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Anthracyclines (ANTs) are a class of anticancer drugs widely used in oncology. However,
the clinical application of ANTs is limited by their cardiotoxicity. The mechanisms
underlying ANTs-induced cardiotoxicity (AIC) are complicated and involve oxidative
stress, inflammation, topoisomerase 2β inhibition, pyroptosis, immunometabolism,
autophagy, apoptosis, ferroptosis, etc. Ferroptosis is a new form of regulated cell death
(RCD) proposed in 2012, characterized by iron-dependent accumulation of reactive
oxygen species (ROS) and lipid peroxidation. An increasing number of studies have
found that ferroptosis plays a vital role in the development of AIC. Therefore, we aimed
to elaborate on ferroptosis in AIC, especially by doxorubicin (DOX). We first summarize
the mechanisms of ferroptosis in terms of oxidation and anti-oxidation systems. Then,
we discuss the mechanisms related to ferroptosis caused by DOX, particularly from the
perspective of iron metabolism of cardiomyocytes. We also present our research on the
prevention and treatment of AIC based on ferroptosis. Finally, we enumerate our views
on the development of drugs targeting ferroptosis in this emerging field.

Keywords: ferroptosis, doxorubicin, iron, treatment, mechanism, cardiotoxicity

Abbreviations: ANT, anthracyclines; RCD, regulated cell death; ROS, reactive oxygen species; PUFA, polyunsaturated fatty
acids; GSH, glutathione; GPX4, glutathione peroxidase 4; FSP1, ferroptosis suppressor protein 1; CoQ10, coenzyme Q10;
NADPH, nicotinamide adenine dinucleotide phosphate; GCH1, GTP cyclohydrolase-1; BH4, tetrahydrobiopterin; AIC,
anthracycline-induced cardiotoxicity; DIC, doxorubicin-induced cardiomyopathy; DOX, doxorubicin; CVDs, cardiovascular
diseases; DFO, deferoxamine; Fe3+, ferric iron; Tf, transferrin; TfR1, transferrin receptor 1; Fe2+, ferrous iron; DMT1,
divalent metal transporter 1; FPN, ferroportin; LIP, labile iron pool; LOX, lipoxygenase; FTH, ferritin heavy chain; IRP,
iron regulatory protein; IREs, iron-responsive elements; HO-1, heme oxygenase 1; O2•−, active oxygen; OH•, hydroxyl
radical; PL•, phospholipid radical; PLOO•, phospholipid peroxyl radical; PLOOH, phospholipid hydroperoxide; MDA,
malondialdehyde; Cys, cysteine; Nrf2, nuclear factor (erythroid-derived 2)-like 2; AMPK, AMP-activated protein kinase;
HMGB1, high mobility group box 1; DXZ, dexrazoxane; ABCB8, ABC protein-B8; RTA, radical-trapping antioxidant; α-
TOH, α-tocopherol; Fer-1, ferrostatin-1; SOD, superoxide dismutase; Trx, thioredoxin; TrxR, thioredoxin reductase; HETE,
hydroxyeicosatetraenoic acid; PE, phosphatidylethanolamine; PRMT4, protein arginine methyltransferase 4.
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INTRODUCTION

With the advancements in medical technology, while the survival
time of cancer patients has been prolonged, cardiovascular
toxicity has become one of the most severe complications of
cancer treatment (1, 2). Studies have shown that cancer survivors
are at an eight-times higher risk of developing cardiovascular
disease (CVD) than the general population (3). Anthracyclines
(ANTs) are a class of chemotherapy drugs commonly used
in clinical practice that significantly improve the survival rate
of patients. However, the use of ANTs is restricted due to
their cardiotoxic effects (2, 4). The incidence of left ventricular
dysfunction, which is up to 48%, is positively correlated with
dose (2). In some cancer survivors, the death rate of CVDs
even exceeds that of their primary cancers (5). Therefore,
it is necessary to explore the mechanism of cardiotoxicity
caused by cancer therapy. The mechanisms of ANTs-induced
cardiotoxicity (AIC) involve oxidative stress, inflammation,
topoisomerase 2β inhibition, pyroptosis, immunometabolism,
autophagy, apoptosis, etc. (6–8). Besides, in recent years, more
and more studies have shown that ferroptosis plays a vital role
in AIC (9, 10). Inhibiting the ferroptosis of cardiomyocytes can
reduce AIC, which may be a novel prevention and treatment
strategy in cardio-oncology.

Ferroptosis is a new form of regulated cell death (RCD)
different from apoptosis, necrosis, necroptosis, pyroptosis,
and autophagy. It is characterized by iron overload and
reactive oxygen species (ROS) accumulation, resulting in lipid
peroxidation of cell membranes (11, 12). A few decades ago,
it was demonstrated that glutamate could inhibit the uptake
of cystine, leading to a decrease in glutathione (GSH) levels
within cells, thereby causing oxidative death of cells, and termed
this process as “oxytosis” (13, 14). We believe that doxorubicin
(DOX) can induce ferroptosis in cardiomyocytes through the
following mechanisms: firstly, by regulating iron homeostasis-
related proteins and iron-responsive elements (IREs)/iron
regulatory proteins (IRPs), leading to increased iron levels
in cardiomyocytes; secondly, DOX can increase ROS, thereby
causing cell membrane lipid peroxidation. The nuclear factor
(erythroid-derived 2)-like 2 (Nrf2) signaling pathway plays an
important role. As the central organelle for ROS generation
and the site where iron accumulation may occur, mitochondria
are crucial for developing doxorubicin-induced cardiomyopathy
(DIC). Further, we summarize the current treatments to prevent
and treat AIC by inhibiting the ferroptosis of cardiomyocytes.
Finally, we provide our future perspectives on this emerging field.

MECHANISMS OF FERROPTOSIS

Ferroptosis is an iron-dependent lipid peroxidation induced
novel RCD, caused by redox imbalances between the oxidant
and antioxidant systems. Antioxidant systems include the
Cyst(e)ine-GSH-glutathione peroxidase 4 (GPX4) pathway, the
ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 (CoQ10)-
nicotinamide adenine dinucleotide phosphate (NADPH)

pathway, the GTP cyclohydrolase-1 (GCH1)-tetrahydrobiopterin
(BH4) pathway, etc. (15, 16). Intracellular iron overload is a
necessary condition for ferroptosis. Therefore, lipid peroxidation
is the most common cause of ferroptosis (15) (Figure 1).

Oxidation System
Iron Overload
Iron overload is a prerequisite of ferroptosis. The erastin-
induced ferroptosis was inhibited by deferoxamine (DFO,
an iron chelator), evidenced by increased cell viability and
decreased lipid ROS production in HT-1080 cells. In contrast,
the erastin-induced ferroptosis was triggered by incubation
with three different exogenous iron supplements (11). In
intestinal ischemia/reperfusion-induced acute lung injury model
of C57BL/6 mice, the injection of Fe (15 mg/kg) aggravated lung
injury and pulmonary edema, while the injection of ferrostatin-1
(Fer-1, 5 mg/kg) rescued this injury (17). Iron transport involves
import, storage, and export (18, 19). Circulating iron exists in
the form of ferric iron (Fe3+) by binding to transferrin (Tf).
Fe3+ enters the endosome through membrane protein transferrin
receptor 1 (TfR1). Then, Fe3+ is reduced to ferrous iron
(Fe2+) by the iron reductase activity of the six-transmembrane
epithelial antigen of the prostate 3. The divalent metal transporter
1 (DMT1, also known as SLC11A2) releases Fe2+ from the
endosome into the cytoplasm. While part of the Fe2+ in the
cytoplasm is stored as ferritin, part is oxidized to Fe3+ and
transported outside the cell by the membrane protein iron
transporter ferroportin (FPN, an iron efflux pump, also known
as SLC11A3), and the rest is stored in the labile iron pool
(LIP) of the cytoplasm or mitochondria (20). The iron in LIP
spontaneously undergoes redox reactions, namely, Fenton and
Harber Weiss reactions, to generate ROS, which in turn leads
to lipid peroxidation (21). Moreover, iron and iron derivatives,
such as heme or [Fe-S] clusters, also affect ferroptosis as they
act on the active centers of ROS producing enzymes, such as
lipoxygenase (LOX), cytochrome P450, NADPH oxidase and so
on (22). Therefore, iron overload is essential for ferroptosis.
Maintaining the LIP within a relatively narrow concentration
range is crucial for preventing ferroptosis. Using DFO could
prevent cell death caused by erastin and RSL3 (11, 23).

