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Background: Heart failure (HF) hospitalization is a dominant contributor of morbidity
and healthcare expenditures in patients with systolic HF. Cardiovascular magnetic
resonance (CMR) imaging is increasingly employed for the evaluation of HF given
capacity to provide highly reproducible phenotypic markers of disease. The combined
value of CMR phenotypic markers and patient health information to deliver predictions
of future HF events has not been explored. We sought to develop and validate a
novel risk model for the patient-specific prediction of time to HF hospitalization using
routinely reported CMR variables, patient-reported health status, and electronic health
information.

Methods: Standardized data capture was performed for 1,775 consecutive patients
with chronic systolic HF referred for CMR imaging. Patient demographics, symptoms,
Health-related Quality of Life, pharmacy, and routinely reported CMR features were
provided to both machine learning (ML) and competing risk Fine-Gray-based models
(FGM) for the prediction of time to HF hospitalization.

Results: The mean age was 59 years with a mean LVEF of 36 ± 11%. The
population was evenly distributed between ischemic (52%) and idiopathic non-ischemic
cardiomyopathy (48%). Over a median follow-up of 2.79 years (IQR: 1.59–4.04) 333
patients (19%) experienced HF related hospitalization. Both ML and competing risk
FGM based models achieved robust performance for the prediction of time to HF
hospitalization. Respective 90-day, 1 and 2-year AUC values were 0.87, 0.83, and 0.80
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for the ML model, and 0.89, 0.84, and 0.80 for the competing risk FGM-based model in
a holdout validation cohort. Patients classified as high-risk by the ML model experienced
a 34-fold higher occurrence of HF hospitalization at 90 days vs. the low-risk group.

Conclusion: In this study we demonstrated capacity for routinely reported CMR
phenotypic markers and patient health information to be combined for the delivery
of patient-specific predictions of time to HF hospitalization. This work supports an
evolving migration toward multi-domain data collection for the delivery of personalized
risk prediction at time of diagnostic imaging.

Keywords: cardiovascular magnetic resonance imaging, machine learning, heart failure hospitalization,
prediction, systolic heart failure (HF)

INTRODUCTION

Heart failure (HF) is estimated to affect approximately 64 million
people worldwide (1) and is associated with a high incidence
of disease-related hospitalization (2). HF hospitalization is
increasingly prioritized as an important clinical outcome by
patients and healthcare organizations given strong associations
with morbidity, mortality and dominant contribution to
healthcare expenditures (3). In 2017 it was estimated that
each HF hospitalization incurred a mean cost of $14,631 USD
with 40% of patients readmitted within 90 days (4). Of all
patient populations, those with systolic HF provide greatest
contributions to HF hospitalization costs (2), justifying an
expanding focus on this population for risk modeling. While
the prediction of HF re-admission early following index HF
hospitalization has been explored from administrative health data
(5–7), risk models for incident HF hospitalization applicable to
broader HF populations are required. The deployment of such
models at time of diagnostic imaging, delivering descriptors of
disease with opportunity for the capture of contextual health
information, provides an attractive solution for personalized
prediction modeling.

Cardiovascular magnetic resonance (CMR) imaging has
become a routinely engaged test for the diagnosis and
management of systolic heart failure. This has been justified by
its versatility for the delivery of a broad range of phenotypic
markers that accurately differentiate ischemic from non-
ischemic etiologies (8–10), describe patterns of tissue injury (8),
identify valvular pathology (11), and deliver reference standard
quantification of chamber volumes, function, and ventricular
mass (12, 13). While demonstrated to provide independent value
for the prediction of composite outcomes (14–17), the combined
value of CMR-reported phenotypic features and contextual
patient health information to deliver personalized predictions of
HF-related outcomes remains unexplored.

Abbreviations: CIROC, Cardiovascular Imaging Registry of Calgary; CMR,
Cardiovascular Magnetic Resonance Imaging; CoxPH, Cox Proportional Hazard;
EHR, Electronic Health Record; FGM, Fine-Gray (Model); HF, Heart Failure; HR-
QOL, Health Related Quality of Life; LGE, Late Gadolinium Enhancement; LVEF,
Left Ventricular Ejection Fraction; ML, Machine Learning; PPV, Positive Predictive
Value; RSF, Random Survival Forest; tAUC, Time Dependent Area Under the
Receiver Operating Characteristic Curve.

