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Background: Albumin, an important component of fluid balance, is associated with
kidney, liver, nutritional, and cardiovascular diseases (CVD) and is measured by blood
tests. Since fluid balance is associated with electrocardiography (ECG) changes, we
established a deep learning model (DLM) to estimate albumin via ECG.

Objective: This study aimed to develop a DLM to estimate albumin via ECG and
explored its contribution to future complications.

Materials and Methods: A DLM was trained for estimating ECG-based albumin (ECG-
Alb) using 155,078 ECGs corresponding to albumin from 79,111 patients, and another
independent 13,335 patients from an academic medical center and 11,370 patients
from a community hospital were used for internal and external validation. The primary
analysis focused on distinguishing patients with mild to severe hypoalbuminemia, and
the secondary analysis aimed to provide additional prognostic value from ECG-Alb for
future complications, which included mortality, new-onset hypoalbuminemia, chronic
kidney disease (CKD), new onset hepatitis, CVD mortality, new-onset acute myocardial
infarction (AMI), new-onset stroke (STK), new-onset coronary artery disease (CAD), new-
onset heart failure (HF), and new-onset atrial fibrillation (Afib).

Results: The AUC to identify hypoalbuminemia was 0.8771 with a sensitivity of 56.0%
and a specificity of 90.7% in the internal validation set, and the Pearson correlation
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coefficient was 0.69 in the continuous analysis. The most important ECG features
contributing to ECG-Alb were ordered in terms of heart rate, corrected QT interval, T
wave axis, sinus rhythm, P wave axis, etc. The group with severely low ECG-Alb had
a higher risk of all-cause mortality [hazard ratio (HR): 2.45, 95% CI: 1.81–3.33] and the
other hepatorenal and cardiovascular events in the internal validation set. The external
validation set yielded similar results.

Conclusion: Hypoalbuminemia and its complications can be predicted using ECG-Alb
as a novel biomarker, which may be a non-invasive tool to warn asymptomatic patients.

Keywords: artificial intelligence, electrocardiogram, deep learning, hypoalbuminemia, previvor, liver failure events

INTRODUCTION

Hepatorenal diseases are among the many potential causes of
acute kidney injury in patients with acute or chronic liver disease.
Patients who develop hepatorenal diseases usually have portal
hypertension due to cirrhosis, severe alcoholic hepatitis, or, less
often, metastatic tumors (1–3). They also frequently occur in
patients with acute liver disease (4), and these patients usually die
within a few weeks of the onset of kidney functional impairment
if not subjected to immediate intervention (5).

Albumin (Alb) is a protein made by the liver that normally
ranges from 3.5 to 5.0 g/dL in adult humans (6) and it
represents the hepatorenal status in adult humans. Across
disease states, serum Alb concentrations decrease as a result
of reduced synthesis and/or increased catabolism such that
the protein is considered a negative acute phase reactant (7).
Hypoalbuminemia (Alb ≤ 3.5 g/dL) may be a leading biomarker
for future hepatorenal diseases in clinical practice (8). Moreover,
hypoalbuminemia is also related to nutritional deterioration and
disease-related inflammatory responses (9). Previous studies also
mentioned the important role of hypoalbuminemia in future
cardiovascular events (10). The prevalence of hypoalbuminemia
is greater than 70% among elderly hospitalized patients (11),
which emphasizes the importance of intensive Alb management.

Although acute hypoalbuminemia may need to be
rapidly corrected by albumin and furosemide to manage
potential adverse events (12, 13), the treatment of chronic
hypoalbuminemia requires focusing on the underlying causes
(14). Considering that chronic hypoalbuminemia is common
in clinical practice, serum Alb may be an important indicator
to remind doctors to notice potential complications. However,
serum Alb tests are usually only conducted for suspected
malnutrition or hospitalization, which may lead to missing
potential cases in patients with subtle symptoms.

Electrocardiogram (ECG) is a non-invasive and convenient
way to detect electrical changes at the skin surface when
cardiomyocytes depolarize. Hypoalbuminemia may cause edema
leading to low voltage on the ECG (15). The ECG findings
associated with lower serum Alb levels include abnormal QTc
intervals (16). Although these ECG electrical changes may be
associated with hypoalbuminemia, it is still difficult to identify
hypoalbuminemia by ECG even among experienced physicians.