In this process, the core negative regulators of ferroptosis
are ferritin heavy chain (FTH) (24–27) and FPN (28), and the
core positive regulators of ferroptosis are Tf (29–31), TfR1 (24,
26, 31–33), and DMT1 (24, 34, 35). These iron homeostasis
proteins involved in iron uptake, storage, utilization, and efflux
from cells are regulated by IREs/IRPs (36, 37). In 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mice models,
apoferritin inhibited ferroptosis by downregulating the iron
importers DMT1 and FSP1, and conversely upregulating long-
chain acyl-CoA synthetase 4 (38). The lipopolysaccharide then
increased the expression of nuclear receptor co-activator 4, which
directly interacted with ferritin and degraded ferritin in a ferritin
phagocytosis-dependent manner. It then released a large amount
of iron (39). In addition, heme oxygenase 1 (HO-1) mediates the
release of free iron from heme, resulting in the accumulation of
Fe2+ in LIP, which also exacerbates ferroptosis (40, 41).
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FIGURE 1 | Mechanisms of ferroptosis. Ferroptosis is essentially an iron-dependent lipid peroxidation. Intracellular iron overload is a necessary condition for
ferroptosis, and lipid peroxidation is the presentation form of ferroptosis. TfR1, transferrin receptor 1; FPN, ferroportin; Cys, cysteine; GSH, glutathione; GPX4,
glutathione peroxidase 4; STEAP3, six-transmembrane epithelial antigen of the prostate 3; DMT1, divalent metal transporter 1; HO-1, heme oxygenase 1; NADPH,
nicotinamide adenine dinucleotide phosphate; FSP1, ferroptosis suppressor protein 1; PUFA, polyunsaturated fatty acids; GCH1, GTP cyclohydrolase-1; BH4/BH2,
tetrahydrobiopterin/dihydrobiopterin; LOXs, lipoxygenases; PL•, phospholipid radical; PLOO•, phospholipid peroxyl radical; PLOOH, phospholipid hydroperoxide;
α-TOH, α-tocopherol.

Lipid Peroxidation
Fe2+ in LIP can spontaneously undergo redox reactions
to produce ROS, including both Fenton and Harber-Weiss
reactions. The chemical equations are as follows (42):

The Fenton reaction is : Fe2+
+H2O2 → Fe3+

+OH• +OH−.

The Harber−Weiss reaction is : Fe3+
+O•−2 → Fe2+

+O2.

The overall reaction ROS is : O•−2 +H2O2 → OH• +OH− +O2.

The electron transport system of mitochondria is the
primary source of H2O2 and active oxygen (O2

•−) (43). ROS,
generated by the above mechanism, causes damage to the
biomembrane in two ways. One is an enzyme-independent
way, that is: Firstly, the hydroxyl radical (OH•) combines with
polyunsaturated fatty acids (PUFA) on the biomembrane to
generate the phospholipid radical (PL•). Secondly, PL• reacts
with O2 generating a phospholipid peroxyl radical (PLOO•).
Thirdly, PLOO• reacts with PUFA to generate phospholipid
hydroperoxide (PLOOH) and PL•, which can react again
with O2, forming a vicious circle. The other is the enzymatic

way, that is, PUFA generates PLOOH under the action of
LOXs. However, the detailed mechanism of PLOOH resulting
in ferroptotic lipid peroxidative cell death remains obscure.
Continued oxidation and consumption of PUFA may alter the
structure of lipid pores, ultimately leading to compromised
membrane integrity. In addition, PLOOH may be decomposed
into active toxic aldehydes, such as 4-hydroxy-2-nonenal or
malondialdehyde (MDA), causing cytotoxic effects (44). The
hallmark of ferroptosis is the iron-dependent accumulation of
lipid hydroperoxides to cell-lethal levels, especially peroxidized
phosphatidylethanolamine (PEox). However, only a few
studies detected and quantified these directly. In heart
transplantation mice models, hydroperoxy-arachidonoyl-
phosphatidylethanolamine (HOO-C20:4/C18:0-PE) was elevated
and the resulting ferroptosis triggered early inflammation by
recruiting neutrophils. In IRI mice models, the abundance of
several hydroxyeicosatetraenoic acids (HETE) (such as 5-HETE,
11-HETE, 12-HETE, and 15-HETE) and epoxyeicosatrienoic acid
species were increased (45). Besides, in RSL3-induced ferroptosis
in H9C2 cardiomyocytes, via LC/MS, three significant species
of hydroperoxy-PE were found to be up-regulated, namely,
PE(36:4)-OOH, PE(38:4)-OOH, and PE(40:4)-OOH (46).
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Sparvero et al. used gas cluster ion beam secondary ion mass
spectrometry imaging with a 70 keV (H2O) (n) (+) (n > 28000)
cluster ion beam to visualize them at the single-cell and
subcellular levels (47). The ferroptosis inhibitor, Fer-1 inhibited
ferroptosis by reducing PLOOH.

Anti-oxidation System
The Cyst(e)ine-Glutathione-Glutathione Peroxidase 4
Pathway
The cyst(e)ine-GSH-GPX4 pathway is considered the canonical
pathway for restricting ferroptosis. System Xc−, a heterodimeric
12-pass transmembrane cystine–glutamate anti-porter, consists
of a xCT light chain (also known as SLC7A11) that mediates
cystine transport specificity, and a 4F2 heavy chain (also
known as SLC3A2) (48), plays an important role in this
process. SLC7A11 transports extracellular cystine, which is
rapidly reduced to cysteine (Cys) by an NADPH-consuming
reduction process. Cys participates in the production of GSH,
a fundamental component of GPX4 (49). GPX4 is the primary
inhibitor of ferroptosis. It can prevent lipid peroxidation by
reducing PLOOH to non-toxic phospholipid alcohols (49).
Cardiac impairments were ameliorated in GPX4 Tg mice
and exacerbated in GPX4 heterodeletion mice. In cultured
cardiomyocytes, GPX4 overexpression prevented DOX-induced
ferroptosis (50). Surprisingly, a recent study showed that in
non-small-cell lung cancer cell lines, cystine starvation induces
an unexpected accumulation of γ-glutamyl-peptides under the
influence of glutamate-cysteine ligase catalytic subunit, which
limits the accumulation of glutamate, thereby protecting against
ferroptosis (51). In addition, methionine can be used as one of
the sources of intracellular cystine through the trans-sulfuration
pathway (49). GPX4 is a selenoenzyme and its biosynthesis relies
on the co-translational incorporation of selenocysteine (49).
Selenium augments GPX4 and other genes by enhancing adaptive
transcription factors TFAP2c and Sp1 to protect the cells from
ferroptosis (52).