We hypothesized that CMR-reported markers of disease
contextualized to patient-reported and EHR-derived markers
of health can permit patient-specific predictions of time to
HF hospitalization. To achieve this, we explored both machine
learning (ML)-based modeling and competing risk Fine-
Gray (FGM)-based risk modeling techniques for individualized
predictions of time to HF hospitalization at time of CMR.

MATERIALS AND METHODS

Dataset Available for Risk Modeling
CMR imaging data, patient-reported measures of health status
and electronic health record (EHR) abstracted data was provided
by the Cardiovascular Imaging Registry of Calgary (CIROC,
NCT04367220). CIROC is a prospectively recruiting clinical
outcomes Registry of the Libin Cardiovascular Institute engaging
patients clinically referred for cardiac diagnostic imaging.
Consenting patients undergoing CMR imaging between February
2015 and October 2019 for the evaluation of systolic HF and
completing a minimum 1-year follow-up period were included.
All data was collected at time of diagnostic test performance using
a commercial workflow, data integration, and diagnostic test
reporting software platform (cardioDITM, Cohesic Inc., Calgary).

Patients with chronic systolic HF resulting from ischemic
cardiomyopathy or idiopathic non-ischemic cardiomyopathy
were identified. All patients were required to have CMR-based
confirmation of reduced global systolic function, defined as a
left ventricular ejection fraction (LVEF) ≤ 50%. Recognizing the
unique natural history of patients with specific non-ischemic
cardiomyopathy states, all patients with confirmed cardiac
amyloid, cardiac sarcoidosis, and hypertrophic cardiomyopathy
were excluded. Patients with an acute cardiomyopathy state
due to recent (within 90 days) acute coronary syndrome,
takotsubo cardiomyopathy, per-partum cardiomyopathy, or viral
infection (suspected or confirmed acute myocarditis) were
also excluded. This established a final patient cohort with
chronic systolic HF of either ischemic or idiopathic non-
ischemic etiology. Ischemic cardiomyopathy (ICM) was defined
by occurrence of prior myocardial infarction, percutaneous
coronary intervention and/or coronary bypass surgery, or
presence of ischemic (subendocardial) pattern injury on late
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gadolinium enhancement (LGE) imaging corresponding to
one or more vascular territories. Patients not meeting this
criterion were classified as idiopathic non-ischemic dilated
cardiomyopathy. For patients who underwent multiple CMR
studies, the index study was used for prediction modeling.

A total of 8,773 unique patients enrolled in the CIROC
Registry were considered. Of these, 2,455 had an LVEF ≤ 50%
by CMR. Following application of the inclusion and exclusion
criteria, 1,775 unique patients satisfied cohort eligibility.

The study was approved by the University of Calgary Conjoint
Health Research Ethics Board. All subjects provided written
informed consent. All research activities were performed in
accordance with the Declaration of Helsinki.

Data Element Generation and Collection
Patient Reported Health Data
Patient health questionnaires were electronically deployed prior
to each CMR examination to collect patient demographics,
comorbid cardiac and non-cardiac illness, smoking, and alcohol
history, patient-reported shortness of breath [based on New-York
Heart Association (NYHA) classification], and HRQoL using the
EQ-5D tool (18).

Cardiovascular Magnetic Resonance Imaging-Based
Phenotype Data
CMR imaging was performed on 3 Tesla clinical scanners
(Prisma or Skyra, Siemens Healthcare, Erlangen, Germany) using
standardized imaging protocols inclusive of routine cine and LGE
imaging techniques in sequential short-axis views and 2-, 3-,
and 4-chamber long axis views. Quantitative image analysis was
performed using standardized operating procedures developed
according to guidelines of the Society for Cardiovascular
Magnetic Resonance (19). Image analysis was performed using
commercially available software (cvi42; Circle Cardiovascular
Inc., Calgary) to obtain left ventricular (LV) and right ventricular
(RV) volumes and function from semi-automated contour
tracing of the endocardial and epicardial borders followed by
manual adjustment. Papillary muscles were considered part of
the LV mass. Maximal left atrial volume was assessed in the
phase immediately prior to mitral valve opening using the bi-
plane area-length method on matched 2- and 4-chamber cine
images. All measurements were indexed to body surface area,
where appropriate, using the Mosteller formula.

