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Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that

occurs in structurally normal heart and no transient or reversible arrhythmia factors,

such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without

structural heart disease can be induced by multiple factors, including genetics and

environment, which involve different genetic and epigenetic regulation. Familial genetic

analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are

two major causes of this type of heart disease. Genome-wide association studies have

identified some genetic susceptibility loci associated with ventricular tachycardia and

ventricular fibrillation, yet relatively few loci associated with no structural heart disease.

The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving

non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually

being revealed. This article aims to review the knowledge of ventricular arrhythmia

without structural heart disease in genetics, and summarizes the current state of

epigenetic regulation.

Keywords: gene, pathogenesis, non-structural ventricular arrhythmias with genome, ventricular arrhythmias,

non-structural heart disease

INTRODUCTION

The vast majority of ventricular arrhythmias occurs in structurally diseased hearts, however,
a proportion of patients with ventricular tachycardia is free of cardiac structure alterations
(1). Ventricular arrhythmias without structural heart disease mainly includes monomorphic
ventricular tachycardia classified by location of origin, polymorphic ventricular tachycardia
dominated by primary hereditary arrhythmia syndrome, and ventricular fibrillation, i.e.,
Brugada syndrome (BrS), congenital long QT syndrome (LQTS), short QT syndrome (SQTS),
catecholaminergic polymorphic ventricular tachycardia (CPVT) (2, 3). The clinical presentations
vary, including palpitations, vertigo, syncope, seizure-like activity and sudden cardiac death. There
is no obvious cardiac structural change in patients without structural heart disease, but it may also
be due to the lack of detection of pathological changes in the existing technology or focal lesions
in the heart. Especially in BrS, structural abnormality has also become one of the pathogenesis,
however, due to the restrictions on the acquisition of human samples, structural detection is mostly
carried out in patients with severe symptoms. The prominent role of genetics in the pathogenesis of
the disease remains of interest (4, 5). With the development of detection technology, we may gain
a greater understanding of the mechanisms involved in this disease.

The heart has a set of well-established electrical conduction systems, and the tissues and cells
coordinate with each other to make the heart contract and relax in an orderly way, and pump blood
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to all parts of the body. The action potential (AP) of
human ventricular myocytes is composed of depolarization and
repolarization, and is subdivided into five stages, 0 and 1,
2, 3, 4 (6). The flow balance of potassium, sodium, calcium
and other ions is essential for the normal beating of the
heart. Cardiomyocyte depolarization induced by electrotonic
coupling between adjacent cardiomyocytes drives phase 0
initiation, the sodium channel is activated, the sodium ion
enters the membrane rapidly, resulting in depolarization (phase
0) (7). Subsequently, Majority of sodium channels are rapidly
inactivated and L-type calcium channels are activated. At the
same time, the repolarization current generated by potassium
channels and Na+/Ca2+ exchangers, namely the instantaneous
outward potassium current (Ito) and outward INCX reduce
the membrane potential (phase 1) (8). the sodium current of
slowly inactivated sodium channels, mostly inactive calcium
channels current (ICa,L) and the sodium-potassium exchanger
current operating in forward mode reach a balance with delayed
rectifier potassium current (IK), forming a plateau phase on
ECG (phase 2). While the action potential occurs, the influx of
calcium ions triggers a further release of calcium ions from the
sarcoplasmic reticulum, resulting in intracellular concentration
transient elevation, causing muscle contraction, namely cardiac
excitation-contraction (E-C) coupling (9). Subsequently, the
calcium ion channel is gradually inactivated. The ion current
at this time is mainly the outward current of IK and IK1, and
the more negative the intramembrane potential, the more rapid
efflux of the potassium ion, which leads to the acceleration of
the repolarization until the repolarization is completed (phase
3). The potential is stable at the resting potential level, and the
ion pump pumps out the ions pumped into the cell during the
action potential. The Na+/ K+ pump can pump the Na+ in the
cell out of the cell and pump K+ into the cell at the same time.
Intracellular Ca2+ is transported extracellular via the Na+/ Ca2+

exchanger and the Ca2+ pump (phase 4) (10). The abnormality
caused by the mutation of ion channel protein coding gene will
cause the disorder of electrical signal.

Triggered activity, abnormal automaticity, and re-entry are
the three mechanisms of ventricular arrhythmias, in ventricular
arrhythmias without structural heart disease, usually due to
trigger activity (3). Triggered activity that occurs in phase 2
and early phase 3 is called early afterdepolarization (EAD), in
late phase 3 and phase 4 are called delayed after-depolarization
(DAD) (11), The trigger activity is generated by the membrane
depolarisation induced by the INCX and/or Ica,l (12, 13).
Automaticity refers to the spontaneous depolarization of phase
4 membrane potential of the cells with pacemaking function,
and the action potential is generated after reaching the threshold
potential. Abnormal automaticity is attributed to decreased
IK1 and/or enhanced If (mainly slow inward sodium current,
causing automatic membrane depolarization) (14). Once IK1
is inhibited, the membrane potential cannot reach the resting
potential, which may lead to the generation of abnormal inward
currents, such as If, causing abnormal automaticity. Re-entry
refers to a cardiac impulse that repeatedly runs and activates
the cardiac muscle surrounding around the center of anatomical
or functional disorders, usually the pathogenesis of structural

ventricular arrhythmias, but specific arrhythmias induced by
EAD (Torsades de Pointes in LQTS) or DAD (bidirectional
ventricular tachycardia in CPVT) may be caused by re-entry
involving fascicles of the Purkinje system (3).

In respect to etiology, ventricular arrhythmias in patients
without structural heart disease are mostly due to ion channel
disorders, including various inherited arrhythmia syndromes
and ventricular arrhythmias caused by unknown causes. Besides
genetic studies in classical, the effects of epigenetics on
ventricular arrhythmias are also being explored, whichmakes this
part that is not yet understood gradually revealed. We searched
the PubMed database using the terms “idiopathic ventricular
arrhythmias”, “genetics”, “epigenetics”, and “DNA methylation”
up to 2021 for articles on ventricular arrhythmias and present
the genetics and epigenetics of ventricular arrhythmias in
non-structural heart disease in this review. Table 1 is a
brief description.

GENETIC FACTORS OF VENTRICULAR
ARRHYTHMIAS WITHOUT STRUCTURAL
HEART DISEASE

The advancement of genetic technology has brought a deeper
understanding of the genetic factors of the disease. It is a common
Mendelian genetic phenomenon that a rare variant of a single
gene has a significant impact on protein function and causes
disease. However, the incomplete penetrance in the family and
the frequency of pathogenic mutations in the normal population
have begun to make people think that disease is not only caused
by the mutation of a certain gene locus, but that the cumulative
pattern of multi-site interaction can also cause the occurrence
of disease. Here, we discussed the single-gene and multi-gene
factors that cause ventricular arrhythmias and summarized the
single gene factors in Table 2.

