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Editorial on the Research Topic

Highlights in Cardiovascular Therapeutics: 2021

INTRODUCTION

Due to the highly collaborative efforts of the authors, editorial office, and editorial team, the
Frontiers in Cardiovascular Medicine - Cardiovascular Therapeutics section has made significant
achievements in 2021, with a five-fold increase in manuscript submission. We all greatly appreciate
it. In 2022, we will continue our efforts to build an outstanding platform for cardiologists and
translational cardiovascular scientists to exchange novel findings and data in clinical cardiology and
cardiovascular therapeutic fields. Here, we would like to highlight some excellent articles published
in our section as well as new progress in the field with significant potential in cardiovascular
therapeutics. In addition, these highlights may also serve as the foundation for some new special
topics in our Cardiovascular Therapeutics section in 2022.

TRAINED IMMUNITY, AN INNATE IMMUNE MEMORY, IS A NEW

INFLAMMATION AMPLIFYING MECHANISM

Cardiovascular disease (CVD) is a leading cause of death in theUSA andworldwide. Numerous risk
factors for triggering the onset and promoting CVD progression have been identified, including
hyperlipidemia (1), hyperglycemia, hyperhomocysteinemia (2), smoking, metabolic syndrome,
hypertension, obesity (3–5), and infections (1, 6–9). On the other hand, many danger-associated
molecular patterns (DAMPs) and conditional DAMPs (10) have been characterized in triggering
the recruitment of monocytes, macrophages, T cells, B cells, and other immune cells into arteries to
amplify the atherosclerotic process, suggesting that innate and adaptive immunity contribute to the
atherosclerotic plaque formation. However, several important issues remain poorly characterized:
first, what compounds in the environment and endogenous metabolic process in the host are
qualified to become risk factors to stimulate atherosclerotic CVD (11); second, many disease risk
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factors are synergistic in promoting atherosclerotic CVD,
including a) hyperhomocysteinemia and hyperlipidemia (12,
13); b) hyperhomocysteinemia and hyperglycemia (14, 15);
c) multiple DAMPs stimulation in chronic kidney disease
(CKD) (16–19); d) hyperlipidemia and CKD (17); e) COVID-
19 infection (coronavirus disease-2019, a viral respiratory illness
caused by the severe acute respiratory syndrome-coronavirus-2,
SARS-CoV-2) (20) and CVD; and f) sex hormone dysfunction
and CVD (21); third, what cellular processes contribute to the
quality and synergy of disease risk factors? Innate immune
cells can develop exacerbated long-term immune responses and
inflammatory phenotype following brief exposure to endogenous
or exogenous DAMPs, which results in a primed and significantly
enhanced inflammatory response toward a second challenge after
returning to a non-activated state. This phenomenon is known
as innate immune memory or trained immunity (TI). TI is
important for host defense, vaccine response, and promoting
the pathogenesis of chronic inflammations including metabolic
CVDs such as atherosclerosis. In contrast to thememory function
in the adaptive immune system with special cell subsets to carry
out memory function such as memory T cells and memory
B cells (22), TI can occur in innate immune cells such as
monocytes/macrophages (23), natural killer cells, endothelial
cells (ECs) (6, 11, 24), vascular smooth muscle cells (25, 26),
and nonimmune cells, such as fibroblasts (7) and hepatocytes
(27, 28). Of note, we recently reported that CD4+Foxp3+

regulatory T cells (Tregs) have many active innate immunity
pathways (29, 30), and can sustain their immunosuppressive
functions (31) in a proinflammatory atherogenic environment,
although Tregs plasticity in atherosclerosis has been reported
(32, 33). It has been reported that increased energy metabolism
pathways and electron transport chain (34), including glycolysis,
acetyl-CoA generation, mevalonate synthesis, glutaminolysis,
and epigenetic modification (11, 35), contribute significantly to
the establishment of TI. Extensive characterization of TI relative
to CVD would provide novel insights into CVD pathogenesis
and new therapeutic targets. To demonstrate the therapeutic
potential of inhibiting new TI-related metabolic pathways such
as glycolysis, Gager et al. reported that sodium–glucose co-
transporter 2 (SGLT2) inhibitors, an emerging class of glucose-
lowering drugs, have become increasingly relevant for the
treatment and prevention of heart failure (HF). SGLT2 inhibitors
are associated with improved cardiovascular outcomes in
patients with HF (Gager et al.). In addition, Chen et al. reported
that 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, can
alleviate cardiac fibrosis after myocardial infarction (MI) (36).

