAV (6, 12, 14). Recent studies have provided strong
evidence that altered blood flow hemodynamics and wall shear
stress (WSS) in the AAo of patients with BAV are associated with
histological and proteolytic changes in the aortic wall, which may
induce aortic remodeling (6, 9, 15). Moreover, altered WSS has
been related to aortic wall disruption (12, 15), and the separated
axial (WSSA) and circumferential (WSSC) components of WSS
with abnormal flow eccentricity and leaflet fusion phenotype
and extent (6, 16–19). Furthermore, several other hemodynamic
parameters, such as flow eccentricity, circulation, vorticity,
and helicity density, have also been reported in patients with
BAV. However, they have mainly been assessed in a limited
number of 2D planes (14, 20) with possible unappreciation of
important aspects. Some studies have shown the application
of three-dimensional (3D) WSS and its association with the

valvular dysfunction (21) and the elastic fiber thinning (15),
but the WSS quantification has been most often limited to its
magnitude, neglecting its axial and circumferential components,
at least in 3D applications. Other studies have shown in 3D the
relationship between the absolute local normalized helicity (22)
and energy loss (23) and the aortic dilation in patients with BAV.
Considering many abnormal flow descriptors proposed, it is of
utmost importance to identify those deserving special attention
for the follow-up of patients with BAV.

A comprehensive methodology can help to identify those
parameters related to aortic dilation in patients with BAV.
Previously, we have developed a seamless computational
framework to obtain several 3D quantitative parameters, which
have been validated in phantoms and different cohorts of patients
including aortic dissection (24, 25) and transposition of the
great arteries (26, 27). This study aimed to compare quantitative
3D hemodynamic parameters between healthy volunteers (HVs)
and patients with BAV and their relationships with aortic
dilation in clinically relevant subgroups of patients with BAV.
We hypothesize that there are differences in hemodynamic
parameters between clinically relevant patients with BAV
subgroups (morphotypes and phenotypes), such as those with a
non-dilated ascending aorta (BAV-Non-AAoD), which includes
non-dilated (BAV-NonD) and root dilated (BAV-RootD), with
dilation of the AAo (BAV-AAoD), BAV-RL, BAV-RN, and the
group of volunteers.

METHODS

Study Population
A total of 49 patients with BAV-RL and 25 BAV-RN with
AAo diameters ≤50mm and no severe valvular disease (aortic
regurgitation ≤ III, maximum aortic valve velocity <3 m/s
by echocardiography) were consecutively and prospectively
recruited between June 2014 and December 2015 at the
Hospital Universitari Vall d’Hebron (Barcelona, Spain). Inclusion
criteria were as follows: age >18 years, no connective tissue
disorders, no aortic coarctation or other congenital heart
diseases, no previous aortic surgery or aortic valve replacement,
and no contraindication for CMR. A total of 48 HVs
matched for sex, weight, height, body surface area (BSA), and
stroke volume were also included. The local ethics committee
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FIGURE 1 | Summary of the quantification process. (A) From the 4D-flow CMR acquisition, a semiautomatic segmentation of the aorta was generated and

transformed into a tetrahedral mesh. Then, 4D-flow CMR velocity values were interpolated to each node of the mesh, and (B,C) 3D maps of 17 hemodynamics

parameters and the diameter were calculated using finite elements. (D) A total of 16 different regions of the aorta were created to compare the data between

volunteers and patients.

approved the study, and informed consent was obtained
from all participants.

Cardiovascular Magnetic Resonance
Protocol
4D-flow CMR data were obtained in a clinical GE 1.5T
Signa scanner (GE Healthcare, Waukesha, WI, USA) using
the Vastly undersampled Isotropic Projection Reconstruction
(VIPR) technique (28, 29). The volumetric acquisition included
the entire thoracic aorta and was performed with retrospective
ECG-gating during free-breathing and without administration of
an endovenous contrast agent. Acquisitions were made using the
following parameters: field of view (FOV) 400mm × 400mm
× 400mm, voxel size of 2.5mm × 2.5mm × 2.5 mm, flip
angle 8◦, repetition time 4.2–6.4ms, echo time 1.9–3.7ms, and
velocity encoding 200 cm/s. This dataset was reconstructed with
a temporal resolution that ranged between 21–32 ms.