Monogenic Factors
Sodium Ion Channels

Mutations in the gene encoding voltage-gated sodium channels
can disrupt sodium channels, cause abnormal sodium current
flow and trigger ventricular arrhythmias, due to the significant
role of voltage-gated sodium channels in action potentials
(15). Alterations in sodium current can cause several types
of cardiac disease, including LQTS, BrS, isolated (progressive)
conduction defect, atrial fibrillation, sick sinus syndrome, dilated
cardiomyopathy and multifocal ectopic premature Purkinje-
related complexes (15). In ventricular arrhythmias without
structural heart disease, enhanced sodium currents are usually
associated with LQTS, whereas diminished sodium currents are
associated with BrS (15, 83). Several sodium channel-related
pathogenic genes have been identified in ventricular arrhythmias
without structural heart disease, including SCN5A, SCN1B,
SCN2B, SCN3B, SCN4B, GPD1L, RANGRF, SCN10A, among
which SCN5A is the most reported (Table 2). SCN5A encodes
Nav1.5, which is the alpha subunit of voltage-gated sodium
channels. As themain functional subunit of sodium ion channels,
it provides activity for the channel. Nav1.5 is responsible for the
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TABLE 1 | A brief description of the genetics and epigenetics of ventricular arrhythmias in non-structural heart disease.

Causative factor Description References

Genetics Monogenic factors Among the monogenic causative factors, mutations in the sodium channel-encoding

gene SCN5A, the potassium channel-encoding genes KCNQ1 and KCNH2, and the

calcium channel-encoding gene RYR2 cause the majority of ventricular arrhythmias,

while some cases are caused by rare variants in other ion channel and structural

genes. In addition, the role of somatic mutations has been identified.

(15–18)

Polygenic factors The importance of polygenic factors for ventricular arrhythmias is highlighted by the

heterogeneity of causative genes across patients with ventricular arrhythmias and the

impact of the accumulation of mutations in multiple genes on the severity of the

clinical phenotype. The concept of genetic modifier has been proposed and a recent

GWAS analysis validated the link between cumulative mutational effects and the BRS

clinical phenotype.

(19–22)

Epigenetics Non-coding RNA The research on ventricular arrhythmias without structural heart disease mainly

focuses on the regulation of miRNAs on the transcription of genes encoding ion

channels such as SCN5A and SCN1B. Circular RNA may serve as a marker for

disease progression.

(23–25)

DNA methylation DNA methylation usually plays a repressive role in gene transcription. For example,

SCN5A promoter hypermethylation levels enhance SCN5A expression in cardiac

tissue. In addition, it plays an important regulatory role in gene imprinting.

(26, 27)

Histone modifications Histone modifications in the heart have mostly been studied for methylation and

acetylation, which are linked to gene transcriptional activation or repression and may

play a role in the formation of transmural electrophysiological gradients in the ventricle.

(28–30)

Genomic imprinting The methylation level of the long non-coding RNA KCNQ1OT1, which is related to a

prolonged QTC interval, affects the expression of the imprinted gene KCNQ1 and

may contribute to female predominance and transmission distortion in LQTS.

(31–33)

Three-dimensional (3D)

genome architecture

The ordered chromatin spatial structure allows interactions between functional

elements within the topological domains to regulate gene transcription, such as the

interaction of enhancers with promoters. The 3D genome architecture study offers a

fresh look at the link between SNPs and ventricular arrhythmias discovered by GWAS.

(34–37)

influx of sodium ions and plays a major role during membrane
depolarization, as well as the sodium current in the repolarization
and refractory period. SCN5AMutation can be divided into gain-
of-function and loss-of-function mutation, leading to an increase
or decrease in sodium ion influx and an acceleration or delay
in channel inactivation, responsible for about 5–10% of LQTS
patients and∼30% of patients with BrS, respectively (15, 16).

In addition to Nav1.5 that directly affects sodium currents,
some proteins can achieve indirect regulation of sodium currents
by modulating Nv1.5, have been associated with BrS and LQTS.
although their clinical relevance may be limited. SCN1B, SCN2B,
and SCN3B encode voltage-gated sodium channel β subunits.
Mutations can decrease Nav1.5 cell surface expression and reduce
sodium current, leading to BrS (38, 39, 41). SCN4B also encodes
sodium channel β subunit, can cause LQTS in aminority of cases.
Consistent with the molecular/electrophysiological phenotype
previously displayed by LQTS, compared to wild type, the
mutation L179F of SCN4B leads to an increase of late sodium
current (42). GPD1L is SCN5A regulatory proteins, links redox
state to cardiac excitability by PKC-dependent phosphorylation
of the sodium channel (84). The GPD1L A280V mutation
reduces SCN5A membrane expression, decreases inward Na+

current, leading to BrS (43). RANGRF (MOG1) is a co-factor of
Nav1.5, which plays a potential role in the regulation of Nav1.5
expressions and trafficking. The dominant-negative mutations in
RANGRF can disrupt the transport of Nav1.5 to the membrane,
resulting in a reduction of INa and causing clinical manifestations

of BrS. Silencing RANGRF can reduce INa density, in addition,
replacing E83D, D148Q, R150Q, and S151Q could disrupt the
interaction of RANGRF with Nav1.5 and significantly impair the
trafficking of Nav1.5 to the cell surface, indicating that RANGRF
may play an important role in the expression of Nav1.5 channel
on the cell surface (44, 45). SCN10A encodes Nav1.8, a voltage-
gated sodium channel like Nav1.5. Both SCN10A and SCN5A
are located on chromosome 3p22.2. Co-expression of SCN10A-
WT and SCN5A can increase sodium channel current, while
SCN10A mutants (R14L and R1268Q) can cause loss of Nav1.5
current function, which may be the genetic basis of BrS caused
by SCN10A. However, most of the mutations associated with
SCN10A are not rare variants, are relatively frequent in the
population (46).

Potassium Ion Channels

The potassium ion currents associated with ventricular
arrhythmias include transient outward potassium current (Ito),
delayed rectifier potassium current (IK), inward rectifier K+

current (IK1), and hyperpolarization-activated currents (Ih).
Dysfunction of potassium ion channels can also cause changes in
ion balance, causing arrhythmia (Table 2).

Hyperpolarization-activated cyclic nucleotide–gated (HCN)
channels are responsible for pacing current in neurons
and cardiomyocytes, in which HCN4 encode a member of
the hyperpolarization-activated cyclic nucleotide–gated (HCN)
channels showing slow activation and inactivation kinetics and
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TABLE 2 | Genes associated with ventricular arrhythmias in non-structural heart disease.

