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Background: Stress echocardiography is an emerging tool used to detect exercise-
induced pulmonary hypertension (EIPH). However, facilities that can perform stress
echocardiography are limited by issues such as cost and equipment.

Objective: We evaluated the usefulness of a deep learning (DL) approach based on a
chest X-ray (CXR) to predict EIPH in 6-min walk stress echocardiography.

Methods: The study enrolled 142 patients with scleroderma or mixed connective
tissue disease with scleroderma features who performed a 6-min walk stress
echocardiographic test. EIPH was defined by abnormal cardiac output (CO) responses
that involved an increase in mean pulmonary artery pressure (mPAP). We used the
previously developed AI model to predict PH and calculated PH probability in this cohort.

Results: EIPH defined as 1mPAP/1CO >3.3 and exercise mPAP >25 mmHg was
observed in 52 patients, while non-EIPH was observed in 90 patients. The patients with
EIPH had a higher mPAP at rest than those without EIPH. The probability of PH based
on the DL model was significantly higher in patients with EIPH than in those without
EIPH. Multivariate analysis showed that gender, mean PAP at rest, and the probability
of PH based on the DL model were independent predictors of EIPH. A model based
on baseline parameters (age, gender, and mPAP at rest) was improved by adding the
probability of PH predicted by the DL model (AUC: from 0.65 to 0.74; p = 0.046).

Conclusion: Applying the DL model based on a CXR may have a potential for detection
of EIPH in the clinical setting.

Keywords: artificial intelligence, connective tissue disease, echocardiography, exercise pulmonary hypertension,
scleroderma (SSc)
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GRAPHICAL ABSTRACT | Potential approach to exercise hemodynamics in scleroderma. Although the findings of this study support the selection of treatment
based on the findings of imaging surveillance, definitive multicenter prospective evaluation is required. mPAP, mean pulmonary artery pressure; CO, cardiac output;
EIPH, exercise-induced pulmonary hypertension.

INTRODUCTION

Pulmonary hypertension (PH) is a major cause of mortality
in patients with scleroderma. Early detection of PH remains a
clinical challenge despite several diagnostic tools developed.
Because the elevated mean pulmonary artery pressure
(mPAP) during exercise can be a cause of dyspnea and
fatigue, the exercise-induced PH (EIPH) has been promised
as a potential useful status for the early identification at
the risk of developing resting PH (1). Right heart catheter
(RHC) is the gold standard for defining the mPAP during
exercise. However, RHC is an invasive procedure and we
need the non-invasive tests to screen PH in the clinical
setting. Exercise stress echocardiography has been used
to screen scleroderma patients in an attempt to identify
those with EIPH as an indicator of early-stage PH (2).
Several recent studies have suggested that abnormal cardiac
output (CO) responses to increments in mPAP have the
potential to assess the state of disease and functional class of
patients (3, 4). We have shown previously that the pressure-
flow relationship between mPAP and CO measurement

predicted future development of overt PH and was helpful for
making treatment decisions regarding pulmonary arterial
hypertension (PAH)-specific medications (5, 6). EIPH
defined by 1mPAP/1CO indicates an abnormal pulmonary
vascular response to exercise due to impaired pulmonary
vascular capacity. This index is important for detecting early
pulmonary vascular disease in at-risk patients, such as those with
scleroderma.

However, the use of exercise echocardiography to diagnose
EIPH may be limited by issues of cost and equipment in
health care facilities. Identifying resting parameters that can
predict EIPH therefore has important clinical implications.
Recently, artificial intelligence (AI) including deep learning (DL)
has been applied to sophisticated recognition of understated