Aortic Diameters and Aortic Morphotype
The two-dimensional balanced steady-state free precession
(bSSFP) cine CMR images were used to assess BAV morphotype
and aortic diameters as described (16). Briefly, the three
aortic root cusp-to-commissure diameters were measured using

double-oblique cine images at the level of the aortic root
at end-diastole, and the maximum value was retained for
the analysis. Similarly, AAo diameter was measured at end-
diastole by double-oblique cine CMR at the level of the
pulmonary artery bifurcation. To determine the presence
of aortic root or ascending dilation, aortic diameters were
adjusted with a logarithm transformation to set the z-score
for both sinuses (zsinus) and AAo (zAAo) accounting for
sex, age, and BSA as described by Campens et al. (30).
Using a z-score cutoff value for the definition of aortic
dilation of two standard errors of the estimate, patients were
categorized according to the aorta segment predominantly
or exclusively involved in dilation according to Della Corte’s
classification (31). Thus, patients were classified as non-dilated

(zsinus≤2 and zAAo≤2), root-dilated morphotype (zsinus>2
and zsinus>zAAo), or AAo-dilated morphotype (zAAo>2 and
zAAo>zsinus). Given the small number of patients (seven

patients) with rood-dilated morphotype that we have, the
groups of patients with BAV were divided only into two
morphotypes categories, BAV-Non-AAoD (where we include 18
non-dilated patients and seven root-dilated patients) and BAV-
AAoD (where we include the 49 patients with dilatation of the
ascending aorta).
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TABLE 1 | Volunteer and patient demographics.

Volunteers BAV-patients p-value

Median [IQR] Median [IQR]

Male/female

(male%)

29/19(60%) 43/31(72%) 0.470†

Age (years) 41 [30–49] 45 [37–61] 0.008*

Weight (Kg) 73.0[64.8–80.0] 73.5[61.8–80.0] 0.856

Height (cm) 169.5[163.0–175.0] 170.0[163.0–178.0] 0.929

BSA (m2) 1.9[1.7–1.9] 1.9[1.7–2.0] 0.953

Stroke volume (ml) 88.1[77.5–114.6] 92.9[68.9–111.1] 0.805

Ejection fraction (%) 66.6[62.6–69.7] 59.4[55.2–63.6] 0.000*

Phenotype – 49RL, 25RN –

Morphotype – 25 Non-AAo-D (18

Non-D and 7 Root-D), 49

AAo-D

–

Hypertension – 30(No), 44(Yes) –

*Statistically significant differences (p < 0.05); †Chi-square test.

3D Quantification of Hemodynamic
Parameters and Diameter
The hemodynamic parameters and the diameters in the entire
thoracic aorta were obtained based on a finite-element method
described previously (32–36) (Figure 1A). To provide a ground
for location-specific comparisons, 16 regions (Figure 1D) were
semi-automatically selected. Those regions were delimited by
anatomical landmarks, regions 1 to 4 = AAo (between the
Valsalva level and the brachiocephalic trunk), regions 5 to 8 =

aortic arch (AArch, between the brachiocephalic trunk and the
isthmus level), regions 9 to 12 = proximal descending aorta
(pDAo, between the isthmus level and the level of Valsalva), and
regions 13 to 16 = distal descending aorta (dDAo, between the
Valsalva level and the diaphragmatic level).

In each region, themean value of 17 hemodynamic parameters
and the aortic diameter were calculated (Figures 1B,C) for
each cardiac phase. Peak systolic values were retained for
comparison [averaged at peak systole using 1 time-frame before
and two time-frames after to reduce noise in the data (16)],
except for regurgitation fraction (35) and oscillatory shear index
(OSI) calculated along the entire cardiac cycle. The detailed
information about the quantification of each parameter is
provided in Supplementary Figures S1–S8.