Gene Protein (UniProtKB) Aliases Functional

effect

Symptom Frequency,

%

References

Sodium channel-related genes

SCN5A Sodium channel protein type 5

subunit alpha

Nav1.5/LQT3/VF1 INa↑ LQTS 5–10% (15)

INa↓ BrS 20–25% (15)

SCN1B Sodium channel subunit beta-1 INa↓ BrS Rare (38)

SCN2B Sodium channel subunit beta-2 INa↓ BrS Rare (39, 40)

SCN3B Sodium channel subunit beta-3 INa↓ BrS Rare (41)

SCN4B Sodium channel subunit beta-4 LQT10 INa↑ LQTS Rare (42)

GPD1L Glycerol-3-phosphate

dehydrogenase 1-like protein

GPD1-L INa↓ BrS Rare (43)

RANGRF Ran guanine nucleotide release factor RANGNRF/MOG1 INa↓ BrS Rare (44, 45)

SCN10A Sodium channel protein type 10

subunit alpha

Nav1.8 INa↓ BrS ∼10% (46)

Potassium channel-related genes

Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels

HCN4 Potassium/sodium

hyperpolarization-activated cyclic

nucleotide-gated channel 4

If↓ IVT Rare (47)

transient outward potassium current channels

KCND3 Potassium voltage-gated channel

subfamily D member 3

Kv4.3 Ito↑ BrS Rare (48)

KCNE3 Potassium voltage-gated channel

subfamily E member 3

MiRP2/HOKPP Ito↑ BrS Rare (49)

KCNE5 Potassium voltage-gated channel

subfamily E regulatory beta subunit 5

MiRP4 Ito↑ BrS Rare (50)

Slowly activating delayed rectifier potassium current channels

KCNQ1 Potassium voltage-gated channel

subfamily KQT member 1

KVLQT1/Kv7.1/LQT1 IKr↓ LQTS 30–35% (51)

IKr↑ SQTS Unknown (52)

KCNE1 Potassium voltage-gated channel

subfamily E member 1

MinK 2/LQT5 IKr↓ LQTS Rare (53)

Rapidly activating delayed rectifier potassium current channels

KCNH2 Potassium voltage-gated channel

subfamily H member 2

HERG/Kv11.1/ERG-

1/LQT2

IKr↓ LQTS 25–30% (54)

IKr↑ SQTS Unknown (55)

KCNE2 Potassium voltage-gated channel

subfamily E member 2

MiRP1/LQT6 IKr↓ LQTS Rare (56)

Inwardly rectifying potassium (Kir) channels

Inwardly rectifying potassium channels

KCNJ2 Inward rectifier potassium channel 2 Kir2.1/LQT7 IK1↑ SQTS Unknown (57)

IK1↓ LQTS Rare (58)

G protein-coupled, inwardly rectifying potassium channels

KCNJ5 G protein-activated inward rectifier

potassium channel 4

Kir3.4/GIRK4/LQT13 IKACh↓ LQTS Rare (59)

ATP-sensitive potassium channels

KCNJ8 ATP-sensitive inward rectifier

potassium channel 8

Kir6.1 IK−ATP↑ BrS Rare (60)

ABCC9 ATP-binding cassette sub-family C

member 9

SUR2 IK−ATP↑ BrS Rare (61)

Calcium channel-related genes

CACNA1C Voltage-dependent L-type calcium

channel subunit alpha-1C

Cav1.2/LQT8 ICa,L↑ LQTS 1–2% (62)

ICa,L↓ BrS 1–2% (63)

(Continued)
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TABLE 2 | Continued

Gene Protein (UniProtKB) Aliases Functional

effect

Symptom Frequency,

%

References

CACNB2 Voltage-dependent L-type calcium

channel subunit beta-2

CACNLB2 ICa,L↓ BrS 1–2% (63)

CACNA2D1 Voltage-dependent calcium channel

subunit alpha-2/delta-1

CACNL2A ICa,L↓ BrS Rare (64)

RYR2 Ryanodine receptor 2 ARVC2/ARVD2 Aberrant

calcium

handling

CPVT 55–60% (65)

Aberrant

calcium

handling

IVF Rare (66)

CASQ2 Calsequestrin-2 Aberrant

calcium

handling

CPVT <5% (67)

TRDN Triadin TDN/TRISK/CPVT5 Aberrant

calcium

handling

CPVT 1–2% (68)

ICa,L↑ LQTS 1–2% (69)

CALM1∼3 Calmodulin-1∼3 CaMI/CaMII/CaMIII ICa,L↑ LQTS Rare (70)

Aberrant

calcium

handling

CPVT Rare (70)

Other related genes

SNTA1 Alpha-1-syntrophin LQT12/SNT1 INa↑ LQTS Rare (71)

SLMAP Sarcolemmal membrane-associated

protein

SLAP INa↓ BrS Rare (72)

PKP2 Plakophilin-2 ARVD9 INa↓ BrS Rare (73)

ANK2 Ankyrin-2 LQT4 Abnormal

coordination

of multiple

functionally

related ion

channels and

transporters

LQTS Rare (74)

CAV3 Caveolin-3 INa↑ICa,L↑IK↓Ito↓ LQTS Rare (75)

TECRL Trans-2,3-enoyl-CoA reductase-like TERL Aberrant

calcium

handling

Mixed

phenotype of

CPVT and

LQTS

Rare (76)

SLC4A3 Anion exchange protein 3 AE3/SLC2C Phi↑ SQTS Unknown (77)

TRPM4 Transient receptor potential cation

channel subfamily M member 4

uncertain BrS, LQTS Rare (78)

Genes specific to IVF

DPP6 Dipeptidyl aminopeptidase-like

protein 6

DPPX/DPP VI/VF2 Ito↑ IVF Unknown (79)

IRX3 Iroquois-class homeodomain protein

IRX-3

IRX-1/IRXB1 INa↓ IVF Unknown (80)

Somatic mutation genes

GNAI2 Guanine nucleotide-binding protein

G(i) subunit alpha-2

GNAI2B/GIP cAMP↑ RVOT-VT Rare (18)

ADORA1 Adenosine receptor A1 A1AR unknown RVOT-VT Rare (81)

GNAS Guanine nucleotide-binding protein

G(s) subunit alpha isoforms short

GNAS1/NESP ICa,L↑ RVOT-VT Rare (82)

BrS, Brugada syndrome; LQTS, long QT syndrome; SQTS, short QT syndrome; CPVT, catecholaminergic polymorphic ventricular tachycardia; IVF, idiopathic ventricular fibrillation; IVT,

idiopathic ventricular tachycardia; RVOT-VT, right ventricular outflow tract ventricular tachycardia; ↑, increased and/ or enhanced; ↓, decreased and/ or weakened.
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is the highest expressed isotype in sinoatrial node (SAN) muscle
cells, necessary for cardiac pacing (85). HCN4 gene mutation
was detected in patients with idiopathic ventricular arrhythmias,
which resulted in the decrease of pacemaker (If) current (85, 86).

