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The physiological, anti-inflammatory, and anti-coagulant properties of endothelial cells

(ECs) rely on a complex carbohydrate-rich layer covering the luminal surface of ECs,

called the glycocalyx. In a range of cardiovascular disorders, glycocalyx shedding

causes endothelial dysfunction and inflammation, underscoring the importance of

glycocalyx preservation to avoid disease initiation and progression. In this review we

discuss the physiological functions of the glycocalyx with particular focus on how

loss of endothelial glycocalyx integrity is linked to cardiovascular risk factors, like

hypertension, aging, diabetes and obesity, and contributes to the development of

thrombo-inflammatory conditions. Finally, we consider the role of glycocalyx components

in regulating inflammatory responses and discuss possible therapeutic interventions

aiming at preserving or restoring the endothelial glycocalyx and therefore protecting

against cardiovascular disease.

Keywords: glycocalyx, endothelial cell (EC), cardiovascular risk factor, ischemia/reperfusion injury, inflammation,

therapeutic target, heparan sulfate (HS), atherosclerosis

INTRODUCTION

The endothelial glycocalyx is a carbohydrate-rich layer of proteoglycans and glycosaminoglycans
lining the luminal surface of endothelial cells (ECs) in all blood vessels, ranging from small
capillaries (1) to large arteries and veins (2). The thickness and structure of the glycocalyx differs
between vascular beds and is highly dependent on the shear stress applied to the EC surface
(3, 4). The expression of glycocalyx components is regulated and maintained by physiological
blood flow conditions, leading to an intact glycocalyx layer. The thickness of the glycocalyx ranges
from a few nanometers up to one micrometer. However, the observed thickness depends largely
on the investigation method and whether the measurement was performed in vivo or on fixed
tissues (5–7). Interestingly, glycocalyx thickness correlates with glycocalyx integrity and function.
In fact, reduced thickness has been observed in inflammatory disorders and is associated with vessel
dysfunction (8).

The endothelial glycocalyx fulfills diverse functions, ranging from mechanotransduction,
maintenance of vascular integrity and vascular tone (9), to supporting the production of nitric
oxide (NO) as well as providing anti-inflammatory and anti-coagulant properties by interacting
with plasma proteins and plasma cells (10, 11). Two important families of proteins that interact
with the glycocalyx and help maintaining vascular hemostasis are complement regulatory proteins
including factor H (fH) and C1 inhibitor (12), and regulatory proteins of the coagulation system
such as antithrombin III (ATIII) (13). These proteins, like many other plasma proteins, interact
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with the glycocalyx using heparan sulfate (HS) binding domains
(14). The specific interaction of these proteins withHS underlines
the importance of the structure and integrity of the glycocalyx
for EC function. In fact, alterations of the glycocalyx cause loss of
protein binding and are associated with disease. During several
thrombo-inflammatory conditions including atherosclerosis,
myocardial infarction, stroke, and ischemia/reperfusion injury,
but also during infections and sepsis, syndecans (a core
protein) or HS are released from the endothelial surface and
represent a readout of glycocalyx damage (15–17). Once released,
glycocalyx components induce activation of dendritic cells
causing secretion of pro-inflammatory cytokines (18). At the
endothelial level, partial or total shedding of the glycocalyx
leads to increased leukocyte rolling and adhesion (19–21),
elevated vessel permeability (22, 23), impaired vascular tone
(24), and coagulation (8). The essential role of the glycocalyx in
maintaining vascular hemostasis underscores the importance of
protecting or restoring the glycocalyx as a potential therapeutic
intervention for many inflammatory disorders. In this review
we discuss the physiological functions of the glycocalyx with
particular focus on how alteration of its integrity plays a role
downstream of multiple cardiovascular risk factors in the context
of thrombo-inflammatory conditions. Finally, we explore how
prevention of shedding or restoration of the glycocalyx integrity
can protect against the development of inflammatory disorders
and therefore represent a potential therapeutic target.