The Ferroptosis Suppressor Protein 1-Coenzyme
Q10-Nicotinamide Adenine Dinucleotide Phosphate
Pathway
The FSP1-CoQ10-NADPH pathway exists as a GPX4-
independent one. FSP1 catalyzes the transformation of CoQ10
into ubiquinol, which is an excellent radical-trapping antioxidant
in phospholipids and lipoproteins (53–55). Furthermore,
the pathway can reduce oxidized α-tocopheryl radical to its
non-radical form, increasing antioxidant capacity (56). The
MDM2-MDMX complex is a negative regulator of FSP1. It
changes the activity of PPARα, resulting in a decrease in the level
of FSP1 protein and an increase in the level of CoQ10 (57). MiR-
4443, whose target gene is METLL3, inhibited FSP1-mediated
ferroptosis induced by cisplatin treatment in vitro and enhanced
tumor growth in vivo (58).

The GTP-GTP Cyclohydrolase-1-Tetrahydrobiopterin
Signaling Pathway
The GTP-GCH1-BH4 pathway is also not dependent on
GPX4. BH4/dihydrobiopterin synthesis by GCH1-expressing

cells caused lipid remodeling, suppressing ferroptosis by
selectively preventing depletion of phospholipids with two
polyunsaturated fatty acyl tails (59). Using a co-culture model
system, iNOS/NO (•) in M1 macrophages has been confirmed
to inhibit the effect of NO (•) on epithelial cells by inhibiting
phospholipid peroxidation, especially the generation of 15-
HpETE-PE signal that promotes ferroptosis. It is an intercellular
mechanism that distantly prevents the ferroptosis of epithelial
cells stimulated by Pseudomonas aeruginosa (60).

Nuclear factor (erythroid-derived 2)-like 2 signaling is
implicated in many molecular aspects of ferroptosis, including
glutathione homeostasis, mitochondrial function, and lipid
metabolism (61, 62). The Nrf2-Focad-Fak signaling pathway is
closely related to ferroptosis caused by Cys deprivation. In non-
small-cell lung carcinoma, brusatol (an Nrf2 inhibitor) was added
based on ferroptosis inducer erastin or RSL3. The therapeutic
effect based on ferroptosis was better than single treatment in vivo
and in vitro (63). In immunocompetent mice and humanized
mice, ZVI-NP, a dual-functional nanomedicine, enhanced the
degradation of Nrf2 by GSK3/β-TrCP through AMP-activated
protein kinase (AMPK)/rapamycin activation, leading to cancer-
specific ferroptosis of lung cancer cells (64).

The Other Antioxidant Elements
The antioxidant system of the heart is very complex. In addition
to the above three major systems, the antioxidant system of the
heart also includes some other elements that inhibit ferroptosis.
O2
•−, OH•, OH−, H2O2, PL•, PLOO•, PLOOH, ROS, etc.

play important roles in the occurrence and development
of ferroptosis. Superoxide dismutase (SOD) and superoxide
reductases can reduce O2

•− to H2O2. Catalase catalyzes H2O2
to water and O2. Water-soluble ascorbic acid (vitamin C), lipid-
soluble vitamin E or α-tocopherol (α-TOH), and lipoic acid
can reduce lipid hydroperoxide production and peroxyl radicals.
Besides, ascorbic acid increases the vitamin E content by reducing
vitamin E semiquinone (65). The thioredoxin system, consisting
of the thioredoxin (Trx) and thioredoxin reductase (TrxR), is
also an important antioxidant system (66). Ferroptocide causes
an accumulation of lipid peroxidation by inhibiting this system,
thereby inducing ferroptosis (67). TrxR and NADPH reduce
the active site disulfide in Trx. Under the combination of Trx
and TrxR, peroxides, including lipid hydroperoxides and H2O2
were observed to be reduced effectively. In addition, there
are several crosstalks between these antioxidants. For example,
the thioredoxin system promotes the regeneration of certain
antioxidants. It reduces ascorbyl free radical to ascorbic acid
and turns GSSG to GSH. The thioredoxin system increases the
content of ascorbic acid by reducing dehydroascorbic acid (65).

FERROPTOSIS AND
ANTHRACYCLINE-INDUCED
CARDIOTOXICITY

Doxorubicin is one of the most cardiotoxic anticancer agents.
Current studies on DIC based on ferroptosis mainly focus
on DOX. DOX’s anti-cancer activity is primarily mediated
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by DNA intercalation and inhibition of the topoisomerase
II enzyme in rapidly proliferating tumors. However, DOX
causes cumulative and dose-dependent cardiotoxicity, resulting
in increased mortality risks among cancer patients and thus
limits its wide clinical applications (68). Ferroptosis is involved
in DIC both in vivo and in vitro (50, 69–72). The survival rate
of rats was markedly elevated with the ferroptosis inhibitor Fer-
1 than with apoptosis inhibitor emricasan, necroptosis inhibitor
necrostatin-1, and autophagy inhibitor 3-methyladenine (73,
74). Besides, compared with apoptosis-defective (Ripk3−/−)
mice and necroptosis-defective (Mlkl−/−) mice, intraperitoneal
injections of Fer-1 (20 mg/kg) followed by DOX in normal mice
improved their survival rate remarkably (74). The mechanisms
of DOX causing cardiac ferroptosis are as follows (Figure 2 and
Table 1):

Doxorubicin and Reactive Oxygen
Species
The quinine moiety of DOX received electrons from
NADPH oxidase and nitric oxide synthase (NOS) to become
semiquinones, which was then accompanied by the ROS

production such as O2
•− and OH• generation (75). In addition,

DOX can turn Fe3+ into Fe2+, thereby aggravating the
Fenton reaction to produce more ROS (76). DOX can lead
to downregulation of the antioxidant system. Several studies
support the view that the levels of antioxidant substances
(GPX4, SOD, and GSH) in DOX-treated rats and mice were
significantly lower and the content of MDA was significantly
higher than in control groups (50, 77, 78). One study suggested
that ENPP2 overexpression enhances the expression levels of
the ferroptosis-associated gene “GPX4” in H9C2 cells while
FoxO4 regulates gene transcription negatively by the suppression
of post-transcriptional coding mRNAs. In the H9C2 cells
overexpressing ENPP2, DOX-induced increased Fe2+ activity,
ROS and NOX4 production, while decreasing SLC7A11 and
reversing GPX4 and FPN expression (79).

Doxorubicin and Iron
Iron Plays a Pivotal Role in Doxorubicin-Induced
Cardiomyopathy
We know that ferroptosis is an iron-dependent lipid peroxidation
process, and iron is essential in both the occurrence and

FIGURE 2 | The mechanisms of DIC based on ferroptosis. DOX induces ferroptosis in cardiomyocytes involves two major mechanisms: one is to disrupt iron
homeostasis and the other is to promote lipid peroxidation. The targets of DOX on iron disorder are Tf, ferritin, HO-1, FXN, ABCB8, IRE, IRP, and KCNQ1OT1m6A.
The targets of DOX for lipid peroxidation are ROS, SOD, GPX4, and GSH. The site of iron death in cardiomyocytes is probably the mitochondria. TfR1, transferrin
receptor 1; Tf, transferrin; DOX, doxorubicin; IRP, iron regulatory protein; METTL14, methyltransferase-like 14; Nrf2, nuclear factor (erythroid-derived 2)-like 2; LIP,
labile iron pool; HO-1, heme oxygenase 1; ROS, reactive oxygen species; SOD, superoxide dismutase; Cys, cysteine; GSH, glutathione; GPX4, glutathione
peroxidase 4; FPN, ferroportin; FXN, frataxin; ABCB8, ABC protein-B8; O2, oxygen; O2

•−, active oxygen; FtMt, mitochondrial ferritin; CL, cardiolipin; OH•, hydroxyl
radical.
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TABLE 1 | The main molecular mechanism of DOX-induced ferroptosis in cardiomyocytes.