TRAINED IMMUNITY MAY BE

UNDERLYING THE SYNERGY OF

MULTIPLE RISK FACTORS IN PROMOTING

THE PATHOGENESIS OF

CARDIOVASCULAR DISEASE

A significant attribute of trained immunity in promoting
cardiovascular diseases is that TI pathways’ synergy among
multiple risk factors contributes to CVD progression, which

provides novel guidance for cardiovascular therapeutics. A
recent report showed that COVID-19 may predispose patients
to thrombotic disease, both in the venous and arterial
circulations, attributed to excessive inflammation, platelet
activation, endothelial dysfunction, and stasis (37). These
findings emphasize that inflammation induced by COVID-
19 infection may serve as the first stimuli in the TI setting
and predispose patients to thrombotic disease (second stimuli).
Zhao et al. reported that antithrombotic management for
atrial fibrillation (AF) in patients undergoing percutaneous
coronary intervention or with acute coronary syndrome [an
evidence-based update combined antithrombotic regimens for
AF in coronary artery disease patients, particularly in acute
coronary syndrome (ACS) patients or patients undergoing
percutaneous coronary intervention (PCI)], presents a great
challenge in the real-world clinical scenario. The results of
these studies have impacted the recommendations of current
international guidelines, which favor a dual antithrombotic
therapy (DAT) with a non-vitamin K antagonist (VKA) oral
anticoagulant (NOAC) and classic antiplatelet drug and potential
inflammasome inhibitor (38) P2Y12 inhibitor (39) (especially
clopidogrel) in the clinical setting. Aspirin, a nonsteroidal
anti-inflammatory drug, can be administered during the
periprocedural period, while triple antithrombotic therapy (TAT)
treatment duration should be as short as possible (Zhao et al.).
Similarly, Bitar et al. conducted a systematic review of 326 articles
and ameta-analysis on eight randomized clinical trials to evaluate
the efficacy and safety of direct oral anticoagulants (DOACs)
vs. warfarin (brand names Coumadin and Jantoven) in the
treatment of AF and valvular heart disease (VHD). They found
that DOACs remained with similar efficacy and safety compared
to warfarin in thromboprophylaxis for AF and VHD (Bitar et al.).
Since the interplay has been reported between inflammation and
thrombosis in cardiovascular pathology (40), once again, these
findings support our argument that blocking trained immunity
as an inflammation amplifying pathway could be a benefit for
cardiovascular therapies.

Insulin resistance (IR) has been identified as a risk factor
and metabolic stress to accelerate vascular dysfunction and
cardiovascular disease relative to type 2 diabetes mellitus
(T2DM) (41). Controversies concerning the association between
insulin therapy and atherosclerotic lesions in T2DM remain.
Ke et al. investigated whether insulin therapy in T2DM patients
is linked with the increased risk of carotid atherosclerosis,
by retrospectively enrolling 2,356 hospitalized patients with
T2DM, including 1,716 subjects receiving insulin therapy and
640 subjects without insulin therapy. This report showed that
insulin therapy is associated with a markedly increased risk of
carotid atherosclerotic lesions in T2DM, partly contributing to
the more severe insulin resistance in T2DM patients receiving
insulin therapy (Ke et al.). These findings correlate well with
the previous findings from other teams that hyperinsulinemia
is strongly associated with T2DM and is an early indicator of
metabolic dysfunction (42). A potential mechanism underlying
these findings may be insulin signaling and IR functions in
promoting trained immunity in macrophages through metabolic
and epigenetic changes (43).
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NAD+ AS AN IMMUNOMODULATOR MAY

INHIBIT TRAINED IMMUNITY

Nicotinamide adenine dinucleotide (NAD+) has a direct
inhibitory effect on poly(ADP-ribose) polymerase 1 (PARP-1)
(44) and can prevent pro-inflammatory cytokines’ over-
activation. Increasing the NAD+ level will also stabilize
telomeres, which positively impacts immune cells’ function
(45). We recently reported that liver ischemia reperfusion
injury (IRI) is enhanced by trained immunity but is attenuated
in the deficiency of pro-inflammatory DAMP/conditional
DAMP (10) sensor (38) caspase-1/caspase-11 (human caspase-4)
pathways in gene knockout mice (27, 46). Xiao et al. reported
the cardioprotective properties of known agents in rat IRI model
under clinically relevant conditions: only the NAD precursor
nicotinamide riboside (NR) reduces myocardial infarct size
in the presence of fentanyl (a synthetic opioid that is 80–100
times stronger than morphine), midazolam (produces sleepiness
or drowsiness and relieves anxiety), and cangrelor (purinergic
receptor P2Y12 inhibitor), but not propofol (P2Y12 antagonist).
This observational study suggests that NR is a promising
cardioprotective agent to target cardiac IRI in clinical conditions
employing opioid agonists, benzodiazepines, and platelet P2Y12

inhibitors, but not propofol (Xiao et al.).