Statistical Analysis
The global statistical differences between healthy volunteers
and patients with BAV were evaluated using a multivariate
analysis of variance (MANOVA), with Pillai’s trace statistic,
whereas the local statistical differences were evaluated using the
Mann–Whitney U test. To determine which parameters were
more relevant to classify BAV morphotypes and phenotypes
with respect to healthy volunteers, the receiver operating
characteristic (ROC) curves and the minimum redundancy
maximum relevance (MRMR) algorithm were used. Moreover,
the Spearman’s correlation coefficient was used to find the
relationship between the hemodynamic parameters and the

maximum AAo diameter for all patients with BAV together and
for each dilation morphotype and fusion phenotype separately.
The Spearman’s correlation values (S) were discretized in three
different groups: good (0.5<|S|<=0.7), strong (0.7<|S|<=0.9),
and excellent (0.9<|S|<=1). The statistical analysis was
performed using SPSS Statistics (version 25.0 IBM SPSS,
Chicago, IL).

RESULTS

Demographics
A total of 74 patients with BAV (43men, age 45[37–61] years) and
48 HV (29 men, age 41[30–49] years) were included in the study.
Demographic and clinical variables of patients with BAV and HV
are shown in Table 1. HVs were matched to patients with BAV in
terms of sex, weight, height, BSA, and stroke volume. RL fusion
phenotype was present in 66% of patients with BAV. According
to the dilation morphotype, 34% patients with BAV (7 BAV root-
dilated and 18 BAV non-dilated, or 19 BAV-RL and 6 BAV-RN)
were classified as non-ascending aorta dilated (BAV-Non-AAoD)
and 66% patients with BAV (19 BAV-RN and 30 BAV-RL) as
AAo-dilated (BAV-AAoD).

Hemodynamic Parameters and Diameter
vs. Aortic Morphotypes and Phenotypes
The three-dimensional maps of the different parameters are
shown in Figure 2 for one representative volunteer and two
representative patients (one BAV-Non-AAoD and one BAV-
AAoD). The phenotype was not included in this figure due to the
limitation of selecting a representative morphotype case in each
phenotype group. Differences between volunteers and patients
with BAV in the AAo and part of the AArch are visible for several
parameters: diameter, eccentricity, backward velocity, velocity
angle, regurgitation fraction, WSSC, and axial circulation.

From the multivariate analysis test MANOVA, we obtained
p-values from Pillai’s trace of <0.001 for the HV vs. BAV-All,
HV vs. BAV-Non-AAoD, HV vs. BAV-AAoD, HV vs. BAV-RL,
and HV vs. BAV-RN. This test showed significant differences
between the HV and all BAV groups in all parameters tested.
In Figure 3, the comparison between the different BAV groups
and HV is shown for each parameter (rows) and aortic region
(columns). Most of the analyzed parameters showed significantly
higher values in patients with BAV than HV in the AAo and
the proximal AArch (regions 1 to 6). In contrast, in the DAo,
most of the significant differences resulted from lower values
in BAV groups. Eccentricity, backward velocity, velocity angle,
regurgitation fraction, WSSC, vorticity, axial vorticity, and axial
circulation were consistently greater in patients with BAV than
in HV, even in the absence of clinically significant dilation. All
parameters (except velocity) showed significant differences in
more than one segment for almost all analyzed cases. Velocity,
forward velocity, WSS, and WSSA showed lower values in
patients with BAV compared to HV.

We also observed similar results for fusion phenotypes
(Figures 3B,C) compared to HV. We found that the significant
differences in patients with BAV-RN are more concentrated
between the ascending aorta and aortic arch, in comparison with
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FIGURE 2 | Three-dimensional maps of a representative HV and patients with BAV. Columns represent each analyzed parameter (Figure 1C). First row shows a HV,

second row a non-dilated BAV (BAV-Non-AAoD) patient, and third row a patient with BAV with ascending aorta dilation (BAV-AAoD).

BAV-RL, probably, this is influenced by the dilation of the aorta at
the proximal part of the aortic arch in patients with BAV-RL, and
the descending aorta of these patients show only a few parameters
with significant differences. The velocity angle and regurgitation
fraction were significantly different for most regions in BAV-RN
and BAV-RL. Nevertheless, BAV-RL showed more differences for
parameters related to the flow turbulence (parameters from 12
to 17) in the descending aorta with lower values for patients
with BAV.