Abbreviations: PH, pulmonary hypertension; mPAP, mean pulmonary artery
pressure; EIPH, exercise-induced pulmonary hypertension; RHC, right heart
catheter; CO, cardiac output; PAH, pulmonary arterial hypertension; AI, artificial
intelligence; DL, deep learning; CXR, chest x-ray; SSc, scleroderma; MCTD, mixed
connective tissue disease; LV, left ventricular; GLS, Global longitudinal strain; RV,
right ventricular; 6MW, Six-minute walk; AUC, area under the curve; PAWP,
pulmonary artery wedge pressure.
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patterns in medical images (7, 8). We reported that a DL
model based on chest X-ray (CXR) analysis, predicted elevated
pulmonary artery pressure in patients who underwent right-
sided heart catheterization (9). We suspected the DL model
can detect the known pathological effects of PH at early stage
on the CXR images. Thus, we hypothesized that a previously
developed application of the CXR-based DL algorithm could
also be used to predict EIPH in patients with scleroderma (SSc)
or mixed connective tissue disease (MCTD) with scleroderma
features. The objectives of the current study were (1) to assess
the baseline clinical and echocardiographic predictors at rest
of EIPH in at-risk patients, and (2) to evaluate whether the
predictive value for the presence of EIPH is increased when an
AI model for PH is added to clinical and echocardiographic
parameters at rest.

MATERIALS AND METHODS

Study Population
The study enrolled patients with SSc or MCTD with scleroderma
features treated at our hospital. The definitions of these two
diseases were based on the American College of Rheumatology
diagnostic criteria (10). Patients who underwent a 6-min walk
stress echocardiographic study and had a normal range of
mean PAP (<25 mmHg) at rest were recruited consecutively
from patients referred to our echocardiographic examination
center between January 2013 and December 2017. Patients with
moderate or severe valvular disease, atrial fibrillation/flutter,
left ventricular (LV) ejection fraction <50%, significant shunts,
significant interstitial lung disease, known coronary artery
disease, or thromboembolism were excluded from the study.
Eight patients at rest and four patients during stress were
excluded due to lack of a measurable tricuspid regurgitant jet.
The study was approved by the local ethics committee and
Institutional Review Board of the University of Tokushima
(protocol: 1095-2).

Echocardiographic Assessment
Transthoracic echocardiography was performed by experienced
sonographers/doctors using a commercially-available ultrasound
machine (Vivid 9, GE Vingmed, Horten, Norway). The
measurements and recordings were obtained according to the
recommendations of the American Society of Echocardiography
(11). Systolic PAP was measured from the maximal continuous-
wave Doppler velocity of the tricuspid regurgitant jet using
the systolic trans-tricuspid pressure gradient calculated by the
modified Bernoulli equation. Right atrial pressure was estimated
from the inferior vena cava diameter and collapsibility (12).
Mean PAP was calculated as 0.6× systolic PAP + 2 (13). Peak
systolic longitudinal strain measurements were obtained from
gray-scale images recorded in the apical four-chamber, two-
chamber, and long-axis views. The frame rate was maintained
at >40 frame/s. All the measurements of strain were analyzed
offline using speckle tracking vendor-independent software
(EchoInsight, Epsilon Imaging, Ann Arbor, MI, United States).
Global longitudinal strain (GLS) was calculated by averaging

all the segmental strain values from the apical four-chamber,
two-chamber, and long-axis views. In the right ventricular (RV)
longitudinal strain analysis of the RV focused apical four-
chamber view, the interventricular septum was included in the
region-of-interest for speckle-tracking echocardiography. Only
the free wall strain values were included and the septal strain
values were discarded to avoid LV interaction.

Six-Min Walk Stress Echocardiography
Six-min walk (6MW) tests were performed according to the
American Thoracic Society guidelines (14). Transcutaneous
arterial oxygen saturation was determined by pulse oximetry. The
peak tricuspid regurgitation jet observed by echocardiography
was obtained immediately after the 6MW test (i.e., within
10 s). CO was also determined at the same time using electric
cardiometry (Aesculon Electrical Velocimetry, Osypka Medical
GmbH, Berlin, Germany). We calculated the PAP—cardiac
output relationship as mPAP divided by CO (mPAP/CO),
and calculated the slope of mPAP/CO in individual patients
(1mPAP/1CO). Patients with EIPH were diagnosed based on
our previous work that used a 1mPAP/1CO >3.3 and exercise
mPAP >25 mmHg (5). The reproducibility of 1mPAP/1CO
obtained by echocardiography, expressed as the coefficient of
variation, has been reported by our group as 5.6 ± 3.8% and
7.2 ± 5.1% for intra-observer and inter-observer variation,
respectively (5).