With developments of deep learning models (DLMs), DLM-
enabled ECG is a powerful tool for detecting acute myocardial

infarction (17), digoxin toxicity (18), dyskalemias (19), and
diabetes mellitus (20). Moreover, a previous study demonstrated
that artificial intelligence (AI)-enabled ECG was able to extract
predictors of left ventricular dysfunction in patients with a
normal ejection fraction (21). AI-enabled ECG also identified a
high mortality risk group among patients with normal serum
potassium concentrations (22). Moreover, ECG can also be used
to predict heart age as a measure of cardiovascular health, and
the difference between ECG age and actual age can be used as a
biomarker of the risk of death (23). With the help of AI, ECG can
not only predict the risk of future disease in healthy people but
also enable early preventive interventions to reduce the risk of
disease to achieve the purpose of primary prevention for health
promotion and special protection.

Therefore the aim of this study was to employ DLM to analyze
ECGs for hypoalbuminemia detection. We hypothesized that AI-
enabled ECG might also be able to detect hypoalbuminemia if a
large annotated database is available, which would help to manage
hepatorenal and CVD. Since ECG includes plentiful physical
information related to predictors of future cardiovascular
diseases, it may also provide additional information on future
hepatorenal and CVD. This study aimed to train a DLM to
predict Alb using ECG as a novel biomarker called ECG-Alb
and to explore its contribution to all-cause mortality, new-
onset hypoalbuminemia, new-onset CKD, new-onset hepatitis,
CVD mortality, new-onset AMI, new-onset STK, new-onset
CAD, new-onset HF, and new-onset Afib in patients with
normal serum Alb.

MATERIALS AND METHODS

Data Source and Population
This study was reviewed and approved by the institutional ethics
committee of the Tri-Service General Hospital (C202105049).
We conducted a retrospective study to develop a DLM and to
internally and externally validate its performance. The ECGs
from two hospitals, an academic medical center at Neihu District
(hospital A) and a community hospital at Zhongzheng District
(hospital B), in the Tri-Service General Hospital System, were
collected from January 1, 2010 to September 30, 2021. Each ECG
was annotated by the nearest Alb concentration ranging from 2.0
to 5.0 g/dL. ECGs without Alb tests within 30 days were excluded
from this study.
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FIGURE 1 | Development, tuning, internal validation, and external validation set generation and ECG labeling of albumin. Schematic of the dataset creation and
analysis strategy, which was devised to assure a robust and reliable dataset for training, validating, and testing of the network. Once a patient’s data were placed in
one of the datasets, that individual’s data were used only in that set, avoiding “cross-contamination” among the training, validation, and test datasets. The details of
the flow chart and how each of the datasets was used are described in “Materials and Methods”.

As shown in Figure 1, we designed the following methods
for model development and validation of the DLM. In hospital
A, a total of 92,446 patients had at least one ECG and Alb
pair in this study. Next, the 71,196 patients who visited hospital
A after January 1, 2017 were assigned to the development set,
which provided 155,078 ECG records for DLM training. The
7,915 patients from January 1, 2016 to December 31, 2016 were
assigned to the training set, which provided 33,292 ECGs for
guiding the training process and selecting the critical operating
point for diagnosis. Finally, 13,335 patients before December
31, 2015 were assigned to the internal validation set, which
only provided ECGs to conduct the accuracy test and follow-up
analysis. To verify the extrapolation of the DLM, we also collected
11,370 patients from hospital B with the same inclusion criteria as
hospital A for the external validation set.

Data Collection
In the ECG dataset, we identified patients with at least
one standard digital, 500 Hz frequency, 10 s, 12-lead ECG
acquired in the supine position during the study period.
Alb was measured using the bromocresol green method
in the central laboratory. The DLM was trained via raw
ECG traces. The quantitative measurements and abnormal
findings of the ECG were extracted as 31 diagnostic
pattern classes and 8 continuous ECG measurements (20).
The missing values of the ECG measurement data were
imputed using multiple imputations (24). The 31 clinical
diagnosis patterns were parsed from the structured findings
statements on the basis of the key phrases that are standard
within the Philips system. Mild, moderate, and severe
hypoalbuminemia were defined as albumin (Alb) of ≤ 3.5, ≤ 3.0,
and ≤ 2.5, respectively.