In Supplementary Figure S9, we evaluated the differences
between morphotypes and phenotypes groups. BAV-AAoD
presented significant differences compared to the BAV-Non-
AAoD for velocity, forward velocity, velocity angle, WSS, WSSA,
and kinetic energy in the entire aorta. Other parameters such
as backward velocity, regurgitation fraction, and vorticity are
mostly significant in the ascending aorta. Interestingly, some
parameters, which are related to the rotation of the flow, are

only significant in the proximal part of the aortic arch, as
axial circulation, helicity density, viscous dissipation, and energy

loss. Comparing BAV-RL and RN phenotypes groups, we found
significant differences in velocity angle, axial vorticity, and axial

circulation in more than one region.
Table 2 shows the mean and standard deviation values of each

parameter in the AAo (averaged between the regions 1 to 4) for
patients with HV and BAV. Patients with BAV presented higher
values in most of the parameters in comparison with HV group,

whereas velocity, forward velocity, WSS, WSSA, and kinetic
energy were lower in patients with BAV. In the AArch, pDAo,

and dDAo, the velocity, forward velocity, WSS, WSSA, and
the parameters related to the turbulence such as vorticity, axial

vorticity, axial circulation, helicity density, viscous dissipation,

energy loss, and kinetic energy were lower than in volunteers
(Supplementary Tables S1–S3).

Analysis of ROC Curves and MRMR
Algorithm
To identify the capacity of each parameter to differentiate
between BAV and HV, receiver operating characteristic (ROC)
curves were calculated. In the AAo, the area under the ROC
curves (Supplementary data online Supplementary Table S4)
was >0.8 for diameter, eccentricity, backward velocity, velocity
angle, regurgitation fraction, WSSC, axial vorticity, and axial
circulation (refer to Figure 4). Of note, the velocity angle
was the best performing parameter, showing a specificity close
to 99% to classify BAV-AAoD from volunteers, which was
reduced to 90% in patients with BAV-Non-AAoD. Similar
performances were obtained for eccentricity, backward velocity,
WSSC, and axial circulation. In the other aortic sections
(AArch, pDAo, and dDAo), only one parameter showed an
area under the ROC curves >0.8 (Supplementary data online
Supplementary Tables S5–S7), the most characteristic being the
regurgitation fraction in the AArch sections.

In Supplementary Figure S10, we show the ROC curves for
the AAo between morphotypes and phenotypes groups. For
patients with BAV-RN vs. BAV-RL, we obtained AUC values
lower than 0.63, being the velocity angle the greater value. These
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FIGURE 3 | Statistical differences between groups: (A) HV vs. all BAV; (B) HV vs. BAV-RL; (C) HV vs. BAV-RN; (D) HV vs. BAV-Non-AAoD; (E) HV vs. BAV-AAoD.

Yellow marks highlight statistically significant differences between compared groups (p-value < 0.05). The minus sign in yellow boxes indicates the value was lower in

BAV than in volunteers.

results are in concordance with the few significant differences
found in Supplementary Figure S9A. Comparing BAV-Non-
AAoD vs. BAV-AAoD, excluding diameter and forward velocity,
whose values are attributed to the greater area of the segment,
the parameter with the highest AUC (0.77) was also the
velocity angle.

The MRMR algorithm was applied in each section
(AAo, AArch, pDAo, and dDAo), to assess similarities
with the ROC curves. In the AAo, the velocity angle, axial
circulation, regurgitation fraction, diameter, eccentricity,
circumferential WSS, backward velocity, forward velocity,
and axial vorticity were the parameters with a greater
importance predictor score for most of the cases (HV vs.
BAV-All, HV vs. BAV-RL, HV vs. BAV-RN, and HV vs.
BAV-AAoD). For HV vs. BAV-Non-AAoD, the velocity angle
was the parameter with a greater importance predictor score

(Supplementary data online Supplementary Figure S11;
Supplementary Table S8). Additionally, in Supplementary
data online Supplementary Tables S9–11, we show the
predictor important scores for the AArch, pDAo, and
dDAo, respectively.