Right heart catheter was performed using a Swan-Ganz
catheter. Pressure measurements were obtained at rest and
during supine bicycle ergometry. Thermodilution CO was
analyzed after averaging the sum of three measurements collected
at rest and during exercise. Pulmonary vascular resistance was
calculated as (mPAP-PAWP)/CO. In our cohort using invasive
data (n = 29) we showed that there was a good correlation
between invasive and non-invasive (electric cardiometry and
echocardiography) values of 1mPAP/1CO (r = 0.61; p < 0.001)
(Supplementary Figure 1).

Artificial Intelligence Model for Detection
of Pulmonary Hypertension
We used the previously developed AI model to predict PH in
this study (9). We defined PH using the AI model using the
mean PAP >20 mmHg because we need an early detection of
pulmonary vascular dysfunction for screening purposes. The
area under the curve (AUC) of the AI model for prediction of
elevated PAP was 0.71 in the test cohort (9). We briefly describe
the model as follows. Data were divided into 10 groups, 9 of
the groups were used as a training and validation to create a
model, and the rest were used to test the model so that the
900 total cases were split with 90 cases × 10 groups. Also, the
images of the training dataset were augmented by using gamma
correction, horizontal flipping, rotation, and pixel shift. Then, we
have done nested-cross validation (Supplementary Figure 2) and
tuned hyperparameters using grid-search. A capsule-network-
based model was constructed with the addition of some residual
blocks to detect PH (15). Each residual block contained two
convolution layers, two batch normalizations, a rectified linear
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unit (ReLU), and a skip connection. Details are shown in
Supplementary Figure 3. The network consisted of six residual
blocks, six convolution layers, and six batch normalizations. All
activation functions were set to ReLU functions. The highest
elements in the likelihood vector were defined as the output label
(mean PAP > 20 mmHg). The proposed network architecture
is presented in Supplementary Figure 4. We pre-trained the
model using a CXR dataset, which is published by RSNA
Pneumonia Detection Challenge in Kaggle.1 Then, we performed
fine-tuning with the pre-trained model and nested 10-fold cross-
validation. The batch size was set to 16 and an Adam optimizer
used for training. We constructed the proposed network model
on a computer (Xeon CPUs; Intel Corp. and Tesla P100
16GB GPU; NVIDIA Corp.) using a Chainer (ver. 7.2.0) deep
learning framework. We also performed gradient-weighted class
activation mapping (Grad-CAM) to visualize how our model
detected abnormalities from a CXR of each case. The averaged
analysis time is 2 ± 1 min for each case.

Statistical Analysis
The continuous variables were expressed as mean ± SD of the
normal distribution, while the non-normal continuous variables
were expressed as median (interquartile range). Wilcoxon W test
or Kruskal Wallis test was used to assess the differences among
groups. We performed a univariate logistic regression analysis
to evaluate the correlation between EIPH and clinical variables,
laboratory data, echocardiographic data, and probability of
PH calculated by the AI model. The independence of the
association between the variables was tested using multiple
logistic regression analysis. The predictive performance was
evaluated using receiver operating characteristic (ROC) analysis
and pairwise comparisons of the AUC according to the DeLong
method (16). To evaluate the effectiveness of the AI model to
predict EIPH, two models were constructed and compared using
ROC curve analysis. Model 1, the basic model, consisted of age,
gender, blood pressure and mean PAP at rest, while Model 2
included the variables in model 1 plus the probability of PH
calculated using the AI algorithm. The statistical analyses were
performed using standard statistical software packages (SPSS

1https://www.kaggle.com/c/rsna-pneumonia-detection-challenge

software 21.0; SPSS Inc., Chicago, IL, United States and MedCalc
Software 17; Mariakerke, Belgium). Statistical significance was
defined as a p-value < 0.05.