Experimental model DOX dose/Route of administration Findings (mechanisms) References

Lipid peroxidation

H9C2 cells;Mice 2 µM (in vitro)
6 mg/kg, tail vein injection; on days 0, 2, and 4 (in vivo)

Mitochondrial GPX4↓ (50)

H9C2 cells;NRVMs 1 µM (H9C2 cells)
2 µM (NRVMs)

Nrf2 (nuclear)↓/GPX4↓ (102, 103)

HL-1 cells;Mice 2 µM (in vitro)
1 mg/kg, IP; every other day for 8 times (in vivo)

Acot1↓ (69)

H9C2 cells;Mice, rats 5 µM (in vitro);
15 mg/kg, IP; for 8 days (in vivo)

miR-140-5p ↑/Nrf2 ↓, Sirt2 ↓pathway (77)

Iron metabolism

H9C2 cells;Rats 2 µM (in vitro)
20 mg/kg, IP; a single dose (in vivo)

HMGB1 ↓ (73)

Mice 10 mg/kg, IP; a single dose HO-1 ↑ (74)

H9C2 cells 5 µM DOX FoxO4 ↑/Enpp2 ↓ (79)

H9C2 cells;Mice 10 µM (in vitro)
5 mg/kg, IP; one dose per week for 5 times (in vivo)

FXN ↓ (87)

BAEC 0.5 µM TfR ↑ (88)

AC16 cells 2 µM METTL14 ↑/KCNQ1OT1 ↑/miR-7-5p
↓/TfR ↑

(89)

H9C2 cells;HL-1 cells 5 µM, 10 µM (H9C2 cells)
5 µM (HL-1 cells)

Ferritin ↑ (especially FTH) (91, 92)

H9C2 cells;Rats 1 µM (in vitro)
2.5 mg/kg, tail vein injection; once a week for 6 weeks

(in vivo)

Nrf2 (nuclear) ↓/GPX4 ↓, HO-1 ↓, FTH1
↓, FPN ↑

(105)

NRCMs;Mice 10 µM (in vitro)
6 mg/kg, IP; one dose every third day for 4 times OR

10 mg/kg, IP; one dose over 5 days for 3 times (in vivo)

ABCB8 ↓ (109)

Rat cardiomyocytes 5 µM Inhibit Fe mobilization from ferritin (119)

H9C2 cells;Mice 10 µM (in vitro);
5 mg/kg, IP; one dose per week for 5 weeks (in vivo)

FXN ↓ (87)

IREs/IRPs

H9C2 cells;Rat primary cardiomyocytes 1, 2.5, 5, and 10 µM (H9C2 cells);
1, 5, 10, and 20 µM (rat primary cardiomyocytes)

Inactivate IRP1 and IRP2 (93, 96)

Mice 15 mg/kg, IP; a single dose Inactive IRP2/ferritin ↑, TfR1 ↓,
unchanged IRP1 activity

(97)

development of this process. It is generally believed that
excessive iron can aggravate DIC. More than 20 years ago,
research indicated that iron overload aggravated DIC (80).
DOX reduced the viability of H9C2 cardiomyocytes, while
ferric ammonium citrate aggravated it in a concentration-
dependent manner (81). Male Sprague Dawley rats fed with
iron-rich chow showed significantly higher DOX cardiotoxicity,
accompanied with a significant weight loss and severe myocyte
injury as evidenced through electron microscopy and light
microscopy. However, feeding an iron-rich meal alone did not
result in any cardiotoxicity (82). Paradoxically, in cultured H9C2
cardiomyocytes and male C57BL/6 mice, researchers concluded
that pretreatment with dextran-iron (125–1,000 µg/mL) in
combination with DOX did not potentiate DIC and even
prevented some aspects of it (83). Therefore, the regulation of
DIC by iron is a complicated process, which may involve the
balance between iron dosage, protection, and damage.

The HFE gene encodes HFE protein, which binds to TfR1
and facilitates the uptake of iron-bound to Tf. The elevation
of iron concentration in the heart was much more accentuated

in DOX-treated HFE−/− mice. Mutations in the HFE gene
led to iron overload in cardiomyocytes, which increased the
susceptibility of cardiomyocytes to ferroptosis and exacerbated
DIC (84). One study concluded that the mutation status of HFE
RS1799945 H63D could be used as one of the critical markers
to identify patients at high risk for AIC (85). Among survivors
of high-risk acute lymphoblastic leukemia in children, patients
with the C282Y mutation of the HFE gene had a more severe
DIC, which was reflected in higher levels of cardiac troponin-
T, lower left ventricular quality and thickness, and worsened left
ventricular function in echocardiography (86). These studies on
the iron-regulated gene HFE support the view that iron plays a
pivotal role in DIC.

Changes in Iron Homeostasis Regulatory Proteins
Proteins associated with iron transport are considered significant
indicators of cellular iron homeostasis and are mainly involved
in cellular iron uptake (TfR1) and storage (ferritin). As for TfR1,
most studies believe that DOX could elevate its expression (87–
89). A study believed that TfR1 is critical for the DOX-induced
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increase in iron uptake. After incubation with the specific anti-
TfR antibody (12 µg/ml), DOX-induced increase of 55Fe uptake
in bovine aortic endothelial (BAEC) cells was reversed (88). The
mechanism of increased TfR1 could be because DOX inhibited
the expression of miR-7-5p by increasing the METTL14-
mediated expression of KCNQ1OT1m6A, thus reducing the
degradation of TfR1 (89). In AC16 cells, METTL14 knockdown,
KCNQ1OT1 silencing, and miR-7-5p mimic attenuated the
DOX-induced increase of Fe2+ and lipid ROS, and reduced
DOX-induced decrease in mtDNA and MMP levels. In
METTL14 shRNA mice models, DOX-induced increase in the
levels of MDA and 4-HNE were also alleviated (89). However,
one study suggested that TfR1 was reduced in heart lysates
extracted from DOX-treated mice that received a single i.p.
DOX dose (20 mg/kg) as observed in Western-blot and RT-
PCR analysis (90). As for ferritin, DOX elevated it, and this
change was accompanied by an increase in the level of iron
bound to it (90). After being treated with 5 and 10 µM DOX
for 24 h, the content of ferritin, especially ferritin heavy chain
(FHC), in H9C2 cells increased, and was ROS-dependent. The
increase in DOX-induced ferritin was reversed after clearing ROS
using N-acetylcysteine (a known ROS scavenger) in H9C2 cells.
Interestingly, the increased ferritin induced by DOX protected
H9C2 cells from iron toxicity, as demonstrated by increased cell
viability in 500, 750, and 1,000 µg/ml FAC measured by MTT
assays (91). Similarly, ferritin mRNA and protein levels were also
increased in an adult cell line of cardiomyocytes (HL-1) exposed
to 5 µM DOX (92). In addition, elevated intracellular iron levels
were also associated with high mobility group box 1 (HMGB1)-
mediated heme degradation. Compared with the DOX group,
the ferroptosis-related indexes (PTGS2, MDA, and 4-HNE) and
cardiac injury-related indexes (Anp, Bnp, and Myh7) of the rat
heart in the DOX + shHMGB1 group were significantly decreased
(73). Therefore, the effect of DOX on iron homeostasis regulatory
proteins is a complex process, possibly related to cell lines, drug
dosage, and imbalances in protection and injury.