Standardized software was used to receive and code
quantitative markers of chamber volumes and function, and
to code disease-specific phenotypes (cardioDITM; Cohesic Inc.,
Calgary). LGE images were visually scored for the presence,
extent, and pattern of fibrosis: the latter scored as subendocardial,
mid-wall striae, right ventricular insertion site, mid-wall patchy,
subepicardial, and diffuse patterns, as previously described (20,
21). Valvular pathology was coded based upon visually graded
assessments of regurgitation and stenosis severity. The presence
of pleural and pericardial effusions was routinely coded.

Electronic Health Record Abstracted Data
Electronic health information was abstracted from institutional
EHR data warehouses and was inclusive of pharmacy, laboratory

and ICD-10 coded diagnostic and procedural data. Historic
data was abstracted at time of index CMR, and every 3-
months perpetually thereafter. The primary clinical outcome
of HF-related hospitalization was identified by ICD-10 coding
registered in the Discharge Abstract Database System, using
primary ICD-10 codes of I50.X. All documented events were
manually adjudicated by medical chart review. Mortality data,
used for competing risk analysis, was collected from Vital
Statistics Alberta.

Statistical Analysis
Continuous variables are reported as means ± standard
deviation whereas categorical variables are expressed as counts
with percentages. Comparison between groups for continuous
variables were performed using a Student’s t-test or a Welch’s
t-test where appropriate. Chi-squared tests without a Yates
Correction and Fishers Exact tests were used for comparison
between groups for categorical variables. Univariable CoxPH
analysis of baseline variables was performed to identify
associations with the primary outcome, this used for identifying
candidate variables for FGM-based modeling.

Risk Model Development
We aimed to develop and compare performance of machine
learning (ML) and non-ML based modeling for the patient-
specific prediction of time to HF hospitalization with reference
comparison to a historic HF prediction model. As a ML-
based approach we used Random Survival Forest (RSF) based
modeling, this compared to a FGM-based model. For the
development of our novel prediction models our study dataset
was split into a 70% (n = 1,245) development and 30% (n = 530)
holdout validation cohort, balanced for both event rate and
follow-up duration. The development cohort was partitioned into
five training and testing datasets for 5-fold cross-validation-based
model development and selection. Within each cross-validation
fold, missing data was independently imputed by multivariable
feature imputation (Hmisc: aregImpute) (22). Manual variable
reduction was executed to remove variables with a missingness
rate > 15% and those believed to have poor generalizability to
other clinical settings (i.e., unique to the local institution). This
led to 63 consistently available disease phenotype (imaging) and
patient health variables for the development of our risk models
(Supplementary Table 1).

Machine Learning Model Development
and Performance Evaluation
For each development fold, 100 bootstrap samples with
replacement were generated and 100 RSF models were trained
for variable selection. These models were applied to out-of-
bag data where variable importance was then assessed using
permutation importance rank. The top 15 performing variables
for each training fold were selected by their mean variable rank
across all 100 out-of-bag datasets. A comprehensive grid search
technique was used for hyperparameter tuning, as summarized
in Supplementary Table 2. Optimized models in each training
fold were applied to the test sets for final model evaluation and
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selection using time-dependent area under the curve (tAUC)
and C-index. Models containing a range of 13–17 features were
assessed in the test set, comparing tAUC and C-index to identify
the optimal number of model features. The final model was then
applied to the holdout dataset where performance was assessed
using C-index, tAUC, average positive predictive value (PPV),
average recall and F1 score. A model threshold for discriminating
“High” from “Low” risk cohorts was then defined by observing
the inflection point of observed events across deciles of predicted
risk in the development cohort. Cumulative incidence plots
accounting for competing events and stratifying patients by
predicted risk category were generated. Calibration plots were
generated by plotting mean difference in predicted and observed
event rates for each decile of risk across 100 bootstrap replicates
at 2 years. The Aalen-Johansen method was used to account for
competing events.

Competing Risk Fine-Gray-Based
Models Risk Model Development and
Performance Evaluation
For development of the FGM based model variable candidacy
was defined by a threshold p-value of 0.1 in univariable analysis.
Backward variable selection was performed to select features,
based on order of variable exclusion. Highly correlated features
were excluded using a threshold of a Pearson’s coefficient greater
than 0.7. The competing risk FGM model was applied to generate
coefficients for each variable that could then be used to estimate
90 day, 1 and 2-year probability of HF hospitalization for
individual patients, as previously described (23). The test dataset
was used to assess model performance for each development and
test fold, resulting in five candidate risk models. C-index and
tAUC were then used to select an optimal model for validation
in the holdout dataset. Model performance in the holdout
dataset was assessed using C-index, tAUC, average PPV, average
recall and F1 score. Calibration was assessed using the method
described above.