In addition to Alb measurements and 12-lead ECGs, we
also collected the relevant blood laboratory values, including
glucose (GLU), liver and renal function profiles, c-reactive
protein (CRP), complete blood cell count, and lipid profiles. The
most recent laboratory test was obtained after enrollment. The
disease histories were based on the corresponding International
Classification of Diseases, Ninth Revision and Tenth Revision
(ICD-9 and ICD-10, respectively) as follows: diabetes mellitus
(DM, ICD-9 codes 250.x and ICD-10 codes E08.x to E13.x),
hypertension (HTN, ICD-9 codes 401.x to 404.x and ICD-
10 codes I10.x to I16.x), hyperlipidemia (HLP, ICD-9 codes
272.x and ICD-10 codes E78.x), chronic kidney disease (CKD,
ICD-9 codes 585.x and ICD-10 codes N18.x), acute myocardial
infarction (AMI, ICD-9 codes 410.x and ICD-10 codes I21.x),
stroke (STK, ICD-9 codes 430.x to 438.x and ICD-10 codes
I60.x to I63.x), coronary artery disease (CAD, ICD-9 codes 410.x
to 414.x, and 429.2, and ICD-10 codes I20.x to I25.x), heart
failure (HF, ICD-9 codes 428.x and ICD-10 codes I50.x), atrial
fibrillation (Afib, ICD-9 codes 427.31 and ICD-10 codes I48.x),
and chronic obstructive pulmonary disease (COPD, ICD-9 codes
490.x to 496.x and ICD-10 codes J44.9).

The complications of interest in this study were all-cause
mortality, new-onset hypoalbuminemia, new-onset CKD, new-
onset hepatitis, CVD mortality, new-onset AMI, new-onset STK,
new-onset CAD, new-onset HF, and new-onset Afib. For all-
cause and CVD mortality, the survival time was calculated
with reference to the date of ECG. Patient status (dead/alive)
was defined through electronic medical records, which were
updated by each hospital activity. Moreover, data for alive
visits were censored at the patient’s last known hospital alive
encounter to limit bias from incomplete records. A new-onset
hypoalbuminemia event was defined as a record of the
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TABLE 1 | Baseline characteristics.

Development set Training set Internal validation set External validation set P-value