Changes in Iron-Responsive Elements/Iron
Regulatory Proteins
At present, many studies have shown that DOX can act on
IRPs, but the results are numerous. Some studies believed that
DOX irreversibly inactivated IRP1 and IRP2. This study believed
that the secondary alcohol doxorubicinol (DOXol) and certain
products of DOX metabolism, converted cytoplasmic aconitase
to the cluster-free IRP1 by removing iron from its catalytic
[Fe-S] clusters. This eventually produced a null protein, which
could not adapt the levels of TfR1 and ferritin, and IRP2
was inactivated only by DOX related ROS (93). Some scholars
thought H2O2 activated IRP1, leading to the upregulation of
TfR1 and cellular iron accumulation, which was considered
an important molecular mechanism in DIC (94). One study
demonstrated that the IRP1 activity of BAEC cells increased
in a dose-dependent manner after being treated with 0.5 µM
DOX (88). However, one study found that even exposing DOX-
sensitive GLC4 cells to 12.5 µM DOX for 24 h did not
change IRP activity. It can be seen that the effect of DOX
on cellular IRP activity may be related to cell line and cell

resistance (95). However, Juliana et al. believed that the effect
of DOX on cardiomyocyte IRP activity was closely related to
DOX concentration and incubation time. After 6 h of DOX
administration, total IRP1 did not change significantly, but active
IRP1 and active IRP2 decreased in a concentration-dependent
manner (1 µM DOX, 5 µM DOX, 10 µM DOX, and 20 µM
DOX). IRP2, in particular, dropped by more than 50% at 20 µM
DOX. After 24 h of administration, while the total IRP1 level
decreased, the active IRP1 and active IRP2 did not significantly
reduce but even increased. Interestingly, they thought that the
free radical scavengers, DOXol, and cis-aconitate had little effect
on IRP-RNA-binding activity in SK-Mel-28 melanoma cells and
cardiomyocytes. The Fe and Cu complexes of anthracyclines
altered iron metabolism in cardiomyocytes (96). Gianfranca
suggested that DOX had differential effects on the two IPRs,
as evidenced by reduced IRP2 activity and unchanged IRP1
activity. The effect of DOX on IRP2 resulted in an upregulation
of ferritin gene expression and a decrease in TfR1 expression.
Surprisingly, this change reduced the iron content in LIP and
protected cardiomyocytes from ferroptosis induced by DOX
(97). Furthermore, one study concluded that DOX at low
concentrations (≈1 µM) activated IRP1 in cardiomyocytes, while
at higher concentrations (>5 µM), it irreversibly inactivated
IRP1 in BAEC cells (88). Besides, according to one study,
DOX can directly interact with IREs. DOX intercalated double-
stranded RNA by recognizing the IREs hairpins located in the 50-
UTR of ferritin mRNAs, thereby changing the tertiary structure
of the RNA drastically altering the effectiveness of the IREs/IRPs
interaction (98). Anyway, DOX could modify the expression of
genes involved in iron metabolism by inactivating IRPs binding
to IREs (99).

Changes in the Nuclear Factor (Erythroid-Derived
2)-Like 2 Signaling Pathway
Under normal physiological conditions, Nrf2 binds to Keap1
in the cytoplasm, and then Nrf2 is degraded by the ubiquitin-
proteasome system. In the case of oxidative stress, Nrf2
dissociates from Keap1 and translocates to the nucleus, where it
binds to promoter regions (AREs), activates the transcription of
a series of downstream genes, and exerts physiological functions
(100). Notably, many of the genes associated with ferroptosis
are target genes for Nrf2, but DIC-related studies mainly focus
on GPX4 and HO-1 genes. Nrf2 up-regulates the expression
of GPX4 and has an anti-ferroptosis effect (101–103). Nrf2
can be methylated by the protein arginine methyltransferase 4
(PRMT4), leading to its nuclear restriction and consequently
decreased GPX4 expression. PRMT4 aggravated the expression
of ferroptosis markers (ROS, MDA, NCO4, and Fe2+) in the
DOX-induced primary neonatal rat ventricular myocytes and
C57BL/6 J mice cardiotoxicity models, and this influence can
be mitigated by PRMT4 knockout (103). However, studies have
also shown that Nrf2-mediated activation of HO-1 promotes
ferroptosis. HO-1 mediates the release of Fe2+ from heme,
which accumulates in cardiomyocytes and induces ferroptosis
(74, 104). Through Nrf2+/+ mice, Nrf2−/−mice, Znpp (an HO-1
inhibitor), Hemin (an HO-1 activator), DOX has been proven to
increase HO-1 by affecting Nrf2 and accelerating the degradation
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of heme, leading to an increase in non-heme iron and myocardial
ferroptosis. An increase in intestinal iron absorption did not
accompany this increase of iron content. In this study, DOX was
confirmed to be able to upregulate hepatic Hamp1 mRNA to
increase hepcidin and reduce FPN degradation (74). In addition,
Nrf2 can be activated by deacetylation of SIRT1, and Fisetin
activated Nrf2 by up-regulating the expression of SIRT1, leading
to the up-regulation of HO-1, FTH1, TfR1, and FPN, and exerting
an anti-ferroptosis effect. After being transfected with SIRT1 and
Nrf2 siRNA, the anti-ferroptosis effect of Fisetin was abolished in
H9C2 cells (105).

The Role of Mitochondria in
Doxorubicin-Induced Cardiomyopathy
Mitochondria Is the Major Source of Reactive Oxygen
Species
The morphological changes of ferroptosis under the electron
microscope were mainly observed in the mitochondria (11).
The metabolic activity of mitochondria drives ferroptosis.
Mitochondria are the main source of cellular ROS. When
electrons are transferred to O2, some escape from the ETC
and react directly with O2 to form O2

•−, a precursor to many
other ROS such as OH• and H2O2 (106). Energy stress inhibits
ferroptosis by activating AMPK, while AMPK inactivation
promotes ferroptosis (107). ETC complex inhibitors can inhibit
ferroptosis, indicating that mitochondria play an important role
in ferroptosis, and possibly through the activation of AMPK
(108). The mitochondrial TCA cycle is involved in ferroptosis
induced by Cys deprivation, for which glutaminolysis is essential.
However, mitochondria are not essential for ferroptosis induced
by GPX4 inhibition (108).