The repolarization of the ventricles is spatially heterogeneous,
largely dependent on the gradient of potassium current,
especially Ito (87). Under normal circumstances, the density
of Ito in the epicardium is higher than the endocardium and
the initial repolarization of the epicardium is earlier than the
endocardium, generating a transmural voltage gradient that plays
an important role in synchronizing repolarization (87). Gain of
function of Ito is related to BrS. Ito channel is composed of α

subunit and β subunit, with the α subunit Kv4.3 encoded by
KCND3, and the negatively regulated β-subunit MiRP2 encoded
by KCNE3. It is a voltage-gated, calcium-independent potassium
(Kv) current that can be quickly activated and inactivated, mainly
responsible for the initial repolarization phase of the cardiac
action potential (88), KCND3 mutations are known to cause BrS.
The mutation KCND3 Arg431His (c.1292G>A) detected in BrS
patients does not affect the mRNA and total protein expression
level of Kv4.3, but increase the membrane protein expression of
Kv4.3 and up-regulate the transient outward potassium current
(48). Besides, at the same time, KCNE3 mutation may be the
basis of the development of BrS. The co-transfection of the
KCNE3 gain-of-function mutation R99H with KCND3 causes
a significantly increased current intensity compared to WT
KCNE3+KCND3 (49). Actually, the KCNE family encodes five
isotypes in the human genome. In addition to KCNE3, KCND3
can be assembled with multiple KCNE subunits, of which
KCNE5 can regulate Ito, showing a correlation with BrS and
idiopathic ventricular fibrillation (50). KCNE5 is located on the X
chromosome and when coexpressed with KCND3, the brugada-
associated KCNE5mutations upregulate Ito compared to the wild
type (50).

There are two types of delayed rectifier K+ current,
slowly activating delayed rectifier K+ current (IKs) and rapidly
activating delayed rectifier K+ current (IKr). Its enhancement is
related to SQTS, whereas weakening is related to LQTS (89). The
outward K+ current of IKs channel is one of themain repolarizing
potassium currents in the human heart, which helps to terminate
cardiac action potential. The channel is composed of the pore-
forming α subunit encoded by KCNQ1 (also known as Kv7.1 or
KvLQT1) and the β subunit encoded by KCNE1 (90, 91). Cardiac
KCNQ1/KCNE1 channel mutations are the most common
cause of inherited long-QT syndromes (92). Loss-of-function
mutations of KCNQ1 decrease IKs current density, leading to
LQTS, and there are also mutations that are gain-of-function
mutations increase IKs, leading to SQTS (93, 94). Mutations
in KCNE1 gene cause reduced IKs current density, manifested
as loss of function, which can lead to LQTS (53). However,
a recent study has indicated that QTc Interval Prolongation
(>460ms) was not observed in most people carrying KCNE1
loss-of-function mutations (95). The rapidly activating delayed
rectifier potassium channel is encoded by KCNH2 and KCNE2,
which produces only a small outward current during membrane
depolarization, however, after the membrane is repolarized,
the channel quickly recovers from the inactivation state to
the open state, producing a recovery current before the slow

channel deactivation. KCNH2 gene encodes the pore-forming α

subunit of voltage-gated K+ channel Kv11.1, commonly referred
to as Herg. Approximately 90% of LQT- associated KCNH2
mutations reduced IKr by reducing Kv11.1, responsible for 25–
30% of LQTS cases channel synthesis or trafficking (54). Gain-of-
function mutations are the genetic basis of SQTS, which increase
the repolarization current activated in the early stages of AP,
resulting in a shortening of the action potential and the QT
interval (55). KCNE2 encodes MiRP1, an auxiliary beta-subunit.
Compared with the wild-type channel, the mutant HERG/MiRP1
(V65M) channel detected in LQTS patients has a shorter current
inactivation time, which may reduce the IKr current density
of cardiomyocytes, weakening the cardiomyocytes’ ability to
repolarize suddenmembrane depolarization (56). It has also been
reported that overexpression of wild-type KCNE2 can rescue
the phenotype caused by KCNH2 mutation, facilitating the
transport of Kv11.1 channel protein and cell surface expression,
significantly increasing the mutation current (96).

Inwardly rectifying potassium (Kir) channels allow potassium
ions to move more easily into rather than out of the cell. The
inwardly rectifying potassium channels gene associated with
ventricular arrhythmia has KCNJ2, KCNJ5, KCNJ8, and ABCC9
(Table 2). IK1 plays an important role in stabilizing the resting
membrane potential, regulating excitability and causing the final
repolarization of atrial and ventricular action potential. Like
delayed rectifier potassium channel, its enhancement is related
to SQTS and reduction is related to LQTS, while ATP-sensitive
potassium channel current (IK−ATP) enhancement will lead to
BrS. One of the molecular basis is Kir2.1, which is coded by
KCNJ2. Gain-of-function KCNJ2 mutations have been found in
SQTS patients, resulting in increased IK1, accelerated ventricular
repolarization and shortened QT interval (57, 97). There are
also reports in the literature that loss-of-function mutations
can cause LQTS (58). Mutations in the Inwardly rectifying
potassium channels Kir2.1 encoded by KCNJ2 causing loss of
function are associated with a rare clinical phenotype called
Andersen-Tawil syndrome (ATS), which contains pleomorphic
ventricular tachycardia (98). KCNJ5 encodes Kir3.4, a subunit
of the voltage-gated potassium channel, which is controlled
by G proteins and combination with Kir3.1, responsible for
acetylcholine-activated potassium channel current (IKACh) (59).
The KCNJ5 mutation results in defects in channel trafficking and
a reduction in the IKACh, which is considered to be the pathogenic
gene of LQTS (59). ATP-sensitive potassium channel (KATP) is
one kind of inwardly rectifying channel composed of the pore
forming subunits and the regulatory subunits. Kir6.1 encoded by
KCNJ8 and SUR2 encoded by ABCC9 are both subunits of ATP-
sensitive potassium channels (99). KCNJ8 mutation can reduce
the sensitivity of KATP channels to ATP, resulting in enhanced
IK−ATP function, which may lead to BrS (60, 100). Gain-of-
function mutation of ABCC9 has also been reported as a possible
pathogenic site for BrS, however, the relevance of pathogenic
requires further confirmation (61).