Albumin profile

Alb (g/dL) 3.6 ± 0.7 3.5 ± 0.6 4.1 ± 0.6 3.6 ± 0.6 <0.001

Alb ≤ 2.5 10,905 (7.0%) 2,469 (7.4%) 278 (2.1%) 612 (5.4%) <0.001

2.5 < Alb ≤ 3.0 21,657 (14.0%) 5,779 (17.4%) 820 (6.1%) 1,517 (13.3%) <0.001

3.0 < Alb ≤ 3.5 35,196 (22.7%) 9,698 (29.1%) 1,735 (13.0%) 2,928 (25.8%) <0.001

3.5 < Alb 87,320 (56.3%) 15,346 (46.1%) 10,502 (78.8%) 6,313 (55.5%) <0.001

Demography

Sex (male) 90,559 (58.4%) 18,371 (55.2%) 7,535 (56.5%) 6,040 (53.1%) <0.001

Age (years) 62.7 ± 18.0 69.2 ± 15.9 55.6 ± 18.1 68.2 ± 17.1 <0.001

BMI (kg/m2) 24.2 ± 4.3 24.0 ± 4.4 24.3 ± 4.1 24.2 ± 4.3 <0.001

SBP (mmHg) 131.0 ± 27.0 137.0 ± 29.6 130.4 ± 26.2 137.3 ± 28.7 <0.001

DBP (mmHg) 77.5 ± 17.2 76.3 ± 18.9 78.0 ± 16.0 76.3 ± 18.1 <0.001

Disease history

DM 39,627 (25.6%) 13,915 (41.8%) 2,535 (19.0%) 3,891 (34.2%) <0.001

HTN 55,492 (35.8%) 20,182 (60.6%) 4,189 (31.4%) 6,063 (53.3%) <0.001

HLP 46,972 (30.3%) 18,040 (54.2%) 2,077 (15.6%) 3,388 (29.8%) <0.001

CKD 46,401 (29.9%) 15,920 (47.8%) 3,545 (26.6%) 4,807 (42.3%) <0.001

AMI 8,240 (5.3%) 3,204 (9.6%) 233 (1.7%) 265 (2.3%) <0.001

STK 23,872 (15.4%) 8,288 (24.9%) 1,434 (10.8%) 2,440 (21.5%) <0.001

CAD 33,427 (21.6%) 12,832 (38.5%) 2,253 (16.9%) 2,957 (26.0%) <0.001

HF 18,817 (12.1%) 7,952 (23.9%) 936 (7.0%) 1,424 (12.5%) <0.001

Afib 9,630 (6.2%) 4,233 (12.7%) 435 (3.3%) 694 (6.1%) <0.001

COPD 20,085 (13.0%) 8,116 (24.4%) 1,709 (12.8%) 2,781 (24.5%) <0.001

Laboratory data

GLU (mg/dL) 155.2 ± 97.0 160.5 ± 99.3 129.1 ± 74.3 155.5 ± 99.1 <0.001

HbA1c (%) 6.9 ± 1.9 6.5 ± 1.6 6.1 ± 1.4 6.5 ± 1.6 <0.001

TG (mg/dL) 120.3 ± 83.0 120.6 ± 86.1 120.3 ± 81.5 118.9 ± 85.6 0.309

TC (mg/dL) 159.9 ± 47.7 150.9 ± 45.1 171.8 ± 42.4 156.5 ± 44.5 <0.001

LDL (mg/dL) 97.4 ± 38.1 86.8 ± 36.0 103.6 ± 35.5 92.0 ± 35.9 <0.001

HDL (mg/dL) 44.7 ± 15.7 42.2 ± 14.8 47.8 ± 14.8 44.0 ± 14.8 <0.001

eGFR (mL/min) 72.9 ± 34.8 56.8 ± 35.5 84.3 ± 30.2 68.5 ± 30.6 <0.001

BUN (mg/dL) 25.8 ± 24.7 33.0 ± 28.9 18.8 ± 17.0 23.9 ± 21.2 <0.001

AST (U/L) 43.1 ± 158.4 47.5 ± 173.4 29.1 ± 76.5 38.0 ± 154.5 <0.001

ALT (U/L) 38.3 ± 131.0 36.8 ± 133.5 27.3 ± 51.8 32.7 ± 107.0 <0.001

CRP (mg/L) 6.0 ± 7.8 4.6 ± 6.7 2.4 ± 4.8 4.5 ± 6.8 <0.001

WBC (103/µL) 8.9 ± 7.3 9.4 ± 5.4 7.6 ± 5.1 9.3 ± 6.6 <0.001

PLT (103/µL) 226.9 ± 95.7 215.4 ± 95.4 230.5 ± 76.4 216.2 ± 86.1 <0.001

Hb (mg/dL) 12.3 ± 2.6 11.7 ± 2.6 13.3 ± 2.3 12.5 ± 2.5 <0.001

Alb, albumin; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; DM, diabetes mellitus; HTN, hypertension; HLP, hyperlipidemia; CKD,
chronic kidney disease; AMI, acute myocardial infarction; STK, stroke, CAD, coronary artery disease; HF, heart failure; AF, atrial fibrillation; COPD, chronic obstructive
pulmonary disease; GLU, glucose; HbA1c, glycated hemoglobin; TG, triglyceride; TC, total cholesterol; LDL, low-density lipoprotein cholesterol; HDL, high-density
lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; AST, aspartate aminotransferase; ALT, alanine aminotransferase; CRP,
C-reactive protein; WBC, white blood cell count; PLT, platelet; Hb, hemoglobin.

corresponding ICD codes, with at least 1 record of estimated
albumin ≤ 3.5 g/dL. A new-onset CKD event was defined as a
record of the corresponding ICD codes, with at least 2 records
of estimated glomerular filtration rate (eGFR) ≤ 60 mL/min, or
markers of kidney damage (Alb to creatinine ratio ≥ 30 mg/g
or positive urine strip test). A new-onset hepatitis event was
defined as a record of corresponding ICD codes, at least 1
record of estimated aspartate aminotransferase (AST) or alanine
aminotransferase (ALT) > 80 U/L, or Alb Globulin Ratio
(A/G) < -1. New-onset CVD events (such as AMI, STK, CAD,

HF, Afib) are defined as when the patient was first diagnosed
and documented by ICD codes in our hospital electronic medical
records. Patients meeting any of the above criteria before the date
of the ECG were excluded and defined as having a disease history.

Deep Learning Model Training
We use the developed ECG12Net, which is an 82-layer
convolutional neural network proposed previously (17–19, 25).
In this study, we applied the same architecture to train a DLM
to estimate ECG-Alb. We used the same training details as in
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FIGURE 2 | Predicted albumin (ECG-Alb) and actual Alb. (A) Scatter plots of ECG-Alb compared to the actual Alb. The x-axis indicates the actual lab measured Alb,
and the y-axis presents the ECG-Alb. Red points represent the highest density, followed by yellow, green light blue, and dark blue. We presented the mean
difference (Diff), Pearson correlation coefficients (COR), and mean absolute errors (MAE) to demonstrate the accuracy of the DLM. The black lines with 95%
conference intervals are fitted via simple linear regression. (B) The distributions of Alb in the internal and external validation sets. The color gradient from white to red
demonstrates the ECG-Alb from normal to low. The top panel shows the original distribution of each dataset, and the bottom panel shows the distribution of
ECG-Alb for each actual Alb value.

previous studies (17–20). We used the oversampling process
based on the inverse prevalence of each Alb interval based on
0.2 g/dL from 2.0 to 5.0 g/dL in the development set.