The MRMR was also evaluated between morphotypes and
phenotypes only for the AAo (Supplementary Figure S12).
The comparison of BAV-RN and BAV-RL shows only three
parameters with a higher importance prediction score
(vorticity, axial vorticity, and axial circulation), and two of
them are in concordance with the parameter found in the
Supplementary Figure S9A. For BAV-Non-AAoD and BAV-
AAoD, we found that the diameter, backward velocity, WSS,
forward velocity, regurgitation fraction, velocity angle, vorticity,
and axial vorticity were the parameters with a higher importance
prediction score.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 May 2022 | Volume 9 | Article 885338

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Sotelo et al. Three-Dimensional Hemodynamic Characterization

TABLE 2 | Mean and (standard deviation) for each parameter in the AAo section (regions 1 to 4).

Parameter Volunteer BAV BAV BAV BAV BAV

ALL RN RL AAoD Non-AAoD

Diameter [cm] 2.87(0.39) 4.06(0.70) 4.04(0.73) 4.10(0.63) 4.34(0.60) 3.50(0.53)

Eccentricity [%] 18.76(8.08) 41.02(13.56) 40.26(14.20) 42.51(12.14) 42.65(13.02) 37.83(14.10)

Velocity [m/s] 0.41(0.14) 0.39(0.11) * 0.38(0.11) * 0.39(0.11) * 0.36(0.11) * 0.43(0.10)

Forward velocity [m/s] 0.39(0.14) 0.26(0.10) * 0.27(0.11) * 0.24(0.08) * 0.22(0.07) * 0.33(0.11) *

Backward velocity [m/s] 0.00(0.00) 0.03(0.02) 0.03(0.02) 0.03(0.03) 0.03(0.02) 0.02(0.02)

Velocity angle [◦] 17.79(7.10) 51.05(15.91) 48.54(16.67) 55.97(13.03) 56.24(12.90) 40.88(16.38)

Regurgitation fraction [%] 13.37(8.46) 41.50(21.81) 41.73(25.35) 41.05(12.28) 44.09(15.34) 36.43(30.23)

WSS [N/m2] 0.64(0.25) 0.55(0.21) * 0.55(0.22) * 0.55(0.21) * 0.50(0.19) * 0.65(0.22)

WSSA [N/m2] 0.60(0.26) 0.41(0.18) * 0.42(0.19) * 0.38(0.16) * 0.35(0.14) * 0.52(0.20) *

WSSC [N/m2] 0.14(0.06) 0.29(0.14) 0.27(0.12) 0.31(0.17) 0.28(0.14) 0.29(0.13)

OSI [–] 0.17(0.05) 0.17(0.04) 0.17(0.04) 0.17(0.04) 0.16(0.04) * 0.18(0.05)

Vorticity [1/s] 62.76(17.72) 72.17(23.24) 70.40(23.20) 75.65(23.04) 68.36(23.43) 79.65(21.05)

Axial vorticity [1/s] 3.30(9.47) 17.38(12.90) 17.86(10.15) 16.45(17.08) 16.48(11.14) 19.14(15.70)

Axial circulation [cm2/s] 27.18(64.00) 240.86(163.24) 238.18(128.90) 246.11(215.96) 259.67(170.06) 204.00(142.72)

Helicity density [m/s2] 8.18(4.47) 9.70(5.40) 9.22(4.56) 10.63(6.66) 9.33(5.78) 10.43(4.48)

Viscous dissipation [13/s2] 6.25(3.36) 7.66(4.22) 7.29(3.95) 8.37(4.64) 7.34(4.38) 8.28(3.84)

Energy loss [uW] 0.39(0.22) 0.47(0.27) 0.45(0.26) 0.51(0.30) 0.46(0.28) 0.50(0.26)

Kinetic energy [uJ] 2.01(1.34) 1.84(0.97) * 1.84(0.98) * 1.82(0.94) * 1.68(0.89) * 2.15(1.04)

The mark (*) and bold numbers shows if the parameter is lower in the BAV than volunteer groups.