Mitochondria May Be the Site of Iron Accumulation
Doxorubicin can cause cell iron metabolism disorders, but
there is much debate about where iron metabolic disorders
occur. Some studies have suggested that the site where the
DIC occurs is the mitochondria. Compared with cytoplasm,
DOX and iron preferentially accumulated in mitochondria
(109), especially in mitochondrial cardiolipin (110–112). After
incubation with 10 µM DOX, the accumulation of DOX in
the mitochondria of neonatal rat cardiomyocytes increased
significantly compared with the cytoplasm, and DOX caused
a significant increase in mitochondrial iron levels detected by
55Fe colorimetric measurement of mitochondrial non-heme iron
(109). In the presence of Fe2+, DOX induced the activation of
the mitochondrial permeability transition pore (113). Tadokoro
et al. believed that ferroptosis was triggered by GPX4 deficiency
in mitochondria for the following reasons: (1) DOX-induced
lipid peroxidation occurred on mitochondria rather than other
organelles; and (2) even though the cell viability was improved
and lipid peroxidation indexes (MitoPeDPP, MDA) were
reduced in both isolated neonatal rat ventricular cardiomyocytes
cells transfected with Ad-cytoGPx4-FLAG and Ad-mitoGPx4-
FLAG, electron microscopy revealed that mitochondrial GPX4
was almost exclusively localized to mitochondria during this
process. In contrast, cytoplasmic GPX4 was transferred to

mitochondria (50). Mitochondria-2,2,6,6-tetramethylpiperidin-
N-oxyl, a mitochondrial superoxide scavenger, abolished DOX-
induced lipid peroxidation and cardiac ferroptosis in DOX-
treated mice models. In contrast, the non-mitochondrial targeted
version only mildly rescued the DOX-induced effects (74).
Dexrazoxane (DXZ) reduced iron in mitochondria. The poor
impact of DFO in treating DIC compared with DXZ may
be attributed to its inability to penetrate mitochondria and
chelate iron in mitochondria specifically (109, 114). The most
likely target of free radicals produced by ANTs through redox
reactions was cardiolipin, a major phospholipid component of
the inner mitochondrial membrane, known to be susceptible
to peroxidative injury with abundant PUFA. Iron overload
can aggravate the damage of ANTs to the mitochondria of
cardiomyocytes (115).

The mechanism of DOX causing myocardial ferroptosis may
be related to its effect on mitochondrial iron regulation-related
proteins. Compared with wild-type mice, cardiotoxicity was more
pronounced in FtMt−/− mice injected intraperitoneally with a
single dose (15 mg/kg of body weight) of DOX, as manifested
by higher mortality, more morphological changes (incomplete
cristae, condensation, and fragmentation of most myofibril),
more severe lipid peroxidation, and worse cardiac function
(ATP and BNP) (116). In mice, neonatal cardiomyocytes,
and H9C2 cardiomyoblasts, DOX led to the reduction of
frataxin, a nuclear-encoded mitochondrial protein involved
in maintaining mitochondrial iron homeostasis through the
ubiquitin-proteasome system. In addition, the mitochondrial
iron export protein ABC protein-B8 (ABCB8) is essential for
maintaining mitochondrial iron homeostasis. The depletion of
ABCB8 led to compromised systolic and diastolic functions, a
significant accumulation of 55Fe in the mitochondria, and higher
lipid peroxidation levels both in vivo and in vitro (87, 109,
117). The levels of ABCB8 in explanted hearts from patients
with end-stage cardiomyopathy were significantly reduced (117).
Intriguingly, one study concluded that there was no effect on
ABCB8 in the myocardium of the DIC mice models, and the
silencing of ABCB8 did not increase the iron content in cultured
cardiomyocytes after 30 h of exposure to 2 µM DOX (50).

On the contrary, another study showed that DOX affected
more cytosolic than mitochondrial iron metabolism in murine
hearts and human HeLa cells, as manifested by alterations in
proteins associated with cytoplasmic iron transport proteins
(ferritin, TfR1, and hepcidin). In contrast, mitochondrial
iron-related proteins (aconitase, succinate-dehydrogenase, and
frataxin) appear to be unaffected (90). In addition, Kwok thought
that the mechanism of DOX-induced cardiomyocyte ferroptosis
was related to lysosomes. It may be that ANTs act on lysosomes to
inhibit ferritin degradation, thereby affecting the iron-dependent
life activities of cells. However, this study was conducted in
SK cells, not cardiomyocytes, so the conclusion is debatable
(118). Interestingly, some studies believed that DOX affected
neither total cellular Fe content nor total cellular ferritin protein
levels (119). Furthermore, the myocardial iron content was not
statistically different between the saline and the DOX groups
(82). In the presence of NADPH-cytochrome p450 reductase,
ANTs underwent redox cycling to generate superoxide, which

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 June 2022 | Volume 9 | Article 896792

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-896792 June 6, 2022 Time: 16:52 # 9

Zhang et al. Ferroptosis in Anthracycline-Induced Cardiotoxicity

mediated a slow reductive release of iron from ferritin. More the
cardiotoxic ANTs, more the rapid and extensive iron release it
led to (120).

Doxorubicin and Lipid Peroxidation
As mentioned earlier, iron promotes ROS generation through
the Fenton and Harber-Weiss reactions (42, 121, 122). PUFA
undergoes lipid peroxidation under the action of ROS, which
in turn leads to ferroptosis. Furthermore, DOX can also be
combined with Fe3+ to form the DOX-Fe3+ complex (123, 124),
which generates the DOX-Fe2+ complex through both enzymatic
or non-enzymatic reactions. And this DOX-Fe2+ complex reacts
with oxygen to form O2

•−, which is transformed into OH and
H2O2 through disproportionation reaction (125). H2O2 can also
react with DOX-Fe2+ complexes to generate OH• (126). Thus,
under the action of the DOX-iron complex, OH and O2, PUFA
undergoes lipid peroxidation. In addition, even without free Fe3+

and Fe2+, DOX can extract Fe3+ directly from ferritin to form
DOX-Fe3+ complexes, resulting in lipid peroxidation (127). In
this process, it is not the free Fe3+, free Fe2+, or DOX-Fe3+ iron
complexes, but the DOX-Fe2+ complexes that induce ferroptosis
in cardiomyocytes. The use of specific Fe2+ chelators like
Mito-FerroGreen and bathophenanthroline effectively attenuate
cardiomyocyte lipid peroxidation, measured using C11-BODIPY
581/591 and MDA (50, 124). It should be noted that lipid
peroxidation is not the only pathological change brought about
by ferroptosis. Oxidative stress, apoptosis, necrosis, and other
forms of RCD share characteristics of lipid peroxidation. So, if
we want to prove that ferroptosis is DIC’s mechanism, we must
measure lipid peroxidation directly (56).

PREVENTION AND TREATMENT OF
ANTHRACYCLINE-INDUCED
CARDIOTOXICITY BASED ON
FERROPTOSIS

Evaluations performed before the initiation of anticancer therapy
in patients without significant CVDs should be regarded as
the primary prevention strategy (128). An appropriate cancer
treatment and anti-cardiotoxicity prevention and treatment
strategies should be selected after a comprehensive discussion
by a multidisciplinary team of cardiovascular, oncology and
hematology experts, especially to balance the effects of drugs after
cancer treatment regimens and the risk of specific CVDs in all
aspects (129). Commonly used drugs and their mechanism of
action are described as follows (Figure 3 and Table 2):