Statistical Analysis and Model
Performance Assessment
Patient characteristics are presented as the means and
standard deviations, numbers of patients, or percentages
where appropriate. All statistical analyses were completed in
R version 3.4.4. The significance level was set as p < 0.05.
Scatter plots with mean difference and standard deviation
(Diff), Pearson correlation coefficient (r), and mean absolute
error (MAE) were used to compare the actual Alb and ECG-
Alb. Moreover, the diagnostic value for mild, moderate, and
severe hypoalbuminemia was determined in the internal and

external validation sets. The area under the ROC curve (AUC),
sensitivity (Sens.), specificity (Spec.), positive predictive value
(PPV), and negative predictive value (NPV) are presented.
The operating point was selected based on the maximum
of Yunden’s index in the training set. Due to the different
distributions of Alb in the internal and external validation
sets, we generated a balanced dataset for each set to ensure the
same number of cases for different values of Alb. Moreover,
the results of the XGB model are presented, which provided
corresponding variable importance rankings to explore the
relationship between explainable features and ECG-Alb.
Finally, we used multivariable Cox proportional hazard
models to analyze the relationship between the baseline
characteristics and the outcomes of interest. Hazard ratios
(HRs) and 95% confidence intervals (95% CIs) were used
for comparisons.
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FIGURE 3 | The ROC curve of DLM predictions based on ECG to detect mild to severe hypoalbuminemia. Mild, moderate, and severe hypoalbuminemia were
defined as an actual albumin (Alb) of ≤ 3.5, ≤ 3.0, and ≤ 2.5, respectively. The operating point was selected based on the maximum Youden’s index in the tuning set
and presented using a circle mark, and the area under the ROC curve (AUC), sensitivity (Sens.), specificity (Spec.), positive predictive value (PPV), and negative
predictive value (NPV) were calculated based on it. Due to the different distributions of Alb in the internal and external validation sets, we generated a balanced
dataset for each set to ensure the same number of cases for different values of Alb.

RESULTS

Table 1 shows the distribution of the basic demographic
characteristics, Alb, disease history and laboratory data in
the development set, training set, internal validation set and
external validation set. Importantly, the internal validation set
was significantly younger than the other groups, with a lower
proportion of disease history and better laboratory values.

The scatter plot of Lab-Alb vs. ECG-Alb is presented in
Figure 2A. The MAE of Lab-Alb and ECG-Alb in the internal
validation set was 0.38 with a correlation of 0.69 and a Diff
of 0.00 ± 0.49, and the crude accuracy was slightly reduced
in the external validation set (MAE = 0.45, r = 0.57, and
Diff = 0.01 ± 0.57). The top panel of Figure 2B shows the

actual distribution of Lab-Alb in the internal and external sets,
which shows that most patients in the internal validation set
had a Lab-Alb of ≥ 4.0 g/dL, but most patients in the external
validation set had a Lab-Alb of 3.0–4.0 g/dL. This implied that
there were more subhealthy patients in the external validation
set, leading to a lower crude accuracy compared to the internal
validation set. To use the balance distribution to visualize the
distribution of ECG-Alb for each Lab-Alb value, the proportions
in the internal and external validation sets were similar, as shown
in the bottom panel.

Figure 3 shows the accuracy of the DLM for detecting
mild, moderate, and severe hypoalbuminemia. The AUC of mild
hypoalbuminemia detection was 0.8771, with a Sens of 56.0%, a
Spec of 90.7%, a PPV of 62.0%, and an NPV of 88.4%. The AUC
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FIGURE 4 | Relationship between the selected ECG features and predicted albumin (ECG-Alb). The related importance is based on the information gain of the XGB
model, and the R-square (R-sq) is the coefficient of determination to use selected ECG features for predicting ECG-Alb. The AI-ECG predictions were classified as
normal ECG-Alb, low ECG-Alb, and severe low ECG-Alb based on the operating points, as in the previous ROC curve analysis. The analyses are conducted both in
internal and external validation sets (∗p for trend < 0.05; ∗∗∗p for trend < 0.001).