Correlation Matrices of the Hemodynamic
Parameters
In Figure 5, Spearman’s correlation coefficient values between
the diameter and each hemodynamic parameter in the AAo
(the value was averaged between regions 1 to 4) are shown for
patients with BAV. Considering all patients with AV together,
the aortic diameter presented a strong correlation with forward
velocity and velocity angle, the regurgitation fraction, WSS,
WSSA, and vorticity presented a good correlation with the
diameter. For patients with BAV-RN showed a good correlation
for forward velocity and velocity angle. Patients with BAV-RL
showed more parameters correlated with the diameter that the
other cases, the forward velocity, velocity angle, and WSSA,
which are correlated strongly with the diameter, the velocity,
backward velocity, regurgitation fraction, WSS, vorticity, axial
vorticity, and kinetic energy, have a good correlation with
the diameter in this group. For patients with BAV-AAoD, we
found a good correlation between the diameter and the forward
velocity, WSSA, and vorticity. Finally, patients with BAV-Non-
AAoD showed a good correlation for the regurgitation fraction
and WSSA.

DISCUSSION

One of the strengths of our study is that it provides a
comprehensive analysis of a novel quantification tool to obtain
several 3D aortic maps of different hemodynamic parameters in a
cohort of patients with BAV.Moreover, we presented an extensive
comparison with HV, identifying a subset of high-performing

parameters. Several hemodynamic parameters showed significant
differences between HV and patients with BAV in the AAo.
Among them, eccentricity, backward velocity, velocity angle,
regurgitation fraction,WSSC, axial vorticity, and axial circulation
showed the most marked differences, even in patients without
aortic dilation.

In patients with BAV with AAo dilation, eccentricity,
backward velocity, velocity angle, regurgitation fraction, WSSC,
axial vorticity, and axial circulation showed statistical differences
in the AAo compared to volunteers, with higher values in patients
with BAV. Moreover, the velocity, forward velocity, WSS, and
WSSA also showed statistical differences between patients with
BAV-AAoD and volunteers, but lower values characterized the v
with BAV. TheWSSC was the only present in the AAo of patients
with BAV with AAo dilation and may thus arise from dilation
per se (17, 37). Some of these parameters have been previously
studied separately from a qualitative point of view (38, 39).
Those studies have concluded that the altered jet direction (i.e.,
flow eccentricity) is one of the major contributors to aortic
dilation in patients with BAV and related to axial circulation
(refer to Figure 6). Flow eccentricity in patients with BAV (40)
may alter the integrity of the aortic wall and promote dilation of
the AAo (7, 41).

Wall shear stress has also been extensively studied in patients
with BAV (6, 9, 15–17, 21, 39, 42, 43). In this study, we
found statistically significant differences for the magnitude
of WSS between HV and patients with BAV with AAo
dilated and all patients together. Interestingly, the WSS was
not significant in patients with BAV-Non-AAoD. The WSSC
showed larger values in BAV and significant differences in
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FIGURE 4 | ROC curves for the AAo; (A) HV vs. all BAV; (B) HV vs. BAV-RL; (C) HV vs. BAV-RN; (D) HV vs. BAV-Non-AAoD; (E) HV vs. BAV-AAoD. The parameters

of the legend are the nine parameters with bigger area under the curve (AUC) values.

the AAo (Figure 3) in comparison with HV, even in non-
dilated patients. Similar results have been reported in the
literature (9, 44, 45).

To the best of our knowledge, the velocity angle and the
axial circulation in 3D domain have not been previously studied
in a large cohort of patients with BAV. The velocity angle
represents the deviation of the flow velocity at each point in the
vessel’s lumen concerning their axial direction calculated with the
Laplace equation (32) (refer to Supplementary Figure S4). The
velocity angle also showed statistical differences between patients
with BAV and HV. Other studies reported similar results when
analyzing the direction of flow at the level of the aortic valve
(1, 46–48). The circulation represents the integral of vorticity
with respect to the cross-sectional area of the vessel, in our case,
this vorticity was the axial vorticity at each point of the level set
generated with the Laplace equation (32), and for this reason, we
call it axial circulation (refer to Supplementary Figure S7 and
the reference 36). This parameter showed statistical differences
between BAV groups and HV, with higher values in the ascending

aorta, bigger than 200 cm2/s for patients with BAV and <30
cm2/s for HV.

For phenotypes, BAV-RN showed a more significant
difference in the proximal part of the aortic arch, probably
influenced by the dilation of the vessel in this location
(17). In the descending aorta, the BAV-RL showed more
significant differences for parameters related to the
flow turbulence such as vorticity, axial vorticity, axial
circulation, helicity density, viscous dissipation, energy
loss, and kinetic energy in the descending aorta with lower
values for patients with BAV. Finally, the velocity angle
and regurgitation fraction were the most significant for
all regions.