Dexrazoxane
Dexrazoxane is the only formally preventive drug approved
by the FDA. For patients planning to receive high-dose of
ANT therapy, DXZ is recommended (2). DXZ is traditionally
known as an iron chelator. Under the action of the iron-
ANT complex, the ring of DXZ was opened and hydrolyzed to
ADR-925. This presumably exerted its cardioprotective effects
by either binding freely or loosely to iron or iron complexed

with DOX, thus preventing or reducing site-specific oxygen
radical production that damages cellular components (130).
In addition, DOX-induced cardiac ferroptosis in rats was
observed to be mediated by the upregulation of HMGB1, and
correspondingly ferroptosis was inhibited when shHMGB1 was
used. DXZ reversed DOX-induced elevation of HMGB1. DXZ
also modulated iron metabolism-related protein levels in cardiac
myocytes and reversed the upregulation of HO-1 induced by
daunorubicin. It therefore inhibited the conversion of heme
iron to non-heme iron, which reduced the Fe2+ content in
the LIP in cardiac myocytes (131). In addition, this study
also showed that DXZ reversed the DOX-induced decrease
of FTH1 protein in the H9C2 cells (73). However, this view
has been greatly challenged. An increasing number of studies
believe that DXZ plays a protective role in the heart mainly
because it inhibited DOX-mediated damage of cardiomyocyte
topoisomerase IIβ (132, 133). Also, in one study, the chelating
metabolite ADR-925 therapy on neonatal ventricular myocytes
receiving was neither able to mitigate AIC, nor did it significantly
impact daunorubicin-induced mortality, blood congestion, and
biochemical and functional markers of cardiac dysfunction in
a chronic rabbit model in vivo (132). Although the mechanism
of DXZ chelating iron in mitochondria does not depend on the
topoisomerase IIβ pathway (109), the contribution of DXZ in
regulating the cardioprotective effect against ferroptosis is not
apparent. Besides, DXZ has been shown to inhibit DOX-induced
cardiomyocyte necrosis and apoptosis through several alternate
mechanisms (134–136). Therefore, the cardiomyocyte protective
effect exerted by DXZ is not achieved only through the inhibition
of ferroptosis as it is not a simple, specific ferroptosis inhibitor.

Although DXZ is generally considered to reduce AIC and is
recommended as the only approved cardioprotective agent (137,
138), the clinical use of DXZ is encountering various challenges.
Firstly, there are concerns that DXZ may increase the risk of acute
myeloid leukemia and secondary solid tumors in children (139–
141). Secondly, the effectiveness of DXZ is also being questioned.
One study found that the preventive use of DXZ before high-
dose DOX in eight sarcoma patients did not reduce their
cardiotoxicity satisfactorily. There were six patients with high-
sensitivity troponin T levels exceeding 10 ng/ml, four patients
with LVEF that decreased by more than 5%, and three patients
with global longitudinal peak systolic strain changed by more
than 15% (142). Finally, the European Society of Cardiology only
recommends DXZ for patients with advanced or metastatic breast
cancer receiving cumulative doses of DOX over 300 mg/m2 (2). In
spite of this, DIC development is not a dose-dependent response,
and in our clinical work, we have found that some patients
develop DIC when treated with small doses of anthracyclines.

Deferoxamine
Deferoxamine is a widely used iron chelator that can chelate
excess intracellular iron, thereby reducing DOX-induced
ferroptosis in cardiomyocytes. In addition, DFO can also be
regarded as a protective agent for mitochondrial permeability
transition pore, as it weakens the opening of calcium-dependent
pores induced by iron and iron-DOX complexes and reduces the
uptake of Fe2+ in mitochondria, thus protecting mitochondrial
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FIGURE 3 | Prevention and SOD treatment of AIC based on ferroptosis. The mechanism of preventing ferroptosis of cardiomyocytes is mainly in two aspects. One is
to inhibit iron accumulation, and the other is to inhibit lipid peroxidation. Iron chelators can play a role through the former. The effects of RTAs, anti-diabetic
medications, and energy-stress inducers are mainly attributed to the latter. TfR1, transferrin receptor 1; FPN, ferroportin; DOX, doxorubicin; DNR, daunorubicin; LIP,
labile iron pool; HO-1, heme oxygenase 1; ROS, reactive oxygen species; Fer-1, ferrostatin-1; DFO, deferoxamine; DXZ, dexrazoxane; PUFA, polyunsaturated fatty
acids; ACC, acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; EMPA, empagliflozin; Sit, sitagliptin; 2DG, 2-deoxy-d-glucose; AICAR,
5-aminoimidazole-4-carboxamide ribonucleotide; HMGB1, high mobility group box 1; HO-1, heme oxygenase 1; FTH, ferritin heavy chain; NF-κB, nuclear
factor-kappa B; α-TOH, α-tocopherol; CoQ10, coenzyme Q10; Lip-1, liproxstatin-1; BHT, butylated hydroxytoluene; Acot1, acyl-CoA thioesterase 1; TEMPO,
2,2,6,6-tetramethylpiperidin-N-oxyl; Met, metformin.

function (113). Intriguingly, DFO was demonstrated to
aggravate ferroptosis by inducing ferritinophagy, leading to
the accumulation of iron and ROS (10, 143, 144). The effect of
DFO in protecting cardiomyocytes from DIC is still contentious.
In this study, the cardioprotective benefit of DFO requires a
strict dose, and a slight deviation from it would diminish this
effect (145). Besides, DFO failed to reverse myocardial damage
in a well-established spontaneously hypertensive rat models
of chronic ANT cardiomyopathy (146). Moreover, DFO’s side
effects, such as hypotension and renal insufficiency, limit its
clinical application (147).

Ferrostatin-1
As a radical-trapping antioxidant (RTA), Fer-1 attenuates lipid
peroxidation by decreasing erastin-induced accumulation of
cytosolic and lipid ROS, consequently inhibiting ferroptosis (11).
This is primarily due to its powerful chain-carrying peroxyl
trapping ability (148). The experimental results have shown that
Fer-1 could reduce the lipid peroxides labeled with MDA and

MitoPeDPP (50). In addition, the mechanisms by which Fer-
1 protects the heart from DOX-induced ferroptosis could be
describes as follows: Fer-1 inhibited DOX-induced elevation of
non-heme iron in cardiomyocytes by downregulating Nrf2/HO-
1, thereby inhibiting ferroptosis (74). In an alternate way,
DOX downregulated the Acyl-CoA thioesterase 1 gene, causing
alterations in the composition of free fatty acids in mitochondrial
membranes, particularly in the proportion of C22:6N3, leading
to ferroptosis. Fer-1 inhibited DOX downregulation of this gene
which reduced the sensitivity of cardiomyocytes to ferroptosis
induced by DOX (69). Besides, Fer-1 increased the expression
of FTH1 protein to increase iron in storage, resulting in the
reduction of Fe2+ in LIP (73).

Other Iron Chelators and
Radical-Trapping Antioxidants
In addition to Fer-1, parallel experiments in GPX4 gene-
deficient mouse embryonic fibroblast ferroptosis model and
extracellular high concentration glutamate-induced ferroptosis
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TABLE 2 | The therapeutic strategies against ferroptosis in DIC.

Agent Study design DOX
administration

Agent dose Mechanism Parameters References

DXZ In vivo (mice) 3 mg/kg, IP; once
per week for

6 weeks

30 mg/kg, IP; once
per week for

6 weeks

Chelating iron ECV ↓, GCS ↑, GLS ↑, LVEF ↑, T2 Avg
↓

(130)

DXZ In vivo (mice) 6 mg/kg, tail vein
injection; on days

0, 2, and 4

1,000 µM Mitochondrial
GPX4 ↑

Mitochondrial lipid peroxidation ↓, MDA
↓, cell survival rate ↑, mitochondrial iron

↓

(50)

DXZ In vivo (rats) 20 mg/kg, IP; a
single dose

NA HMGB1 ↓ PTGS2 ↓, MDA ↓, Anp ↓, Bnp ↓, Myh7
↓, LVEF ↑, LVFS ↑, cardiac heme ↑,

serum heme ↑, non-heme iron ↓, Tfrc
↑, FTH1 ↓

(73)

DXZ In vitro (H9C2 cells) 2 µM 100 µM/L HMGB1 ↓ Cell viability ↑, PTGS2 ↓, MDA ↓, LDH
↓, Fe2+

↓, GPX4 ↑, FTH1 ↑
(73)

DFO In vivo (mitochondria from
rat hepatocytes and

cardiomyocytes)