RESULTS

Patient Characteristics
The baseline characteristics of the study group are shown
in Table 1. The study population consisted of 142 patients
[58 ± 13 years; 17 (12%) male] who underwent 6-min stress
echocardiography. Of the 142 patients, 90 (63%) had non-
EIPH and 52 (37%) had EIPH (Figure 1). Patients with
EIPH had higher diastolic blood pressure, lower SpO2 post-
6MW, higher mPAP, higher exercise mPAP, and lower exercise
cardiac output than that observed in patients with non-
EIPH. Table 2 shows the invasive hemodynamic data in the
patients with EIPH (1mPAP/1CO > 3.3 mmHg/L/min and
exercise mPAP ≥ 25 mmHg by echocardiography) who received
explanations for exercise RHC. We obtained informed consent
for exercise RHC in 29 patients with EIPH and referred them
to our catheter laboratory for assessment of exercise pulmonary
hemodynamics. Twenty-three patients refused exercise RHC due
to the risk of RHC. In the 29 patients who underwent exercise
RHC, 28 fulfilled the catheter criteria of EIPH described in
a previous report (17). Based on this finding we considered
that diagnosing EIPH using 6-min stress echocardiography was
acceptable in the clinical setting.

The Value of Clinical Parameters and the
AI Model for Predicting EIPH
The results of the univariate and multivariate logistic analyses
are shown in Table 3. In univariate analyses, the presence of
EIPH was associated with diastolic blood pressure, mean PAP,
and PH probability by the AI model. After adjustment for age,
gender, diastolic blood pressure, and mean PAP at baseline,
EIPH was also associated with the probability of PH predicted
by the AI model.

The results of the ROC analysis for detection of EIPH are
summarized in Figure 2. In this cohort, the AUC of the AI
model was 0.71 (95% CI: 0.62–0.78). For mPAP at rest measured

FIGURE 1 | Patient selection. Patients who underwent a 6-min walk stress echocardiographic study were recruited consecutively between January 2013 and
December 2017.
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TABLE 1 | Clinical characteristics in the entire study cohort: of the 142 patients, 90 (63%) had non-EIPH and 52 (37%) had EIPH.