BIOSYNTHESIS AND COMPOSITION OF
THE ENDOTHELIAL GLYCOCALYX

The glycocalyx consists of different glycoproteins and
proteoglycans. Glycoproteins contain oligosaccharide chains
with terminal sialic acid residues (25) while proteoglycans
are membrane-anchored core proteins covalently linked to
negatively charged glycosaminoglycan (GAG) chains through
tetrasaccharide bridges (26). The mechanical features of each
GAG chain are determined by its specific sugar composition,
a combination of disaccharides containing hexosamine (N-
sulfated or N-acetylated) and uronic acid or galactose residues.
This results in the formation of the five primary groups of GAGs:
heparan sulfate, chondroitin sulfate, keratan sulfate, dermatan
sulfate, or hyaluronan (8, 10, 26).

Both the protein and polysaccharide components of PGs
are synthesized in the endoplasmic reticulum and Golgi
apparatus, except for hyaluronan, which in turn is synthesized
directly on the cell surface (27). Once decorated with a
variety of different GAGs, PGs are transported from the
Golgi apparatus to the cell surface where they embed into
the plasma membrane. The majority of endothelial PGs are
membrane anchored syndecans and glypicans, which can be
associated with all five different combinations of the above-
mentioned GAGs (26). The resulting large variety of PG
composition makes the glycocalyx extremely complex and
variable between vessels and could therefore contribute, in
addition to heterogeneity given by vessel type and organ function,
to the different behavior of ECs in cardiovascular disorders.

The most common GAG side chain found on ECs is HS (28),
which, together with chondroitin sulfate, is the main GAG
linked to syndecan. As shown in Figure 1, HS is composed of
repeated disaccharide units consisting of a uronic sugar, β-D-
glucuronic acid (GlcA) or α-L-iduronic acid (IdoA), and an
amino sugar, N-acetyl-α-D-glucosamine (GlcNAc) or N-sulfo-
α-D-glucosamine (GlcNS) (29). HS synthesis is initiated by
addition of GlcNAc to a carbohydrate linker attached to the
PG core protein and is mediated by the exostosin-like (EXTL1-
3) family of glycosyltransferases. The growing GAG chain is
then extended by a HS-polymerase complex consisting of EXT1
and EXT2 that adds the monosaccharides uronic acid or D-
glucosamine (Figure 1) (30, 31). HS is highly heterogenic and
undergoes several steps of post-translational modifications, in
which the transfer of sulfate groups to distinct positions within
the GlcNAc monosaccharide region leads to N-, 2-O-, 3-O-,
or 6-O-sulfation (Figure 1). These modifications are mediated
by specific sulfotransferases: N-deacetylase/N-sulfotransferase
(NDST) initiates N-sulfation already during synthesis of the
growing GAG chain, HS 2-O-sulfotransferase (HS2ST) sulfates
uronic acid during chain elongation, HS 3-O-sulfotransferase
(HS3ST) and HS 6-O-sulfotransferase (HS6ST) finalizes the
sulfation of HS by adding sulfate groups to the 3-O and 6-
O position within GlcNAc (Figure 1). HS sulfation motifs are
instrumental to the interaction with plasma proteins; fibroblast
growth factor 2, for example, requires NS- and 2O-sulfation,
and ATIII specifically recognizes 3O-sulfation (31–33). Binding
of these proteins to the glycocalyx is essential for their activity
(12, 34).

The expression of the GAG modifying enzymes is tightly
regulated and has been shown to change under inflammatory
conditions. For instance, the expression of NDST1 in cultured
human microvascular ECs was shown to increase after
stimulation with interferon gamma (IFNγ ) or tumor necrosis
factor alpha (TNFα). This boosts the HS N-sulfation, leading
to an enhanced interaction with the chemokine CCL5 and a
rise in leukocyte adhesion (35). Elevated levels of TNFα have
also been associated with a decrease in HS6ST expression.
This alters the sulfation pattern of HS and consequently
induces leukocyte rolling and adhesion (19). Furthermore,
HS acts as a viral attachment factor, facilitating viral entry
and infection. This is currently of great interest in the context
of the global coronavirus disease-19 (COVID-19) pandemic,
as SARS-CoV-2 requires HS as a recognition molecule for
infection (36). In particular, the SARS-CoV-2 spike protein
specifically binds N- and 6-O sulfated HS domains while other
viruses such as herpes simplex virus require 3-O sulfation
(37). Based on this, it is reasonable to speculate that changes
in the sulfation pattern contribute to the different viral
infection rates observed in the population. Further studies
should assess whether modifications on HS play a role in
EC infection.