50 µM 250 µM Protect MPTP Ca2+-induced MPTP activation ↓,
MMP ↑, SDH ↑

(113)

Fer-1 In vitro (H9C2 cells) 2 µM 50 µM Mitochondrial
GPX4 ↑

Mitochondrial lipid peroxidation ↓, MDA
↓, cell survival rate ↑, mitochondrial iron

↓

(50)

Fer-1 In vivo (mice) 10 mg/kg, IP; a
single dose

1 mg/kg, IP; a
single dose before

DOX treatment

HO-1 ↓ Collagen ↓, Anp ↓, Bnp ↓, Myh7 ↓, EF
↑, FS ↑, heart rate ↑, PEox ↓, dioxide

PEox ↓, trioxide PEox ↓

(74)

Fer-1 In vivo (mice) 15 mg/kg, IP at day
1 and 10 mg/kg IP

at day 8

1 mg/kg, IP; every
other day for 8

times

Acot1 ↑ Survival rate ↑, EF ↑, FS ↑, LVIDd ↓,
LVIDs ↓, collagen area ↓, PTGS2 ↓,
MDA ↓, mitochondrial morphological

changes ↓

(69)

Fer-1 In vitro (HL-1 cells) 2 µM 10 µM Acot1 ↑ Cell viability ↑, GSH ↓, PTGS2 ↓, lipid
ROS ↓

(69)

Fer-1 In vivo (rats) 20 mg/kg, IP; a
single dose

1 mg/kg, IP; a
single dose before

DOX treatment

HMGB1 ↓ PTGS2 ↓, MDA ↓, Anp ↓, Bnp ↓, Myh7
↓, LVEF ↑, LVFS ↑

(73)

Fer-1 In vitro (H9C2 cells) 2 µM 10 µmol/L HMGB1 ↓ Cell viability ↑, PTGS2 ↓, MDA ↓, LDH
↓, Fe2+

↓, GPX4 ↑, FTH1 ↑
(73)

EMPA In vitro (HL-1 cells) 100 nM 10, 50, and 500 nM NLRP3/MyD88-
related pathway

↓

Cell viability ↑, ROS ↓, MDA ↓, 4-HNA
↓, IL-1β ↓, IL-6 ↓, IL-8 ↓, leukotrienes

B4 ↓

(156)

EMPA In vivo (mice) 2.17 mg/kg/day, IP;
for 7 days

10 mg/kg/day, oral
gavage; for 10 days

NLRP3/MyD88-
related pathway

↓

MitoPeDPP ↓, MDA ↓, xanthine
oxidase ↓, IL-1β ↓, IL-6 ↓, IL-8 ↓,
MyD88 ↓, NLRP3 ↓, EF ↑, FS ↑,

fibrosis ↓

(156)

Met In vitro (HL-1 cells) 5 µM 4 mM FHC ↑, NF-κB ↑ Cell viability ↑, ROS ↓, CAT ↑, Gpx3 ↑,
SOD ↑, free iron ↓

Complex I activity ↑, ATP ↑, loss of
19m ↓

(92, 160)

model have shown that other RTAs (liproxstatin-1 and α-
TOH) can also improve cell survival rate. In HEK-293 cells,
the mechanism by which Fer-1, liproxstatin-1, and α-TOH
inhibit lipid hydroperoxides and bring about ferroptosis was
demonstrated to be achieved by capturing chain-carrying peroxyl
radicals, rather than inhibiting LOXs or restoring GSH levels
(148–150). However, in a striatal cell model, the mechanism
of action of α-TOH against ferroptosis was proved to be
associated with LOX. Its endogenous metabolite, α-tocopherol
hydroquinone, inhibited 15-LOX activity by reducing its non-
heme Fe3+ center to the inactive Fe2+, thereby inhibiting
lipid peroxidation (151). Other antioxidants (Trolox, butylated
hydroxytoluene, Tiron, and TEMPO) have less inhibitory effects

on erastin-induced ferroptosis than Fer-1 and this could
be attributed to Fer-1 containing an aromatic amine (11).
Another RTA, CoQ10, was shown to inhibit ferroptosis by
inhibiting the propagation of lipid peroxides. Inhibition of
CoQ10 synthesis with 4-chlorobenzoic acid or knockout of
COQ2, an enzyme required for CoQ10 synthesis, can increase
the sensitivity of cells to RSL3-induced ferroptosis in vitro (152,
153). Other iron chelators such as ciclopirox and deferiprone
also alleviate iron-dependent lipid peroxidation by depriving
iron (12).

Although many experiments have demonstrated that
ferroptosis could be attenuated by inhibiting lipid peroxidation
and iron accumulation, studies using DOX-induced
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cardiomyopathy models are scarce, and the efficiency
and safety of these drugs against ferroptosis are still
questionable (56).

Anti-diabetic Medications
According to recent research, DIC was also associated with
insulin signaling imbalance and cardiac insulin resistance
(154, 155). Metformin, empagliflozin, and sitagliptin have
been shown to reduce ferroptosis triggering lipid peroxidation
in the mitochondria and cytoplasm of cardiomyocytes (156–
158). Metformin and sitagliptin have been shown to attenuate
myocardial lipid peroxidation in rats by reversing the DOX-
induced decrease in GSH (159). In cardiomyocytes (HL-
1 cell line) exposed to DOX and C57Bl/6 mice treated
with DOX, empagliflozin reduced lipid peroxidation levels,
decreased cardiomyocyte fibrosis, inhibited cardiomyocyte
inflammation, increased ejection fraction percentage (% EF)
and fractional shortening percentage (% FS), improved cardiac
function, and protected cardiomyocytes from ferroptosis
(156). Metformin also activated nuclear factor-kappa B,
thereby increasing FTH and reducing iron accumulation in
LIP, thus protecting adult mouse cardiomyocytes from DIC
(92, 160).

Energy-Stress Inducers
In immortalized mouse embryonic fibroblasts (MEFs), the
energy-stress inducers (2-deoxy-D-glucose, 5-aminoimidazole-4-
carboxamide ribonucleotide, and A769662) were demonstrated
to activate AMPK. This further inhibited acetyl-CoA carboxylase,
and in turn palmitic acid (C16:0), thereby reducing the synthesis
of PUFA, all of which suppressed ferroptosis (107).

In conclusion, anti-DIC therapy based on these ferroptosis
triggering mechanisms mainly include two aspects: iron
chelation and antioxidant treatment. Notably, human induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
have a great potential in predicting patient susceptibility to
DIC. Furthermore, the human-derived DOX cardiomyocyte
injury model established by hiPSC-CMs overcomes the
species differences of current research models and can be
accurately used to understand the mechanism of ferroptosis in
DIC (161).

CONCLUSION AND PERSPECTIVES

In summary, ferroptosis has been demonstrated by several studies
to mediate the occurrence of AIC. In fact, DOX can increase
the ROS content and affect iron metabolism in cardiomyocytes
by acting on iron homeostasis regulatory proteins, such as,
IREs/IRPs, and Nrf2/HO-1, resulting in the accumulation of
lipid peroxides, thereby inducing ferroptosis. Mitochondria are
the main organelle for inducing ferroptosis in cardiomyocytes.
With further research, inhibition of ferroptosis could act as
an effective strategy in both prevention and treatment of AIC.
This would require screening for potential drugs that inhibit
ferroptosis forcefully in cardiomyocytes or developing novel
ferroptosis inhibitors and will surely benefit cancer patients
with heart diseases as well as patients with high cardiovascular
risk stratification.
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