Receiver operating characteristic curve analysis showed that
in the AAo (Figure 4; Supplementary Table 4), eccentricity,
backward velocity, velocity angle, regurgitation fraction, WSSC,
axial vorticity, and axial circulation were the best performing
parameters in the differentiation between volunteers and patients
with BAV, with values under the curve bigger than 0.8.
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FIGURE 5 | Spearman’s correlation coefficient values for patients with BAV, BAV-RN, BAV-RL, BAV-AAoD, and BAV-Non-AAoD are reported. These values were

grouped as good correlation (red box, Spearman’s correlation between |0.5| and |0.7|), strong correlation (blue box, Spearman’s correlation between |0.7| and |0.9|),

and excellent correlation (green box, Spearman’s correlation above |0.9|). The minus sign indicates a negative correlation.

Interestingly, this value was equal to 0.96 for the velocity
angle with a sensitivity and specificity of 90%, the largest
among all parameters. We validated these results with the
application of the MRMR classification algorithm, where the
velocity angle, axial circulation, regurgitation fraction, diameter,
eccentricity, circumferential WSS, backward velocity, forward
velocity, and axial vorticity are the parameters with a bigger
importance predictor score for most of the cases (refer
to Supplementary Figures S11, S12; Supplementary Tables S8–
S11). One interesting parameter analyzed in this study is the
axial circulation, which can provide important information on
the helical rotation of the blood flow in the entire vessel. Figure 6
shows one representative patient with BAV with positive (men
27 years, Figure 6C) and one with negative (men 76 years,
Figure 6D) rotations of the blood flow in the ascending aorta.

Although many parameters were found to be different
between HV and patients with BAV, only a few of them showed
a good correlation with the diameter of the aorta. The diameter
correlated with the forward velocity, WSSA, and vorticity in
patients with AAo dilation. There was a strong inverse correlation
between the diameter and the forward velocity for all BAV and
patients with BAV-RL, and also, there was a strong correlation
between the diameter and the velocity angle for the same groups.

BAV-RL showed more parameters correlated with the diameter
than all other cases.

Limitations
The main limitation of this study is its cross-sectional nature,
which implies that no causal relationship could be inferred.
Longitudinal studies are needed to confirm the present results.
Another limitation relates to the limited sample size for the
group of BAV-RootD, which was included in the non-dilated
group, because statistical tests could not be performed on only
seven patients. Furthermore, averaging parameters along the
circumference of each region can induce sub-estimation of
local value. Moreover, the movement of the aorta along the
cardiac cycle was not considered in this study since technical
limitations in 4D-flow CMR acquisitions (poor contrast and
low signal-to-noise ratio) make it difficult to obtain a time-
resolved segmentation of the aorta. For that reason, we only
analyze the peak systolic cardiac phase. Another limitation of
the proposed methodology is that the Laplace approach can
be evaluated only for one vessel of interest without branches.
Nonetheless, this limitation may also be present in centerline-
based methods. The analysis of a large number of parameters can
be overwhelming, and for that reason in future contributions, we
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FIGURE 6 | (A) A patient with maximum values of diameter and regurgitation fraction; (B) a patient with maximum WSSC and axial circulation; (C) a patient with

positive axial circulation; and (D) one case with negative axial circulation.

may generate some artificial intelligence (AI) algorithms that can
help to classify groups and categories of these parameters and
thus be able to deliver only the parameters that are relevant for
a particular pathology, but for this purpose, balanced groups will
be needed.

CONCLUSION

Through a novel 3D quantification method, a limited number
of hemodynamic parameters that differentiate between healthy
volunteers and patients with BAV were unveiled and ranked.
Those related to the direction of blood flow (forward velocity,
velocity angle, regurgitation fraction, and WSSA) presented the
best relationships with local diameter; however, eccentricity,
backward velocity, velocity angle, regurgitation fraction,
WSSC, axial vorticity, and axial circulation are the parameters
that accurately differentiate between patients with BAV and
volunteers. Longitudinal studies are required to assess whether
these parameters are the significant contributors to aortic
dilation in patients with BAV.
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