Altogether, post-translational modifications of HS are largely
responsible for changes in the interaction of plasma proteins,
cells and virus with the endothelial glycocalyx. The differential
regulation of HS modifying enzymes accounts for alterations in
glycocalyx structure and function during pathological conditions.
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FIGURE 1 | Biosynthesis and structure of the endothelial glycocalyx. Schematic representation of the major glycocalyx components covering the luminal surface of

microvascular endothelial cells (EC). On the right panel, syndecan (blue) and glypican (brown) are shown as two examples of proteoglycans (PGs, see text chapter

’Biosynthesis and composition of the endothelial glycocalyx’). PGs carry long glycosaminoglycan (GAGs) side chains, while other glycoproteins (shown in yellow) carry

shorter, unbranched carbohydrate side chains. The left panel shows the biosynthesis of heparan sulfate (HS), the major GAG expressed on EC. HS biosynthesis takes

place in the Golgi apparatus and is mediated by different enzymes. Synthesis is initiated by the enzyme EXTL1-3 which adds the first sugar to the linker region. Chain

elongation is performed by EXT1-2 which add GlcNAc and GlcA. Sulfotransferases then initiate HS sulfation, starting with NDST which sulfates GlcNAc at the N-acetyl

position. HS2ST sulfates uronic acid, HS3ST and HS6ST finish sulfation by adding sulfate respectively to the 3-O and 6-O position of GlcNAc. Xyl, xylose; Gal,

galactose; GlcNAc, N-acetylglucosamine; GlcA, glucuronic acid; IdoA, iduronic acid; NS, N-sulfation; 2S, 2-O sulfation; 3S, 3-O sulfation; 6S, 6-O sulfation; EXTL,

exostosin-like glycosyltransferase; NDST, N-deacetylase/N-sulfotransferase; HS2ST, HS 2O-sulfotransferase; HS3ST, HS 3O-sulfotransferase; HS6ST, HS

6O-sulfotransferase.

FUNCTIONS OF THE ENDOTHELIAL
GLYCOCALYX UNDER PHYSIOLOGICAL
CONDITIONS

Initially thought to be a passive layer on the EC surface, it
is now accepted that the glycocalyx serves multiple functions
and actively takes part in regulating vascular hemostasis. The
functions of the glycocalyx are mediated by both its mechanical
and biochemical properties. Mechanical functions enclose
the maintenance of vascular tone, mechanotransduction of
extracellular signals, as well as preservation of vascular integrity,
while biochemical functions are mediated by the interaction
with plasma proteins and plasma cells (Figure 2). The vascular
tone is mainly regulated by nitric oxide (NO), a vasodilator
produced by ECs. When released abluminally, NO interacts with
the adjacent vascular smooth muscle cells and activates soluble

guanylate cyclase (sGC), which converts guanosine-triphosphate
(GTP) to cyclical guanosine-monophosphate (cGMP). This leads

to activation of protein kinase G and subsequently decreases

intracellular calcium levels, causing relaxation of smooth muscle

cells and vasodilation. A major regulator of NO production

is vascular shear stress, which induces the expression of
nitric oxide synthase (eNOS), the enzyme responsible for NO