Calcium Ion Channels

Voltage-gated L-type calcium channel (LTCC) is the main
channel mediating influx of calcium ions into cells in
repolarization stage, and in addition, NCX, an ion transport
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protein, can mediate the exchange cycle of sodium ions and
calcium ions with a coupling ratio of 3:1 (101). Calcium entering
the cell through these two distinct mechanisms triggers the
release of calcium from the sarcoplasmic reticulum. Voltage-
gated L-type calcium channel consists of four subunits α1
subunit, auxiliary β subunit, α2δ subunit, and γ subunit. The
four subunits of voltage-gated L-type calcium channels which
are, respectively, coded by CACNA1C or CACNA1D, CACNB2,
CACNA2D, and CACNG (102, 103). Among them, the mutant
genes that have been reported to cause ventricular arrhythmia are
CACNA1C, CACNB2, CACNA2D (Table 2). CACNA1C encodes
Cav1.2 pore-forming α1 subunit. In general, the enhancement of
ICa,L is related to LQTS, on the contrary causes BrS. Timothy
syndrome (TS), which manifests as severe LQTS and multiorgan
dysfunction, is mainly caused by gain-of-function mutations
located in CACNA1C alternative splicing exon 8 which leads
to almost complete loss of voltage-related channel inactivation,
resulting in maintained inward Ca2+ current, and prolonged
Ca2+ current that delay cardiomyocyte repolarization (104–106).
A few cases are caused by mutations within exon 9 and exon
38 of CACNA1C (107, 108). Gain-of-function mutations in
CACNA1C at positions other than exon 8 can cause LQTS with
non-Timothy syndrome symptoms (62, 109). The phenotype
caused by the loss-of-function mutations of the cardiac L-type
calcium channel α1 and β2b subunits is similar to calcium
channel blockers, leading to reduced ICa,L, resulting in BrS (63,
110, 111). Subsequent studies identified CACNA2D1 as a novel
BrS/SQTS susceptibility gene (64, 112). In addition, it is also
reported that KCNE2 can affect ICa,L by regulating Cav1.2 (113).

The main function of the sarcoplasmic reticulum (SR)
is to store calcium in striated muscle. The genes involved
in the release of calcium from the sarcoplasmic reticulum
are RYR2, CASQ2, TRDN, CALM1, CALM2, and CALM3,
which are pathogenic genes of CPVT (Table 2) (65, 114).
Among them, TRDN, CALM1, CALM2, CALM3 mutations
can also cause LQTS. RYR2 encodes ryanodine receptors
(RyR2), responsible for the rapid release of calcium ions
from the sarcoplasmic/endoplasmic reticulum (SR/ER) into
the cytoplasm. RYR2 mutations may be either loss or gain
of function and this may be related with different clinical
phenotypes. Approximately 60% of patients with CPVT carry
RYR2 mutations, and the main pathogenic mechanism of gain-
of-function mutations is increased spontaneous RyR2 opening
and pathological calcium release during diastole (17, 65, 115).
The RyR2 mutation associated with idiopathic ventricular
fibrillation confirmed as a loss-of-function mutation exhibiting
Ca2+ release deficiency (66). However, a recent study identified
a loss-of-function mutation D3291V, which markedly reduced
luminal Ca2+ sensitivity, and blunted response to adrenergic
stimulation, also exhibiting a CPVT phenotype (116). The
relationship between gain-of-function or loss-of-function and
the clinical phenotype still needs to be elucidated (117). The
calsequestrin encoded by CASQ2 is a calcium-binding protein
that regulates the amount of calcium released from the SR
during excitation-contraction coupling by buffering the calcium
in the SR (118, 119). Triadin (TRD) encoded by TRDN is
located on the sarcoplasmic reticulum, forms a complex with

ryanodine receptors, calsequestrin and junctin, regulating the
storage and release of calcium ions (120). Triadn anchors
calsequestrin to junctional SR membrane and stabilizes the
structure of Ca 2+ release units (121). TRDN deficiency leads
to significantly reduced protein levels of RyR2, calsequestrin, and
junctin, impaired coupling efficiency between LTCC and RyR2,
reduced SR calcium release and calcium-dependent inactivation
of LTCC, resulting in defective cardiac excitation-contraction
coupling (121, 122). Similarly, Triadin mutations are thought
to result in reduced protein levels, which in turnincreased
calcium currents and prolonged cardiac action potentials, and
increased spontaneous calcium release events caused by cellular
and SR calcium overload, which is the basis of TRDN mutation
leading to CPVT and LQTS (69, 123). CALM1∼3 encodes
Calmodulin, which is Ca2+ sensor, signal-transducing protein.
Calmodulin binds to RyR2 and LTCC, plays a key role in the
calcium-dependent inactivation of the L-type calcium channel
Cav1.2 and the timely closure of the myocardial sarcoplasmic
reticulum calcium release channel RyR2. Calcium binding to
calmodulin inactivates the LTCC channel, namely calcium-
dependent inactivation (124). The mutations associated with
LQTS are mainly due to weakening of the combination of
calmodulin and calcium, completely eliminating the calcium-
dependent inactivation. On the other hand, the binding of
calmodulin to RyR2 can inhibit the release of calcium from SR
during diastole. Mutations associated with CPVT mainly lead to
dysregulation of RyR2 calcium release (70, 125).

Others

The protein encoded by SNTA1 is a component of the Nav1.5
channel macromolecular complex, interacting with the pore-
forming α subunit (126). Gain-of-function SNTA1mutations can
affect Nav1.5 gating kinetics, leading to the LQTS phenotype
(71). SLMAP encodes the sarcolemmal associated protein located
in T-tubules and sarcoplasmic reticulum. SLMAP mutation
may cause BrS by regulating the intracellular transport of
Nav1.5 channel (72). PKP2 encodes Plakophilin-2, a desmosomal
protein. Loss and/or changes in the Plakophlin-2 structure
in the heart desmosomes can impair the interaction between
myocardial cells and cause myocardial rupture, especially in
response to mechanical stress (127). Mutations in PKP2 have
been associated with BrS, and the deletion of PKP2 can
lead to a decrease in sodium current and Nav1.5 at the site
of cell contact (73). Ankyrins bind to spectrins, connects
the plasma membrane with the actin cytoskeleton, maintains
mechanical strength and regulates the excitability of various
cells. The ankyrin family contains three members: ankyrin-R,
ankyrin-B and ankyrin-G, are encoded by ANK1, ANK2 and
ANK3, respectively (128). Loss-of-function mutation (E1425G)
in ankyrin-B (also known as ankyrin 2) can lead to dominant
long QT arrhythmia (74, 129). CAV3 encodes a scaffold protein
for the cavern in cardiomyocytes and participates in the
separation of ion channels. CAV3 mutations are related to LQTS,
which can prolong repolarization times by enhancing the late
sodium current, enhancing the peak value of L-type calcium
current, slowing down deactivation, reducing delayed rectifier
potassium current and transient outward potassium current
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(75). TECRL (TERL) is an oxidoreductase enzyme localized to
the endoplasmic reticulum. Patients with TECRL pathogenic
variants manifest a specialized mixed phenotype of CPVT and
LQTS, which is an autosomal recessive disease. Functional
experiments have shown that homozygous pathogenic variants
can lead to reduced levels of RYR2 and CASQ2 proteins, and
reduced calcium storage of sarcoplasmic reticulum and aberrant
calcium handling (76).