MAGGIC Score-Based Risk Model
Performance Evaluation
Originally developed for mortality prediction in systolic HF
populations (24), the MAGGIC risk score served as the best
available surrogate model for the estimation of HF outcomes in
our referral population. MAGGIC risk scores were applied to the
holdout cohort to provide matched assessments of performance
vs. novel risk models.

All statistical analysis and modeling was performed in R
version 4.0.3 and Python version 3.8.8 (25).

RESULTS

Population Characteristics
Our chronic systolic HF population consisted of 1,775 unique
patients with a mean age of 59 ± 13 years and 24%
being female. Baseline clinical and CMR characteristics are
summarized in Table 1. The population was composed of

52% ischemic cardiomyopathy and 48% non-ischemic dilated
cardiomyopathy patients.

During a median follow-up period of 2.79 years (IQR: 1.59–
4.04) 333 patients (19%) experienced the primary outcome of HF
hospitalization. Ninety-five patients (5%) died, 40 of these (2%)
dying without prior HF hospitalization.

No significant differences were observed between
development and validation cohorts (Supplementary Table 3).
In the development cohort, 233 patients (19%) experienced the
primary outcome over a median follow-up period of 2.8 (IQR:
1.59–4.04) years. In the validation cohort 100 patients (19%)
experienced the primary outcome over a median follow-up
period of 2.74 (1.58–4.04) years.

Machine Learning Risk Model
Performance
The final RSF risk model contained15 predictive variables, 9
of which were sourced from the CMR-reported phenotype.
The variable selection process produced a model containing
LVESVi, LVEDVi, LVEF, RVESVi, RVEDVi, and RVEF. Given
that end systolic volumes are implicit in a model containing
end diastolic volumes and ejection fraction, two predictive late
gadolinium enhancement patterns (subendocardial and mid-
wall striae) were added to the model and performance in the
test datasets compared. The model containing LGE features
achieved higher C-index and tAUC values and this feature set
was subsequently used to train the final RSF model. The mean
permutation importance of each selected variables is shown in
Figure 1. In the holdout cohort, the RSF model achieved a
C-index of 0.77 and provided 90-day, 1 and 2-year AUC values
of 0.87, 0.83, and 0.80, respectively (Figure 2). The RSF model
delivered a mean PPV of 0.50 with an F1 score of 0.60 with
good calibration across all deciles of risk (Figure 3). We defined
patients with risk estimates above the seventh-risk decile to
be “high-risk,” these patients experiencing 66% of all observed
outcomes in the holdout cohort. Cumulative incidence curves
(Figure 4) for patients predicted to be “high-risk” vs. “low-risk”
showed significantly higher occurrence of HF hospitalization.
The respective event rates for high vs. low-risk cohorts were 19
vs. 0.6% (p < 0.0001) at 90 days; 28 vs. 4% (p < 0.0001) at 1-year;
and at 35 vs. 7% (p < 0.0001) at 2-years.

Competing Risk Fine-Gray-Based
Models Model Performance
Similar to machine learning-based modeling, variables from all
data domains were shown to provide value toward an optimal
FGM-based model with respective associations summarized in
Supplementary Table 4. In holdout validation CIROC-HF-FGM
delivered a mean C-index of 0.77 with 90-day, 1 and 2-year
tAUC’s of 0.89, 0.84, 0.80, respectively. The mean PPV and
F1 score was 0.49 and 0.59, respectively (Figure 2). Similar
to the ML-based model, patients with a predicted risk above
the seventh-risk decile were defined as “high-risk.” High-risk
patients experienced 62% of all observed outcomes in the holdout
cohort, with cumulative incidence curves shown in Figure 4. The
respective event rates for high vs. low-risk groups were 18 vs. 1%
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TABLE 1 | Baseline clinical and CMR characteristics of the study cohort.