All Non-EIPH EIPH p-value

Number 142 90 52

Age, year 58 ± 13 57 ± 13 60 ± 14 0.30

Male, % 17 (12) 8 (9) 9 (17) 0.17

Body surface area, m2 1.52 ± 0.14 1.53 ± 0.14 1.51 ± 0.15 0.30

WHO Class I or II/III or IV 125/17 82/8 43/9 0.17

History

SSc, % 110 (77) 69 (77) 41 (79) 0.76

MCTD with SSc features, % 32 (23) 21 (23) 11 (21) 0.76

Medication

Antihypertensive drugs, % 1 (1) 1 (1) 0 (0) 0.33

Diuretic, % 3 (2) 1 (1) 2 (4) 0.35

Anticoagulants, % 0 (0) 0 (0) 0 (0) –

Respiratory function

%EFV1, % 82 ± 21 86 ± 16 80 ± 24 0.42

%FVC, % 102 ± 22 103 ± 27 102 ± 21 0.91

%DLCO 76 ± 22 77 ± 22 75 ± 23 0.79

Baseline hemodynamics

HR, bpm 71 ± 12 71 ± 13 71 ± 12 0.81

Systolic BP, mmHg 122 ± 20 120 ± 21 125 ± 18 0.14

Diastolic BP, mmHg 70 ± 16 68 ± 15 74 ± 17 0.06

SpO2, % 97 ± 2 98 ± 1 97 ± 2 0.13

Post 6-min walk hemodynamics

HR, bpm 94 ± 18 95 ± 18 92 ± 19 0.50

Systolic BP, mmHg 129 ± 25 128 ± 25 130 ± 27 0.67

Diastolic BP, mmHg 72 ± 11 71 ± 12 74 ± 10 0.10

SpO2, % 96 ± 3 96 ± 3 95 ± 4 0.05

6MW distance, meter 450 (400–500) 425 (385–499) 451 (400–501) 0.48

Echocardiographic variables

LVEDVi, ml/m2 49 ± 12 48 ± 10 50 ± 14 0.59

LVESVi, ml/m2 17 ± 5 17 ± 4 17 ± 5 0.52

LVEF, % 65 ± 3 65 ± 3 65 ± 3 0.47

LV-GLS, % 20 ± 2 19 ± 2 20 ± 3 0.65

LVMi, g/m2 77 ± 17 76 ± 16 79 ± 19 0.41

LAVi, ml/m2 26 ± 8 26 ± 6 27 ± 10 0.61

E/e’ 7.0 ± 2.5 6.7 ± 2.1 7.4 ± 3.0 0.15

RVFAC, % 41 ± 12 41 ± 12 41 ± 12 0.81

TAPSE, mm 22 ± 4 21 ± 3 22 ± 4 0.83

RV-GLS, % 22 ± 4 22 ± 4 21 ± 5 0.62

Pulmonary hemodynamics

Mean PAP, mmHg 18 ± 3 17 ± 3 19 ± 3 0.003

CO, l/min 4.0 ± 1.3 4.1 ± 1.2 3.9 ± 1.4 0.39

Exercise mean PAP, mmHg 24 ± 5 22 ± 3 29 ± 5 –

Exercise cardiac output, l/min 6.3 ± 2.3 6.8 ± 2.4 5.5 ± 1.7 <0.001

1mPAP/1CO, mmHg/l/min 2.9 (1.6–5.3) 1.8 (1.2–2.7) 6.4 (4.4–8.3) –

AI model

PH probability (%) 20 (5–58) 11 (3–35) 37 (21–76) <0.001

Data are expressed as the number of patients (percentage) and mean ± SD or median (interquartile range).
EIPH, exercise-induced pulmonary hypertension; SSc, scleroderma; MCTD, mixed connective tissue disease; %FEV1, percent forced expiratory volume in 1 s;%FVC,
percent forced vital capacity; %DLCO, diffusing capacity for carbon monoxide; HR, heart rate; BP, blood pressure; SpO2, percutaneous oxygen saturation, LVEDVi,
left ventricular end-diastolic volume index; LVESVi, left ventricular end-systolic volume index; LVEF, left ventricular ejection fraction; GLS, global longitudinal strain; LVMi,
left ventricular mass index; LAVi, left atrial volume index; E, early diastolic transmitral flow velocity; e’, early diastolic mitral annular motion; RVEA, right ventricular end-
diastolic area; RVESA, right ventricular end-systolic area; RVFAC, right ventricular functional area change; TAPSE, tricuspid annular plane systolic excursion; mPAP, mean
pulmonary artery pressure; CO, cardiac output.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 June 2022 | Volume 9 | Article 891703

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-891703 June 10, 2022 Time: 13:26 # 6

Kusunose et al. AI for Exercise-Induced Pulmonary Hypertension

TABLE 2 | Invasive hemodynamic data in the patients with EIPH by exercise
stress echocardiography who received exercise RHC.

Invasive hemodynamic data

Number 29

Baseline

Heart rate, bpm 70 ± 13

Systolic blood pressure, mmHg 132 ± 21

Mean pulmonary artery pressure, mmHg 20 ± 4

Mean pulmonary arterial wedge pressure, mmHg 9 ± 3

Mean right atrial pressure, mmHg 6 ± 4

Pulmonary vascular resistance, wood unit 2.1 ± 1.1

CO, l/min 5.5 ± 1.9

Peak exercise

Heart rate, bpm 107 ± 26

Systolic blood pressure, mmHg 162 ± 30

Mean pulmonary arterial pressure, mmHg 40 ± 9

Mean pulmonary artery wedge pressure, mmHg 18 ± 4

Mean right atrial pressure, mmHg 6 ± 2

Pulmonary vascular resistance, wood unit 2.6 ± 1.2

CO, l/min 9.2 ± 2.6

1mPAP/1CO, mmHg/l/min 6.2 ± 3.0

EIPH, exercise-induced pulmonary hypertension; RHC, right heart catherther; CO,
cardiac output; mPAP, mean pulmonary artery pressure.

by echocardiography, the AUC was 0.64 (95% CI: 0.56–0.72).
Figure 3 shows the ROC analysis of the combination of clinical
variables (age, gender, blood pressure and mean PAP at rest)
and the AI model. Importantly, the predictive potential of the
model based on these variables (age, gender, blood pressure
and mean PAP at rest) was improved by adding the DL model
(increase in AUC from 0.65 to 0.74, p = 0.046). We checked
the precision, recall, f-score values, and confusion matrix for
performance evaluation of the AI model. Importantly, the recall
of AI algorithm for detecting EIPH was 94.5% using the cut
off value of 21% for AI estimated probability (Supplementary
Table 1). AI assessment may be considered an option to check
the need of RHC in patients with suspected EIPH.