SLC4A3 (AE3) is an electroneutral Cl−/HCO−
3 exchanger

(130). Studies have found that reducing intracellular pH (PHi)
could prolong QT interval; the regulation of chloride ion
conductance in cardiomyocytes can also change action potential
duration. In zebrafish, SLC4A3 mutations can lead to transport
defects, reduce Cl,HCO3-exchange over the cell membrane,
increase pHi and reduce the QT duration, which may be another
development mechanism of SQTS (77). The protein encoded by
TRPM4 is a transmembrane N-glycosylated ion channel, a non-
selective channel activated by intracellular calcium, permeable
to monovalent cations. At present, Trpm4 mutations have been
detected in both BrS and LQTS cohort. Miraculously, gain-and
loss-of-function variants of TRPM4 channels can cause similar
phenotypes (78).

Idiopathic ventricular fibrillation is an exclusive disease that
requires excluding the presence of the ventricular fibrillation
substrate and specific diseases, including structural heart disease
and primary arrhythmia syndrome (131). At present, most genes
related to idiopathic ventricular fibrillation overlap with the
pathogenic genes of hereditary ventricular arrhythmias, such as
CALM1∼3, RYR2, TRDN, CACNA1C, SCN5A, KCNE5 (50, 125,
132–137). However, there are also specific causative genes in
the idiopathic ventricular fibrillation (138). A single-pass type II
membrane protein DPP6 can promote the cell surface expression
of potassium channel KCND2 and regulate its activity and gating
characteristics (139–141). Haplotype analysis in both familial and
sporadic cases indicated the relevance of DPP6 with idiopathic
ventricular fibrillation (133, 142). Furthermore, a DPP6mutation
was detected in idiopathic ventricular fibrillation patients, which
disturbs the efflux of potassium ion (79). In addition, mutations
of transcription factor IRX3, specifically expressed in His bundle,
have also been reported to cause idiopathic ventricular fibrillation
by down-regulating SCN5A and connexin-40 mRNA (80).
Although several diagnostic approaches have been proposed and
pathogenic mechanisms discussed, it is far from enough for
studies of idiopathic ventricular fibrillation (143). This situation
may change with the development of diagnostic techniques
for structural heart disease and the discovery of potential
pathogenic mechanisms.

Somatic Mutations

Besides the above germline mutations, i.e., mutations carried
by all cells, the effect of somatic mutations, i.e., mutations
carried by only some somatic cells, on the occurrence of
ventricular arrhythmias is also being investigated. Idiopathic
right ventricular outflow tract ventricular tachycardia (RVOT-
VT) is the most common form of ventricular arrhythmias in
patients without structural heart disease. GNAI2 (f200l) and
A1AR (R296C) mutations were detected in biopsy samples

collected from the origin of ventricular tachycardia in patients
with adenosine insensitive RVOT tachycardia, but not in remote
myocardium (18, 81). GNAI2 (F200L) increases intracellular
cAMP concentrations and inhibited the inhibition of cAMP
by adenosine, the effect of another mutation is unclear (81).
Another study identified a cardiac somatic mutation (W234R)
in GNAS (Gs-alpha, stimulatory G protein alpha-subunit) in
endomyocardial biopsy samples from the origin of tachycardia
in RVOT-VT patient, which was not detected in right ventricular
apex biopsy samples. The mutation impairs GTP hydrolysis
and increased basal intracellular cAMP levels, increasing the
basal inward calcium current, and silico modeling show delayed
afterdepolarizations and triggered activity (82).

Polygenic Factors
In the process of screening disease-causing genes, we often tend
to pay more attention to single-gene factors, emphasizing that
a gene mutation corresponds to a clinical phenotype. However,
molecular genetics is developing from single-gene research to
multi-gene research. The same gene mutation can give rise to
multiple distinct phenotypes. The SCN5A mutation detected
in a Dutch family causes two phenotypes: LQTS and BrS
(144). Mutations that have been reported to be pathogenic may
appear no overt phenotype when they exist in other families
or individuals, in the same pedigree, mostly display incomplete
clinical penetrance (145, 146). It is more common that the same
phenotype is caused by a mutation in different genes, in fact, it
can also be caused by the accumulation of mutations in multiple
different genes, and may affect the severity of the disease. For
example, the interaction between KCND3 and SCN5A, Nav1.5
and Kv4.3 channels regulates each other’s functions through
trafficking and gating mechanisms (147). When screening the
LQTS susceptibility gene in a Caucasian family with syncope
and slightly prolonged QT interval, it was found that there is
R800L mutation in SCN5A and A261V mutation in SNTA1.
Family members with both mutations have the strongest clinical
Phenotype (19). In a GWAS study, two significant association
signals were detected in Scn10a locus (rs10428132) and near
the HEY2 gene (rs9388451) in patients with BrS, and an
additional signal rs11708996 was identified in SCN5A, three
common variations present an unexpectedly cumulative effect
on disease susceptibility. The association signal of SCN5A-
SCN10A indicate that genetic polymorphisms regulating cardiac
conduction also affects the susceptibility to arrhythmia (20).
In addition, the concept of genetic modifiers also indicates the
cooperation between multiple genes. KCNQ1 mutation A341V
carriers exhibit inconsistent QT intervals, and AKAP9, encoding
a scaffolding protein, variants has been shown to alter the QTc
interval of the population and the risk and severity of cardiac
events (21, 148). A GWAS study conducted in China investigated
the relationship between the NOS1AP gene rs12143842 variant
and idiopathic ventricular tachycardia. The results showed that
the minor T allele of the rs12143842 SNP was significantly
associated with the reduced risk of idiopathic ventricular
tachycardia in the Northern Chinese cohort, indicating that SNPs
can affect the susceptibility to ventricular tachycardia (149).
Consistently, a recent GWAS study with polygenic risk score
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analysis in BrS patients confirmed the association of mutation
accumulation effects with traits (22).

EPIGENETIC FACTORS OF VENTRICULAR
ARRHYTHMIAS WITHOUT STRUCTURAL
HEART DISEASE

There are still a large number of cases of hereditary ventricular
arrhythmias in which the causative gene has not been detected.
For example, in BrS, approximately 20 pathogenic genes have
been reported, but comprehensive single gene factors and
polygenic factors still account for 60–80% of the causes unknown.
In addition to fever, exercise, illness, and other factors, epigenetic
factors have gradually attracted attention (150–152). Genetic
research on diseases mainly focuses on the primary structure of
DNA, i.e., when the DNA sequence changes, causing alterations
in gene transcription and translation. Unlike genetics, epigenetics
studies the molecules and mechanisms that maintain the state
of selectable gene activity states without changing the DNA
sequence and has mainly been studied in the fields of non-coding
RNA expression, DNA methylation, histone modifications,
genomic imprinting, and three-dimensional genome architecture
(Table 1) (153).