values were similar for detecting moderate (0.8758) and severe
(0.8788) cases. The crude accuracies in the external validation
were much lower than those in the internal validation set (mild
hypoalbuminemia, AUC = 0.78, Sens = 63.3%, Spec = 68.9%,
PPV = 68.9%, NPV = 72.4%), which may be due to more
subhealthy patients in the external validation set. We conducted
balance analysis for each set based on the distributions presented
in Figure 2B, and the accuracies of the internal and external
validation sets were similar in detecting mild, moderate, and
severe cases, which implied that the difference in crude accuracies
might be primarily due to the inconsistent original Lab-Alb
distribution. Interestingly, the AUCs were lower in detecting
severe cases than in detecting mild cases in both the internal and
external validation sets, which may indicate that major changes
in ECG were present in patients with a Lab-Alb of ≤ 3.5 g/dL.

The details of importance between all ECG features and
ECG-Alb based on the information gain of the XGB model are
shown in Supplementary Figure 1. The R-squared values were
67.88 and 57.90% based on all traditional ECG features in the
internal and external validation sets, respectively. We selected the
most important 9 ECG features related to ECG-Alb as shown
in Figure 4, and the R-squares were similar compared to the
use of all ECG features (67.11%/56.77% in the internal/external

validation set). The most important ECG features contributing
to ECG-Alb were ordered as heart rate, corrected QT interval,
T wave axis, sinus rhythm, P wave axis, etc., in the internal
validation set. The heart rate of the severe low group was the
highest, followed by the low group and the normal group. The
heart rate, corrected QT interval, and low QRS voltage (%) were
higher in the severe low ECG-Alb group, but the T wave axis was
higher in the low ECG-Alb group.

Figure 5 and Supplementary Figure 2 show the prognostic
value of ECG-Alb in patients with an initially normal serum Alb
to emphasize the additional prognostic value of ECG-Alb. Table 2
summarized the risk in patients with severe low, low, and normal
ECG-Alb on hepatorenal and cardiovascular events. Severe low
ECG-Alb group had significant higher risk compared to the
normal ECG-Alb group with an HR of 2.45 (95% CI: 1.81–3.33)
on all-cause mortality in the internal validation set, and obvious
dose-effect relationship was also presented from the HR of the
low ECG-Alb group (1.43, 95% CI: 1.02–2.00) to the HR of the
severe low ECG-Alb group. This relationship was also validated
in the external validation set. Other hepatorenal events and
found a similar trend in new-onset hypoalbuminemia, new-onset
CKD, and new-onset hepatitis. The cardiovascular events, CVD
mortality, new-onset AMI, new-onset STK, new-onset CAD,
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FIGURE 5 | Long-term incidence of developing new-onset malnutrition events in patients with an initially normal albumin (Alb) of > 3.5 g/dL stratified by AI-ECG
prediction. The AI-ECG predictions were classified as normal ECG-Alb (yellow line), low ECG-Alb (pink line), and severe low ECG-Alb (burgundy line) based on the
operating points, as in the previous ROC curve analysis. The analyses were conducted both in the internal and external validation sets. The table shows the at-risk
population and cumulative risk for the given time intervals in each risk stratification.

new-onset HF, and new-onset Afib, were also associated with
lower ECG-Alb groups. The additional adjustment considering
sex, age, BMI, SBP, SBP, HDL, LDL, DM, Alb also shows the
similar trend, which revealed the ability of ECG-Alb to identify
hepatorenal and CVD predictors.

DISCUSSION

The DLM-enabled ECG accurately predicted Lab-Alb to identify
mild to severe hypoalbuminemia. Interestingly, the initial
external validation showed a significant reduction in AUCs,
but the AUCs were revised in balance distribution analysis.
Importantly, ECG-Alb provided additional information on
clinical outcomes. Patients with lower EGC-Alb had a higher
risk of adverse events, such as all-cause mortality, new-onset
hypoalbuminemia, new-onset CKD, new-onset hepatitis, CVD
mortality, new-onset AMI, new-onset STK, new-onset CAD,
new-onset HF, and new-onset Afib. To the best of our knowledge,
this is the first study of an AI-ECG system to estimate Lab-Alb.