Assessment of Gradient-Weighted Class
Activation Mapping
To help explain the AI assessment, we analyzed the images to
determine where AI was focused (Figure 4). In many cases, Grad-
CAM showed that our model focused on the cardiac area in
patients with EIPH. Interestingly, in patients without EIPH, the
focus was on the area in the right middle lung field. The resulting
AI model may provide new insights to appropriately discern
differences using CXR images.

DISCUSSION

We demonstrated that 52 of 142 patients (37%) with high-risk
PAH (SSc or MCTD with SSc features) and normal resting
echocardiographic findings had EIPH based on an elevated
1mPAP/1CO measured by 6MW stress echocardiography.
Mean PAP at rest was a significant predictor of EIPH after

TABLE 3 | Univariate and multivariate associations of EIPH.

Univariate model Multivariate model

OR 95% CI p-value OR 95% CI p-value

Clinical variables

Age, year 1.04 0.99–1.04 0.29 1.02 0.98–1.05 0.33

Male,% 2.15 0.77–5.96 0.14 3.27 1.01–10.55 0.05

Diastolic BP, mmHg 1.03 0.99–1.06 0.05 1.02 0.98–1.05 0.38

Echocardiography

Mean PAP, mmHg 1.22 1.06–1.41 0.002 1.02 1.00–1.39 0.04

AI model

PH probability (per 1%) 1.02 1.01–1.03 <0.001 1.02 1.01–1.04 0.002

After adjustment for clinical variables, EIPH was associated significantly with the
probability of PH calculated by the AI model.
BP, blood pressure; PAP, pulmonary artery pressure; PH, pulmonary hypertension.

FIGURE 2 | Diagnostic ability to predict EIPH using a single variable. The area
under the curve by AI model for detection of EIPH was similar to the AUC by
measurement of mPAP at rest.

adjustment for age and gender, whereas parameters of respiratory
function were not. Furthermore, the combination of the DL
model significantly improved the ability to predict EIPH
compared to that achieved by combining clinical parameters. To
our knowledge, this is the first study to demonstrate the clinical
utility of a DL algorithm based on standard CXRs to estimate
EIPH in at risk patients.

Prognostic Importance of
Exercise-Induced Pulmonary
Hypertension
The management of the PAH high risk cohort remains a matter
of debate because of limited data on prognosis. The pathological
findings in the pulmonary vasculature that characterize PAH
include initial proliferation and fibrosis, medial hypertrophy, and
thrombosis (18). The large capacity of the pulmonary circulation
results in PH usually being diagnosed late in its course, with
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FIGURE 3 | Diagnostic ability to predict EIPH using multiple variables. The
predictive potential of the model based on these variables was improved by
adding the DL model (increase in AUC from 0.65 to 0.74, p = 0.046). Model
1 = age, gender, blood pressure and mean PAP at rest; Model 2 = Model 1
plus DL model.

an asymptomatic stage preceding onset (19). Therefore, patients
with early PH may present with an almost normal resting
mPAP, but have an abnormal exercise mPAP as a result of
increased pulmonary blood flow. From the perspective of the
pulmonary circulation during exercise, the clinical utility of
mPAP-CO assessment has been described in several previous
studies (3–5). Several investigators have also reported that the
benefit of treatment for EIPH was an improvement in pulmonary
vascular response to exercise within 1 year (6, 20–23). Therefore,
EIPH is an important clinical condition in patients with a high
risk of developing PAH. However, cardiovascular institutes that
can perform stress echocardiography may be limited by issues
related to cost and equipment. The detection of EIPH using
minimally invasive or non-invasive approaches at rest therefore
has important clinical implications.