RNA THERAPEUTICS BECOMES A NEW

FRONT IN CARDIOVASCULAR

THERAPEUTICS AND REGULATORS FOR

TRAINED IMMUNITY

The unprecedented expansion of data and information on RNA
biology has led to new RNA classes with unique functions
and unexpected modifications. The biggest challenge is to
transfer the large number of findings in basic RNA biology
into corresponding clinical RNA-based therapeutics. Lately, this
research has begun to yield positive outcomes. Schellinger et
al. reviewed significant progress on this front. RNA drugs
advance to the final phases of clinical trials or even receive U.S.
Food and Drug Administration (FDA) approval. Furthermore,
the introduction of the RNA-guided gene-editing technology,
the clustered regularly interspaced short palindromic repeats
(CRISPR), and the advances in the delivery of messenger
RNAs have triggered a significant progression in the field
of RNA-therapeutics. Short interfering RNAs and antisense
oligonucleotides especially are promising examples for novel
categories of therapeutics. However, several issues need to be
resolved, including intracellular delivery, toxicity, and immune
responses, before utilizing RNAs in a clinical setting. Schellinger
et al. provided an overview of opportunities and challenges
for clinical translation of RNA-based therapeutics, emphasizing
advances in novel delivery technologies and abdominal aortic
aneurysm (AAA) disease where non-coding RNAs have been
shown to play a crucial regulatory role (Schellinger et al.). To
facilitate the studies on TI, a comprehensive database (47) was
established, including 118 trained immunity regulators. Further
characterization of master regulators, such as NADPH oxidase

2 (NOX2) (48), nuclear factor erythroid 2 (EFE2) like basic
leucine zipper (bZIP) transcription factor 2 (NRF2) (20), hypoxia
inducible factor 1 subunit alpha (HIF1a), mechanistic target of
rapamycin kinase (mTOR), and SET domain containing 7 histone
lysine methyltransferase (SET7) (49), will allow us to use RNA
therapeutics to inhibit TI facilitated cardiovascular diseases.

CELL DEATH MAY ORCHESTRATE A

BALANCE BETWEEN TRAINED IMMUNITY-

ASSOCIATED CHRONIC

CARDIOVASCULAR INFLAMMATION AND

RESOLUTION

Cell death may orchestrate a balance between trained immunity-
promoted chronic cardiovascular inflammation and resolution
(50). Several new forms of cell death have been identified recently
in infections, inflammation (51), cancers, and cardiovascular
diseases (52), including panoptosis (53), pyroptosis (38),
necroptosis, and ferroptosis (54). Ferroptosis is a type of
regulated necrosis triggered by iron toxicity, lipid peroxidation,
and plasma membrane damage. It is distinct from apoptosis,
necroptosis, autophagy, and other types of cell death in
morphology and function. The upstream inducers of ferroptosis
can be divided into two categories (biological and chemical)
and activate two major pathways (the extrinsic/transporter
and the intrinsic/enzymatic pathways). Excessive or deficient
ferroptotic cell death is implicated in a growing list of
physiological and pathophysiological processes, coupled to a
dysregulated immune response (55). Ferroptosis is regulated by
various factors and controlled by several mechanisms, including
mitochondrial activity and metabolism of iron, lipid, and amino
acids. Accumulating evidence shows that ferroptosis is closely
related to a majority of CVDs, including cardiomyopathy,
myocardial infarction, ischemia/reperfusion injury, heart failure,
and atherosclerosis. Hu et al. summarized the current status of
ferroptosis and discusses ferroptosis as a potential therapeutic
target for CVDs (Hu et al.). Further characterization of novel
cell death pathways would lead to the future development of
therapeutics for CVD.

SEX HORMONES MAY MODULATE

TRAINED IMMUNITY AND

CARDIOVASCULAR DISEASES

Most studies on CVD have been conducted on male subjects,
and assumed that women and men have similar physiological
responses. However, the effects of sex hormones and their
respective receptors in modulating cardiovascular functions
are not uniform between men and women. The women
(56) or female rodents (57) were associated with elevated
androgen experience insulin resistance and increased risk
of CVD (58). In contrast, men are at higher risk for CVD
than women before the ages of 60 years old (59). It has
been reported that low estrogen levels in younger females
are associated with an increased risk of CVD. In addition,
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decreased estrogen levels after menopause are associated with
dyslipidemia, increased blood pressure, and CVD. Moreover,
pregnancy complications, including gestational diabetes and
preeclampsia, and endocrine disorders such as polycystic
ovarian syndrome promote CVD (60, 61). A recent report
showed distinct sex differences in neutrophil biology related
to responses to type I interferons (IFNs), immunometabolism,
and maturation status that may have prominent functional and
pathogenic implications (62). More directly, 17β-Estradiol was
reported to promote TI in females against sepsis via regulating
nucleus translocation of pro-inflammatory transcription
factor RelB (48). Testosterone was identified to play a very
important role in modulating the innate and adaptive immune
systems (63). Further characterization of the functions of sex
hormones in modulating TI relative to CVD pathogenesis would
significantly improve our understanding of sex differences

in CVDs and lead to the future development of therapeutics
for CVD.
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