Blood albumin plays important roles in cardiac function.
Previous studies revealed that hypoalbuminemia might lead
to edema (26), pulmonary congestion (27), myocardial
edema and deterioration of myocardial function (28),

diuretic resistance and fluid retention (29), and loss of
antioxidant functions and anti-inflammatory functions
(30). The heart rate may become elevated when fluid
retention occurs, consistent with our findings. Moreover,
the QRS amplitude was significantly increased in human
studies after albumin infusions. QRS amplitude changes
are caused by changes in the serum protein concentration
(22). There is also evidence that low serum albumin can
lead to changes in QRS amplitudes (31). Hypoalbuminemia
was also associated with prolonged QT intervals and T
waves with a deceleration accentuated by T waves (16, 32).
Therefore, patients with low serum albumin may be detected
by the related ECG changes. However, human experts cannot
diagnose hypoalbuminemia via ECG. AI-enabled ECG provided
an opportunity to reveal the relationship between ECG
and Lab-Alb, which revealed new medical knowledge of
ECG in this study.

The accuracy of AI-ECG was initially significantly reduced in
the external analysis, which was often encountered in previous
AI-ECG studies. A DLM was trained at the Mayo Clinic to
identify subjects with left ventricular dysfunction and initially
achieved a sensitivity of 0.86, a specificity of 0.86, and an AUC
of 0.93 (21). However, further study showed a lower AUC of
0.82 in Russia (33). The possible reason for this reduction might
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TABLE 2 | Cox proportional hazards model HR and 95% CI Estimates for new-onset hepatorenal and cardiovascular events in different adjustment model.

Model 1 Model 2

Normal ECG-Alb Low ECG-Alb Severe low ECG-Alb Normal ECG-Alb Low ECG-Alb Severe low ECG-Alb

Internal validation set

All-cause mortality Reference 1.43 (1.02, 2.00) 2.45 (1.81, 3.33) Reference 1.40 (1.00, 1.97) 2.37 (1.74, 3.23)

New-onset hypoalbuminemia Reference 1.57 (1.33,1.86) 1.79 (1.33, 1.86) Reference 1.49 (1.26,1.77) 1.65 (1.37, 1.97)

New-onset CKD Reference 1.73 (1.42, 2.09) 2.08 (1.68, 2.58) Reference 1.60 (1.32, 1.94) 1.96 (1.59, 2.44)

New-onset hepatitis Reference 1.56 (1.15, 2.12) 1.71 (1.22, 2.40) Reference 1.46 (1.07, 1.98) 1.59 (1.13, 2.23)

CVD mortality Reference 1.93 (0.84, 4.43) 5.17 (2.64, 10.13) Reference 1.65 (0.71, 3.81) 4.56 (2.31, 8.98)

New-onset AMI Reference 1.49 (0.89, 2.49) 1.79 (1.04, 3.08) Reference 1.34 (0.80, 2.25) 1.57 (0.91, 2.71)

New-onset STK Reference 1.48 (1.11, 1.97) 1.23 (0.88, 1.73) Reference 1.42 (1.06, 1.89) 1.19 (0.85, 1.68)

New-onset CAD Reference 1.77 (1.41, 2.22) 1.43 (1.08, 1.90) Reference 1.72 (1.37, 2.16) 1.37 (1.03, 1.82)

New-onset HF Reference 1.96 (1.44, 2.68) 3.21 (2.38, 4.34) Reference 1.87 (1.37, 2.55) 3.06 (2.26, 4.15)

New-onset Afib Reference 2.69 (1.97, 3.69) 3.17 (2.29, 4.40) Reference 2.61 (1.90, 3.58) 3.11 (2.24, 4.32)

External validation set

All-cause mortality Reference 1.57 (1.18, 2.09) 2.40 (1.84, 3.13) Reference 1.62 (1.22, 2.16) 2.45 (1.87, 3.20)

New-onset hypoalbuminemia Reference 1.45 (1.25, 1.68) 1.46 (1.26, 1.70) Reference 1.46 (1.26, 1.70) 1.77 (1.52, 2.06)

New-onset CKD Reference 1.57 (1.33, 1.85) 1.62 (1.35, 1.95) Reference 1.54 (1.30, 1.82) 1.60 (1.33, 1.92)

New-onset hepatitis Reference 1.86 (1.42, 2.44) 1.67 (1.23, 2.25) Reference 1.86 (1.41, 2.44) 1.61 (1.19, 2.18)

CVD mortality Reference 2.07 (1.02, 4.22) 3.61 (1.91, 6.83) Reference 2.11 (1.03, 4.31) 3.75 (1.97, 7.15)

New-onset AMI Reference 1.47 (0.93, 2.33) 1.50 (0.91, 2.46) Reference 1.48 (0.94, 2.36) 1.53 (0.93, 2.51)

New-onset STK Reference 0.83 (0.59, 1.16) 1.47 (1.10, 1.98) Reference 0.82 (0.59, 1.15) 1.49 (1.11, 1.99)