Non-coding RNA
Non-coding RNA refers to RNA that does not encode protein,
which is transcribed from the genome and does not translate
into protein, but performs biological functions at the RNA level,
including microRNA, circular RNA, small nuclear RNA, long
non-coding RNA, etc.

MicroRNA (miRNA) is a class of conservative non-coding
small RNA, primarily involved in the regulation of post-
transcriptional level that can cause target mRNA degradation or
repress translation by specific base pairing with target mRNA,
thereby affecting the expression of target mRNA. MiR-19b
has been reported to be established as a potential candidate
for human LQTS, with impaired repolarization of miR-19b-
deficient zebrafish, significantly prolonged action potential,
showing severe bradycardia and susceptibility to arrhythmias
and cardiomyopathy. MiR-19b targets multiple ion channel-
related genes. SCN1B acts as the β subunit of Nav1.5, directly
regulated by miR-19b and is upregulated upon its loss, possibly
leading to prolonged action potential duration by increasing
late sodium current. Upon miR-19b reduction, both KCNE4
and KCNE1 are significantly upregulated, which may be due to
the impaired cardiac repolarization caused by the inhibition of
KCNQ1, resulting in reduced potassium currents, which leads
to the prolongation of AP and bradycardia. In addition, the
downregulation of the expression of KCNA4, KCND3, SCN12B
and CACNA1C indirectly regulated by mir-19b was detected, in
which KCNA4 and KCND3 mediate the Ito. The notch decreased
during early repolarization due to damaged Ito, which may
explain the increased potential observed in stage 1 of the miR-
19b-deficient heart. However, the presence of Ito in zebrafish
hearts remains controversial. Further, miR-19b reduction can

significantly rescue the heterozygous zebrafishes with SQTS
phenotype (23).

miRNA can exist stably in a variety of body fluids,
known as circulating miRNA. Circulating miRNA levels are
associated with multiple diseases, and the expression profile
differences significantly between normal people and disease
patients, which may be a new class of disease markers. In
pediatric patients without organic heart disease, miR-133 plasma
levels were increased in children with ventricular tachycardia
as compared with healthy controls (24). Circulating miRNA
studies in patients with idiopathic ventricular tachycardia and
arrhythmogenic cardiomyopathy showed that the plasma levels
of miRNA-320 in idiopathic ventricular tachycardia patients
were significantly higher than those in ACM patients, which
may help to distinguish idiopathic ventricular tachycardia
and arrhythmogenic cardiomyopathy (154). MiRNA mostly
combines with the UTR region of the coding gene to regulate
gene expression, so the sequence of UTR regions is of great
significance for controlling the expression of ion channel genes.
In fact, there have been reported mutation detection in the
SCN5A UTR region and biological predictions of the combined
miRNA (25, 155). Variations were also detected in the UTR
region of SCN1B, but the miRNAs that may bind to SCN1B were
not described in detail (156). Scientists have also tried to screen
the genetic mutations of miRNA in LQTS patients to explain the
cause of LQTS, but the mutation sites found failed to explain the
cause of the disease in the cohort (157).

It is known that KCNH2 encoding Kv11.1, which is a
subunit of rapid-acting inward rectifying potassium channel,
actually KCNH2 intron 9 is splicing inefficient in human
heart, only 1/3 of the precursor mRNA is processed into
functional Kv11.1a isomers and 2/3 into C-terminal truncated
non-functional Kv11.1a-USO isomers. The initial step of the
splicing process involves the recognition of the 5’ splice site by
U1 small nuclear ribonucleoprotein. This recognition is mediated
by complementary base pairing between the 5’ splice site and U1
SnRNA (the RNA component of U1 small ribonucleoprotein)
(158). A KCNH2 IVS9-2delA mutation was found in a large
LQTS family that resulted in the switching of functional
Kv11.1a isoform to the non-functional Kv11.1a-USO isoform
(159). The extent of complementarity between the 5’ splice
site and U1 snRNA is an important determinant of splicing
efficiency. Modifying the sequence of U1 snRNA can increase
its complementarity to the 5’ splice site of KCNH2 intron 9,
significantly improve the splicing efficiency of the intron 9,
increase the expression of the functional Kv11.1a isoforms, and
thereby increase the Kv11.1 current (158).

DNA Methylation
DNA methylation refers to the process where organisms transfer
methyl groups to specific bases with S-adenosylmethionine as the
methyl donor under DNA methyltransferase. DNA methylation
is regulated at transcription levels and mainly plays an inhibitory
role. The common SCN5A polymorphism H558R (rs1805124), a
genetic modifier of BRS, can improve the electrocardiographic
features and clinical phenotype of SCN5A mutation carriers
by repairing abnormal channel gating kinetics and membrane
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trafficking and improving sodium channel activity in mutant
channels (160–164). In fact, studies have shown that the SCN5A
polymorphism H558R can reduce the methylation level of the
SCN5A promoter, increase the expression level of SCN5A in the
heart tissue, and prevent the occurrence of ventricular fibrillation
(26). The G allele of H558R has been linked to QTc interval
prolongation, which corresponds to its function (165, 166).

DNA methylation can also play a role in gene imprinting by
forming differentially methylated regions (DMRs) on genomes
of different parental origins to regulate gene expression (167).
For example, there is a differential methylation region within
the KCNQ1 locus (KvDMR1), which regulates multiple genes,
including KCNQ1, long non-coding RNA KCNQ1OT1, and
CDKN1C (27). Since both KCNQ1OT1 and KCNQ1 associated
with LQTS are imprinted genes, this part is detailed in the
genomic imprinting section.

Histone Modifications
Nucleosome is the basic unit of chromatin composed of
histones and DNA wrapped around histones. Modifications of
nucleosomes control DNA packaging and regulate the entry of
the transcription factor into the DNA. There are at least 15
functional histone modifications that can occur in cells, with
histonemethylation and demethylation, as well as acetylation and
deacetylation, being themost commonly studiedmodifications in
the heart (168).

Histone methylation can be associated with transcriptional
activation or repression, while histone acetylation is usually
associated with transcriptional activation (169, 170). The active
trimethylation of histone H3 at lysine 4 (H3K4me3) mark plays
a pivotal role in cell homeostasis in fully differentiated tissues.
Decreased h3k4me3 reduces gene expression of KCHIP2, the
β-subunit of the Ito channel, and attenuates Ito and sodium
current, prolonging the action potential duration and resulting
in increased ICa,L and enhanced cardiac contractile function
(28, 29). KCHIP2 is heterogeneously expressed in the human and
mouse ventricular walls, and although there have been no cases of
association of KCHIP2mutations with cardiac disease, functional
studies have shown that the gene defect alters repolarization
gradients, eliminates fast Ito, and increases the susceptibility of
murine ventricular cells to ventricular tachycardia (30).