Data domain Full population Event – Event + p-value

n = 1,775 n = 1,442 n = 333

Patient reported health questionnaire

Age (years) 59 ± 13 58 ± 13 63 ± 13 <0.0001

Female, n (%) 418 (24) 336 (23) 82 (25) 0.6079

Obesity, n (%) 638 (36) 510 (35) 128 (38) 0.2925

NYHA class III or IV, n (%) 439 (25) 313 (22) 126 (38) <0.0001

Atrial fibrillation, n (%) 322 (18) 247 (17) 75 (23) 0.0213

CAD, n (%) 397 (22) 305 (21) 92 (28) 0.0106

Diabetes, n (%) 346 (19) 251 (17) 95 (29) <0.0001

Hypertension, n (%) 688 (39) 524 (36) 164 (49) <0.0001

Hyperlipidemia, n (%) 382 (22) 290 (20) 92 (28) 0.0026

Peripheral arterial disease, n (%) 22 (1) 16 (1) 6 (2) 0.3034

Pulmonary hypertension, n (%) 26 (1) 14 (1) 12 (4) 0.0003

COPD, n (%) 87 (5) 56 (4) 31 (9) <0.0001

Smoking, n (%) 340 (19) 279 (19) 61 (18) 0.6669

Mobility issues (EQ5D), n (%) 518 (29) 366 (25) 152 (46) <0.0001

Anxiety/depression (EQ5D), n (%) 539 (30) 435 (30) 104 (31) 0.7033

Pain issues (EQ5D), n (%) 598 (34) 457 (32) 141 (42) 0.0002

Self-care issues (EQ5D), n (%) 172 (10) 121 (8) 51 (15) 0.0001

Issues with usual activity (EQ5D), n (%) 649 (37) 474 (33) 175 (53) <0.0001

Clinical patient history—administrative health data

Prior hospitalization—1 year, n (%) 894 (50) 669 (46) 225 (68) <0.0001

Prior hospitalization—3 years, n (%) 1,169 (66) 895 (62) 274 (82) <0.0001

Two weeks hospitalized in prior year, n (%) 248 (14) 160 (11) 88 (26) <0.0001

Ischemic cardiomyopathy, n (%) 919 (52) 710 (49) 209 (63) <0.0001

History of atrial fibrillation, n (%) 396 (22) 292 (20) 104 (31) <0.0001

CMR parameters

LVEF (%) 36 ± 11 37 ± 10 31 ± 11 <0.0001

LVESV index (mL/m2) 75 ± 36 71 ± 33 91 ± 42 <0.0001

LVEDV index (mL/m2) 113 ± 37 110 ± 35 127 ± 44 <0.0001

LVMass index (g/m2) 70 ± 21 68 ± 21 76 ± 23 <0.0001

RVEF (%) 47 ± 12 48 ± 11 44 ± 13 <0.0001

RVESV index (mL/m2) 45 ± 21 44 ± 20 51 ± 27 <0.0001

RVEDV index (mL/m2) 84 ± 24 83 ± 22 87 ± 30 0.0260

LA volume index (mL/m2) 44 ± 18 42 ± 17 50 ± 20 <0.0001

Presence of any LGE pattern, n (%) 1,064 (60) 831 (58) 233 (70) <0.0001

Subendocardial pattern, n (%) 695 (39) 533 (37) 162 (49) 0.0001

Non-ischemic pattern, n (%) 679 (38) 542 (38) 137 (41) 0.2290

Midwall striae, n (%) 304 (17) 232 (16) 72 (22) 0.0157

RV insertion site, n (%) 392 (22) 302 (21) 90 (27) 0.0159

Midwall patchy, n (%) 119 (7) 96 (7) 23 (7) 0.8697

Subepicardial, n (%) 111 (6) 97 (7) 14 (4) 0.0866

Diffuse, n (%) 26 (1) 20 (1) 6 (2) 0.5701

Medications

ACE inhibitor or ARB, n (%) 1,498 (84) 1,182 (82) 316 (95) <0.0001

Anti-arrhythmic, n (%) 98 (6) 68 (5) 30 (9) 0.0020

Anti-coagulant, n (%) 547 (31) 393 (27) 154 (46) <0.0001

Anti-platelet (non-ASA), n (%) 275 (15) 221 (15) 54 (16) 0.6857

ASA, n (%) 803 (45) 624 (43) 179 (54) 0.0005

Beta-blocker, n (%) 1,492 (84) 1,181 (82) 311 (93) <0.0001

Calcium channel blocker (dihydropyradine), n (%) 186 (10) 142 (10) 44 (13) 0.0707