New-onset CAD Reference 1.17 (0.92, 1.49) 1.16 (0.90, 1.51) Reference 1.15 (0.90, 1.47) 1.18 (0.91, 1.47)

New-onset HF Reference 2.53 (1.95, 3.29) 2.32 (1.74, 3.09) Reference 2.52 (1.94, 3.28) 2.30 (1.72, 3.07)

New-onset Afib Reference 2.44 (1.81, 3.31) 2.47 (1.79, 3.40) Reference 2.40 (1.78, 3.25) 2.48 (1.79, 3.43)

Model 1: sex, age, Alb adj HR.
Model 2: sex, age, BMI, SBP, SBP, HDL, LDL, DM, Alb adj HR.

be due to inconsistent demographic distributions in different
populations. A previous study found that gender imbalance
led to a decrease in the performance of the model (34).
Fortunately, the sex distribution in this study was similar in the
internal and external validation sets. However, the population
in the external validation set was older than that in the
internal validation set, with a higher prevalence of chronic
diseases and cardiopulmonary diseases, which may also cause
AUC reduction. We thought that the AUC reduction might
be due to inconsistent Lab-Alb distributions between the two
validation sets. The Lab-Alb was largely concentrated above
4 g/dL in the internal validation set, which resulted in better
differentiation of the model in the classification with a cut
point of 3.5 g/dL. In contrast, the concentration of Lab-Alb
in the external validation set was primarily distributed from
3 to 4 g/dL. Therefore, it was harder to distinguish patients
with a Lab-Alb of ≤ 3.5 g/dL in the external validation set.
The AUCs in the internal and external analyses were similar
after Lab-Alb distribution adjustment. This study revealed a
new possibility to explain the performance reduction in external
analysis. Future studies should consider investigating disease
severity in similar situations.

Serum albumin concentration is an important indicator of
mortality risk in many populations, including healthy subjects
and patients with acute or chronic illness. The risk of mortality
increased from 24 to 56% for each 0.25 g/dL decrement
in serum albumin concentration (35). Low albumin levels at

admission were associated with increased short- and long-
term mortality in hospitalized patients (36). Hypoalbuminemia
was associated with increased 30-day all-cause mortality in
acutely admitted medical patients (37). Moreover, Serum
albumin is also a well-known biomarker of CVD and adverse
cardiovascular events (10). ECG-Alb also contributed to
predictions of future hepatorenal and cardiovascular events
in this study, especially in false-positive predictions among
patients with normal Lab-Alb. AI-ECG-positive patients without
left ventricular dysfunction had a four-fold higher risk of
developing future left ventricular dysfunction than those with
negative screens (21). A similar phenomenon was shown
in AI-ECG-K+ research in which ECG-based hypo- and
hyperkalemia provided additional information on all-cause
mortality, hospitalizations, and emergency department revisits
(22). Moreover, the predicted ECG-age gap from chronological
age was also a mortality risk predictor (23), and further study
revealed that it was associated with more CVD-related outcomes
(38). The consistent findings of this study validated that AI-
ECG may identify the extensive CVD predictors mentioned in a
previous study (39).

Certain limitations should be mentioned. First, this study was
a retrospective study. A prospective study is needed to validate
its efficacy in the community. Second, a low-sensitivity ECG-
Alb, which is not recommended for risk-scanning procedures.
On the other hand, ECG-Alb has a specificity of 90.7%, which
is comparable to a positive predictive value of more than 60%.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 June 2022 | Volume 9 | Article 895201

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-895201 June 6, 2022 Time: 16:48 # 10

Lee et al. AI-Enabled ECG for Hepatorenal and Cardiovascular Events

Third, ECG characteristics may vary in different races (40). An
international study involving diverse racial and ethnic groups is
necessary to validate the accuracy of ECG-Alb. fourth, although
ECG-Alb was associated with a higher risk of hepatorenal
diseases, it is not a feasible way to treat abnormal ECG-Alb.
Finally, our ECG-Alb must become more transparent due to the
DLM’s “black box” (41). The correlation and explainability of
ECG features with hypoalbuminemia needs to be investigated
in future studies.

CONCLUSION

In conclusion, our ECG-Alb is a new management tool
for hepatorenal diseases, including hypoalbuminemia warning
and future hepatorenal and cardiovascular event prediction.
It provides a simple, low-cost, and non-invasive method
to monitor the serum albumin concentration. Moreover, we
provided an opinion to explain the reduction of model
accuracy in the external analysis, which may be considered in
future DLM studies.
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