HEY2 is a BrS susceptibility gene, which can not only affect
the expression of SCN5A and the formation of the cardiac
conduction system but also regulate the expression of transmural
potassium channels such as Kcnip2 and KCND2, altering the
peak and density of Ito and INa and affecting transmural
electrophysiological gradients (20). Studies have shown that
H3K4me3 and active H3K27ac (histone H3 acetylated lysine 27)
can regulate the ventricular differential transcription of the HEY2
gene by binding to the promoter or enhancer of HEY2, affecting
ventricular myocyte depolarization and repolarization (168).

Genomic Imprinting
Genomic imprinting refers to the phenomenon that gene
expression has parental selectivity in tissues or cells, and only
a specific parental allele is expressed, and the other parental
allele are not expressed or rarely expressed. Paternal genes are

not expressed as paternal imprinting, and maternal imprinting is
the same (171). The KCNQ1 gene, which is an imprinted gene,
exists in clusters with other imprinted genes, called imprinted
domains. Imprinted domains are regulated by shared regulatory
elements (long non-coding RNA and DMR) (171). KCNQ1OT1
is a long non-coding RNA located in the KCNQ1 locus, with a
promoter located within the KvDMR1. Affected by differential
methylation of the promoter region this gene only expresses the
paternal allele, while the maternal allele is silent (172). Unlike
KCNQ1OT1, KCNQ1 is biallelic expression in adult tissues and
fetal heart, although it shows maternal expression in other fetal
tissues and the coding of paternal gene is repressed (27). The
main reason is that KCNQ1OT1 can regulate the spatiotemporal
expression of KCNQ1 by coordinating chromatin conformation
changes and histone modifications. which makes LQTS caused
by KCNQ1 mutation not show obvious maternal predisposition,
but an autosomal dominant manner (173, 174). Even so, there
are still reports that LQTS exhibits female predominance and
transmission distortion, i.e., the LQTS allele is more maternally
than paternally derived, especially in patients with LQTS due
to KCNQ1 mutations, which may be associated with genomic
imprinting (31, 32). A study investigating the methylation
state of KCNQ1OT1 in a group of patients with symptomatic
QTc prolongation found that the rs11023840 AA genotype of
KCNQ1OT1 increased the methylation level of KCNQ1OT1
promoter, which was associated with prolonged QTc interval,
supporting the role of differential methylation/imprinting
of KCNQ1OT1 in symptomatic prolonged QTc risk (33).
However, another study showed that different degrees of
potassium channel dysfunction caused by variations in different
parental origins may also lead to transmission distortion
(175). Although inconclusive, there is no doubt that genetic
imprinting plays an important role in the pathogenesis
of LQTS.

Arsenic trioxide (As2O3, ATO) is a reagent for the treatment
of acute promyelocytic leukemia with adverse effects, including
the induction of LQTS. Studies have shown that ATO induces
a decrease in the transcription level of long non-coding RNA
KCNQ1OT1 in the KCNQ1 locus, while KCNQ1OT1 silencing
can inhibit the expression of KCNQ1, thus prolonging action
potential duration in vitro and causing LQTS in vivo (176). It
has also been reported that miRNA is also involved in ATO-
induced QT prolongation, with ATO-induced miR-133 and miR-
1 dysregulation acting as the basis of As2O3-induced cardiac
electrical disorder. In guinea pigs, ERG protein expression was
inhibited by miR-133 while the expression of Kir2.1 channel
protein was downregulated by miR-1, resulting in the decrease of
rapidly activating delayed rectifier potassium current and inward
rectifier potassium current, thereby inducing the prolongation of
QT (177).

Three-Dimensional Genome Architecture
With the development of chromosome conformation capture
technologies and fluorescence in situ hybridization imaging
technologies, the role of 3D genome architecture in gene
regulation has gradually emerged (178, 179). The genomic DNA
in the nucleus is folded into an ordered chromatin spatial
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structure that allows elements with a long linear distance can
also interact, such as the loop structure formed between enhancer
and promoter (180). Among them, CTCF and cohesin complexes
assemble three-dimensional chromatin loops in the genome and
play a crucial role in regulating the transcriptional patterns of
genes (181, 182). CTCF and cohesins are abundantly enriched
at topological domain boundaries and localize to CTCF sites,
limiting the interaction of functional elements within topological
domains (34, 183). Although the association of CTCF binding
site variants with ventricular arrhythmias in non-structural
heart disease has not been reported, however, CTCF knockout
has been reported to cause disorder in the expression of
RYR2, KCND2/KCNQ1/SCN5A/CACNB1 and other genes in
the ventricle, leads to heart failure, suggesting an association
with ventricular arrhythmias (35, 36). Besides, DNA sequence
changes that affect the formation of the normal 3D structure
of the genome have also been confirmed to be involved in
the occurrence and development of the disease (184). Studies
have shown that the enhancer (ENHA) in SCN10A interacts
with SCN5A promoter, which is necessary for the expression of
SCN5A in vivo (185). The major allele G of the common variant
locus rs6801957 in SCN10A located within this enhancer region
establishes a conserved T-box transcription factor binding site
to promote enhancer activity, while the risk allele significantly
reduces the expression of SCN5A (186). This largely explains
the association of this variant site with QRS prolongation in
the GWAS study and common variants in SCN10A with BrS
(20, 187). In turn, the results of GWAS can also guide the
discovery of functional element regions within the loci (188, 189).
The analysis of common variants associated with LQTS in the
KCNH2 locus identified a conserved cardiac cis-acting element
that acts as enhancer and regulates KCNH2 expression through
physical proximity to the KCNH2 promoter (37). In fact, GWAS

studies have identified a large number of SNPs associated with
heart disease, however, the mechanisms of most of the SNPs
involved in the occurrence of the disease have not been revealed
(190). Marking of regulatory element regions such as enhancers
of known disease-causing genes can characterize some variants
of unknown significance and provide a theoretical basis for
deciphering genetic variation (191). In conclusion, studies of
3D genome architecture provide a new perspective for us to
understand the potential mechanism between these SNPs and
diseases, as well as a better understanding of the pathogenic
mechanism of diseases.

SUMMARY

This article summarizes the genetic and epigenetic factors of
ventricular arrhythmia in patients without structural heart
disease and introduces the genes that may cause ventricular
arrhythmias and their possible pathogenic mechanisms.
However, there are still a large number of cases of ventricular
arrhythmias without structural heart disease whose causes
have not been clarified. Further research and exploration
are needed, and the development of high-throughput patch
clamping and other related technologies will undoubtedly play
an important role. In addition, emerging disciplines such as
optogenetics are also developing steadily, which will drive
us to have a deeper understanding of the pathogenesis of
ventricular arrhythmias.
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