Calcium channel blocker (non-dihydropyridines), n (%) 56 (3) 46 (3) 10 (3) 0.8603

Digoxin, n (%) 138 (8) 92 (6) 46 (14) <0.0001

(Continued)
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TABLE 1 | (Continued)

Data domain Full population Event – Event + p-value

n = 1,775 n = 1,442 n = 333

Loop diuretic, n (%) 520 (29) 317 (22) 203 (61) <0.0001

Thiazide diuretic, n (%) 136 (8) 108 (7) 28 (8) 0.5699

K-sparing diuretic, n (%) 718 (40) 529 (37) 189 (57) <0.0001

Entresto, n (%) 178 (10) 142 (10) 36 (11) 0.5978

Glucose lowering, n (%) 310 (17) 212 (15) 98 (29) <0.0001

Glucose lowering (DPP-4 inhibitors), n (%) 35 (2) 22 (2) 13 (4) 0.0049

Glucose lowering (SGLT 2 inhibitors), n (%) 38 (2) 32 (2) 6.0 (2) 0.6353

Insulin, n (%) 121 (7) 82 (6) 39 (12) 0.0001

Nitrates, n (%) 400 (23) 267 (19) 133 (40) <0.0001

Statins, n (%) 1,005 (57) 778 (54) 227 (68) <0.0001

Smoking cessation agents, n (%) 35 (2) 24 (2) 11 (3) 0.0525

Variables are described for the full population and those with and without occurrence of the primary clinical endpoint of heart failure related hospitalization.
Quantitative data is presented as means ± standard deviation, qualitative data is presented as counts and percentages. History of Atrial Fibrillation variable is derived
from administrative EHR data, Atrial Fibrillation variable is patient reported.
ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; BSA, body surface area; CAD, coronary artery disease; COPD, chronic obstructive pulmonary
disease; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; ICM, ischemic cardiomyopathy; LA, left atrial; LGE, late gadolinium enhancement; LV,
left ventricular; NYHA, New York Heart Association; RV, right ventricular. Bold values indicates p < 0.05.

FIGURE 1 | Mean permutation importance values over 100 bootstrap samples for the features included in the final CIROC-HF-RSF model.
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FIGURE 2 | (A) Receiver operating characteristic curves for the CIROC-HF-RSF Model, CIROC-HF-FGM Risk Model, and modified MAGGIC risk score at 90 days, 1
and 2 years follow-up in the holdout cohort. (B) Summary of CIROC-HF-RSF model, CIROC-HF-FGM Risk Model, and modified MAGGIC risk score performance in
the holdout cohort.

FIGURE 3 | Calibration plots for (A) CIROC-HF-RSF risk model, and (B) CIROC-HF-FGM risk model for the prediction of HF hospitalization in the holdout cohort.
Plots display difference between observed and expected event rates at each decile of risk. Confidence intervals are derived from 100 bootstrapped datasets.

(p < 0.0001) at 90-days; 28 vs. 3% (p < 0.0001) at 1-year; and 35
vs. 7% (p < 0.0001) at 2-years.

Comparison of CIROC-HF Risk Models
to the MAGGIC Risk Score
Both CIROC-HF risk models were compared to the MAGGIC
Risk Score (24) in the validation cohort. The MAGGIC Risk
Score delivered a mean C-index of 0.72 with a respective 90-
day, 1-year, 2-year tAUC’s of 0.81, 0.78, 0.74. Comparisons of

tAUC performance between the CIROC-HF risk models and
MAGGIC Risk Score are shown in Figure 2, demonstrating
superior performance for both novel CIROC-HF models.

DISCUSSION

In this study we demonstrated the capacity of routinely reported
CMR disease markers to be contextualized by patient health
information at the time of diagnostic testing for delivery of
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FIGURE 4 | Cumulative incidence curves describing time to HF hospitalization in the holdout dataset stratified by “High-risk” vs. “Low-risk” classification by the
(A) CIROC-HF-RSF model, and (B) CIROC-HF-FGM Risk Model.

patient-specific estimations of time to HF hospitalization. Our
modeling identified unique and independent value from each
of the imaging phenotype, patient-reported health, and EHR
data domains; their collective availability permitting improved
prediction performance vs. the MAGGIC Risk Score. Using our
ML-based model, patients classified to the high-risk category
experienced a 34-fold higher occurrence of HF hospitalization at
90-days, 8-fold at 1-year, and 5-fold at 2-years. To our knowledge,
this represents the first validated model for the prediction of HF
hospitalization in HF patients undergoing CMR imaging.