production within the endothelium (38, 39). On the other hand,

removal of glycocalyx components has been shown to block
the expression of NO and impair flow-mediated vasodilation
(40–42). Consistent with this, eNOS can be upregulated only
when HS structures are preserved, but not after shedding of HS
by heparinase III treatment (43). Similarly, enzymatic shedding
of chondroitin sulfate and sialic acids from cultured aortic
ECs blocks shear-induced NO production (40). Overall, these
reports indicate that the glycocalyx plays a significant role
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FIGURE 2 | Physiological functions of the endothelial glycocalyx. The microvascular glycocalyx fulfills both mechanical and biochemical functions under physiological

conditions, the five main functions are depicted here. (A) Sensing and transmission of shear stress by syndecans (shown in blue), located near membrane caveolae,

increases eNOS activity and NO release. This assures vasodilatory functions. (B) Transmission of shear stress to the cytoskeleton via the cytoplasmic linker region

(green) of syndecans leads to rearrangement of actin filaments and cell alignment in the direction of flow. Mechanotransduction also activates intracellular signaling

molecules like Rho GTPases which regulate NFKB and MAPK. (C) The glycocalyx acts as a charge- and size-selective barrier to proteins. HS is important for

maintaining intact junctions and vascular integrity. (D) Different molecules can bind to glycocalyx components: regulatory plasma proteins whose activity is potentiated

by interaction with the glycocalyx, chemokines which are locally concentrated, and growth factors. (E) The intact glycocalyx shields off selectins and integrins

expressed on EC thereby inhibiting leukocyte adhesion.

in shear-dependent NO release, but the mechanistic basis is
still poorly explored. For instance, Boo et al. suggested that
the increase in NO production is mediated by transmission
of mechanosignals through membrane anchored PGs such as
syndecan and glypican-1, located in membrane caveolae. The
force applied to the glycocalyx components in the caveolae
leads to phosphorylation of eNOS in a phosphoinositide-3-kinase
and protein kinase A-dependent manner, thereby activating
and increasing NO production (Figure 2A) (44). In line with
this evidence, Ebong et al. showed that glypican-1 indeed
plays a crucial role in shear-induced production of NO by
phosphorylating eNOS, in such a way that silencing of glypican-1
abrogated eNOS activation (45).

The coupling of an extracellular signal, such as shear stress,
to intracellular changes like expression of eNOS as detailed
above, illustrates how the glycocalyx plays a significant role
in mechanotransduction. Along with this concept, syndecans

interact using their cytoplasmatic tail with intracellular linker
proteins dynamin, tubulin and actin, and transfer shear stress
signals to the cytoskeleton leading to the alignment of ECs in
the direction of flow (Figure 2B) (46, 47). This alignment can be
clearly visualized by the rearrangement of actin microfilaments
into a series of parallel elongated fibers along the axis of ECs
(48). In line with this, knock-out of syndecan-4 is associated
with alignment disruption both in vivo and in vitro (49). Besides
transducing shear stress information to cytoplasmic components,
syndecans also impact the organization of tight junction
complexes, possibly affecting vascular permeability/integrity
(50). In addition, mechanotransduction of shear stress regulates
a range of intracellular pathways involved in control of
thrombosis and fibrinolysis, such as thrombomodulin and tissue
plasminogen, and inflammation (51). For example, laminar
unidirectional shear stress activates Rho family GTPases, which
results in the transcriptional activity of NFκB (Figure 2B). This
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pathway controls the expression of the NLRP3, pro-IL-1β , and
pro-IL-18 genes, which participate in inflammasome assembly
(51). Similarly, shear stress controls the activation of Ras-
Mitogen-Activated Protein Kinases (MAPKs) in ECs, ultimately
resulting in the activation of different transcription factors such
as Krüppel-like factor 2 (KLF2), necessary for cell survival,
and monocyte chemoattractant protein 1 (MCP1), that regulates
migration and infiltration of monocytes. Finally, shear stress is
known tomodulate the composition of the endothelial glycocalyx
itself. For instance, low shear (4 dyn/cm2) upregulates syndecan-
1 expression, while high shear (10–14 dyn/cm2) increases the
expression of syndecan-4 (52, 53). Altogether, the glycocalyx,
and syndecans in particular, seem to play an essential role in
mechanotransduction of vascular shear stress forces to preserve
diverse aspects of vascular physiology.