Exercise-Induced Pulmonary
Hypertension and Artificial Intelligence
Model
Chest x-ray is a simple and economical screening method for
assessing PH. The American College of Chest Physicians has
recommended obtaining a CXR in patients who are suspected
of having PH in order to reveal features supportive of this
diagnosis (24). Recently, we developed an AI application for
CXRs to identify the patients with a high-risk of developing
PH. In the current study, we tested the ability of this model
to predict EIPH in the study cohort. The results showed
that the DL model provided an additive value for predicting
EIPH compared to that achieved by clinical parameters. During
the 6th World Symposium on Pulmonary Hypertension in
2018, a working group proposed revising the hemodynamic
definition of PH by lowering the threshold from ≥25 mmHg
to >20 mmHg in order to identify patients in the early stage
of PH (2). EIPH is a similar concept for detecting early
stage PH. In our previous study on a large patient cohort
(n = 243), mean PAP was higher in patients with EIPH
(19 ± 3 mmHg, around 20 mmHg) than in those with non-
EIPH (17 ± 3 mmHg). One possible reason why the model
performed well in this cohort is that the AI model had been
trained using a cut-off mean PAP value of 20 mmHg. There
is a problem of DL regarding the “black box” algorithm. To
understand our model’s recognition of CXR, we adopted Grad-
CAM. According to the results of the heat map analysis,
our model focused on structures in the cardiac area in
patients with EIPH. These findings may help to understand the
images of EIPH on CXR.

Exercise-Induced Pulmonary
Hypertension and Clinical Variables
In our analysis, most of the resting echocardiographic
measurements were similar in the EIPH and non-EIPH

FIGURE 4 | Examples of gradient-weighted class activation mapping visualizations (grad-CAM). Chest X-rays were visualized using grad-CAM, with the yellow and
red areas showing regions that the deep learning model considered important for detecting EIPH.
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groups. This result emphasizes the importance of stress
echocardiography to identify EIPH. In our cohort, only a higher
mean PAP at rest was found to be associated with a higher risk
of EIPH. This increase in mean PAP at rest can be considered as
an indicator for EIPH in stress echocardiography. Several studies
have reported a correlation between respiratory parameters and
EIPH (25, 26). In the present study, no respiratory parameter was
a significant predictor of EIPH. We speculate that the respiratory
parameters in the patients may not have decreased at the time of
the study because many were in the early stage of PH. Moreover,
PH related to SSc can sometimes be associated with occult left-
side diastolic dysfunction (27). The spectrum of PH is therefore
wide and includes several etiologies (28). For example, during the
development of PAH and heart failure with PH, some patients
may have pulmonary vascular disease and some elements of
occult left-sided heart failure. In our cohort, there were small
differences in E/e’ between the EIPH and non-EIPH groups
(p = 0.15). All patients had an E/e’ < 15 (surrogate of left
ventricular end-diastolic pressure by echocardiography, mean,
7 ± 3) at baseline, while 29 patients on RHC had a pulmonary
artery wedge pressure (PAWP) ≤15 mmHg (mean, 9 ± 3) and
exercise PAWP <25 mmHg (mean, 17 ± 3). Therefore, we could
exclude patients with secondary PH due to left heart involvement
from our patient cohort.

One major concern in the present study was that not
all patients had been confirmed as having EIPH by exercise
RHC, although 97% of the cases of EIPH diagnosed by 6MW
stress echocardiography were identified by exercise RHC. We
gathered a high-risk EIPH cohort including SSc or MCTD with
scleroderma features. Thus, there were smaller sample for the
male population. There was a significant bias and we should
apply this model to the high-risk cohort for EIPH in the further
study. Natriuretic peptides were not measured consistently in our
study cohort. Some cases of unobtainable tricuspid regurgitation
may be problematic. The specific X-ray parameters used by the
convolutional neural network to classify patients with PH are not
well-described because of a “black box” algorithm. Because of
these limitations, these data should be considered as hypothesis-
generating and we consider that larger prospective multicenter
studies are warranted to validate our findings.

Summary Points and Clinical
Implications
EIPH should be diagnosed by stress echocardiography to improve
the prognosis of patients with PH. On the other hand, many
institutes are unable to easily perform stress echocardiography
due to cost and equipment limitations. Therefore, developing
a tool to predict EIPH in advance is clinically important. Our

DL algorithm based on standard CXRs can estimate EIPH in
at risk patients. Graphical Abstract shows a potential pathway
for detecting EIPH in patients with scleroderma. In the high-
risk cohort detected by the AI algorithm, the use of 6MW
stress echocardiography might be considered to assess pulmonary
vascular function and act as a guide for treatment in this high-
risk cohort.

CONCLUSION

Applying the DL model based on a CXR may have a potential for
detection of EIPH in the clinical setting.
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