HF hospitalization risk models have, to date, focussed on
the prediction of re-admission following index hospitalizations
for acute decompensation (5–7, 26–28). These models have
consistently focussed on data sourced from in-patient electronic
health records to identify those at higher likelihood of re-
admission, typically at 90-days. All have struggled to achieve
the performance of models trained to predict mortality (29,
30), suggesting elevated need to consider patient-specific disease
phenotypes. The latter concept was explored in a study of 3,189
HF in-patients where multi-domain phenotypic data, gathered
from routine echocardiography reporting, enabled prediction
of all-cause early re-hospitalization with higher predictive
accuracy than prior administrative data supported models,
achieving an AUC of 0.76 at 90-days (31). While demonstrating
value from multi-domain imaging phenotypes, this study
was limited to high-risk inpatient populations, preventing
generalizability to those patients routinely encountered by
diagnostic imaging services.

Supported by a prior study showing incremental value from
ML-based modeling for the prediction of HF re-admission using
EHR sourced data (32), we postulated similar performance
gains in our referral population. In contrast, we observed
very similar performance for our modeled clinical outcome

when compared to a FGM-based model provided matched
multi-domain data resources. The exception was improved
stability in time-dependent AUC seen using the ML-based
approach at 2-years (Figure 2). However, a distinct advantage
of ML-based modeling is its capacity to consider non-linear
interactions between features without the limitations introduced
by the proportional hazards assumption. Through this, we were
afforded the opportunity to objectively evaluate the respective
contributions of imaging phenotype, patient-reported health,
and EHR-based markers have on the incident occurrence of
HF hospitalization. As shown in Figure 1, we identified that
current use of loop diuretics was the strongest contributor to
model performance, followed by left atrial volume, LVEF, age
and LV mass index. Other relevant features included volumetric
markers of right ventricular health and patterns of myocardial
fibrosis, these demonstrating the unique contributory value that
CMR-based phenotyping can provide in this patient population.
Collectively, these selected features appropriately represented
phenotypic markers recognized to have strong predictive value
in HF populations from prior studies (14, 15, 17, 20, 21, 33–
46).

The capacity of contextual patient health information to
contribute value for HF hospitalization prediction has been
previously reported (47–49). To our knowledge, our current
study is the first to describe the routine clinical deployment
of patient-reported health questionnaires at time of diagnostic
imaging for the delivery of this unique data domain. Of the
top fifteen variables selected by our ML-based model, three
were selected from the EQ-5D health related quality of life
instrument (18). This demonstrates strong value from the
synchronous capture of patient-reported measures of health at
time of diagnostic testing, features recognized to be critical for
the optimal prediction of HF-related events (29).
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LIMITATIONS

This study was executed at a single tertiary care healthcare
institution and therefore requires external site validation prior to
deployment beyond the local environment. This is of particular
importance for unique clinical environments that may be exposed
to a local referral bias in diagnostic testing or have altered socio-
demographic profiles. While systematically explored, we did not
report results of other classification-based ML techniques for
event prediction at specific time-points given lower performance
metrics. Due to lack of routine performed surrounding the time
of CMR imaging, we were unable to consider BNP or NT-
proBNP values into our predictive models. In addition, given
the high engagement of private out-patient echocardiography
laboratories in clinical practice, direct comparison to models
trained from echocardiographic variables in the same patient
population was not feasible. Advanced CMR based markers of
myocardial disease of recognized value, such as tissue mapping
(50), were not undertaken in this large cohort study given desire
for generalizability to routine practice and a high degree of
vendor and hardware dependence for such measures.

CONCLUSION

In this study we developed and validated a machine learning
based model for the prediction of time to HF hospitalization in
systolic HF patients undergoing CMR. Our study was focussed
on demonstrating the respective value provided by imaging
phenotypes, patient-reported measures of health, and EHR-
sourced data for the delivery of personalized HF predictions.
Overall, our study supports strong value provided by the routine
capture of multi-domain health data resources at time of
diagnostic imaging, this approach facilitating the implementation
of personalized outcome prediction.
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