Physically, ECs control migration ofmolecules and cells across
the vessel wall and prevent vascular leakage by creating a solid
EC monolayer in which cells are interconnected through tight
and adherens junctions (Figure 2C). Tight junctions form a
paracellular barrier that regulates cellular permeability as well as
an intramembrane barrier that restrains exchanges between the
luminal and basolateral cell membrane (54). Instead, adherens
junctions maintain tissue structure and, by transduction of
signals, modulate cell specification and cell growth (55, 56).
Although endothelial junctions are the major players in
maintaining vascular integrity, the luminal glycocalyx layer is
also involved by acting as a charge-selective barrier that restrains
transport of molecules into the intra- and subcellular space. In
line with this concept, proteins that display a similar charge
interact with the glycocalyx in a similar manner in vitro and have
similar entry rates to the intra- and subcellular space, despite their
difference in size (e.g., albumin and fibrinogen) (57). The charge-
based selectivity of glycocalyx in vitro is also demonstrated
by Vink et al., who show that migration to the abluminal
side of ECs is slower for anionic than for neutral dextran
(58). Although in vitro damage of the glycocalyx influences
EC permeability to proteins (23), in vivo settings revealed
that vascular permeability is regulated by both the glycocalyx
composition and the structure of EC junctions in a coordinated
fashion (59). In fact, removal of HS from the endothelial
glycocalyx layer reduces the expression of the gap junction
protein connexin 43 by 30%, causing an increase in vascular
permeability (60). This exemplifies how both the glycocalyx and
the endothelial junctions are essential in maintaining vascular
integrity and regulating vascular permeability.

In addition to the so far mentioned functions, the glycocalyx
is also able to directly interact with different plasma proteins
and circulating cells, regulating inflammation and coagulation
(Figure 2D). The sulfated GAG side chain HS is the major player
for these interactions and has been shown to express binding
sites for different growth factors, cytokines, and chemokines (61).
Vice versa, HS binding domains are represented in a wide range
of plasma proteins. These domains are characterized by clusters
of one to three basic amino acids interspaced with one or two
non-basic residues such as glycine and serine (62). Examples of
growth factors binding to HS include fibroblast growth factor
(FGF), vascular endothelial growth factor (VEGF) (63), and

granulocyte macrophage colony stimulating factor (GM-CSF)
(64). Binding of these proteins to heparan sulfate proteoglycans
(HSPGs) not only influences their stability, bioavailability and
protects them from degradation, but also leads to an increase of
their concentration on the cell surface, facilitating and amplifying
intracellular signaling. For instance, IFNγ dimers and IL-8 bind
to a small internal domain of HS rich in GlcA which leads to
an increase in neutrophil migration (65–67). MCP1, Regulated
on Activation Normal T-cell Expressed and Secreted (RANTES),
and macrophage inflammatory peptides 1α and β (MIP-1α and
MIP-1β , respectively) chemokines interact with the glycocalyx to
generate the so called “chemokine-cloud,” a local concentration
of chemokines within the glycocalyx layer (68). This facilitates
leukocyte activation and amplifies pro-inflammatory signals (69).

Proteins that have binding sites for HS include ATIII (11, 13)
which regulates hemostasis, superoxide and xanthine dismutase
(SOD and XOD, respectively) (70, 71) that protects against
oxidative stress, and complement fH (12) as well as C1 inhibitor
which are involved in regulation of complement activation. The
interaction of these proteins with HS potentiates their function.
For example, interaction of fH with HSPGs enhances its capacity
to bind and subsequently degrade C3b (72, 73). Given that
HS is one of the main components shed during pathological
conditions, it is more than plausible that the inflammatory and
pro-coagulant conditions observed after glycocalyx shedding are
due to loss of interaction of the glycocalyx with these regulatory
plasma proteins. Analysis of such interactions would allow
a better understanding of the pathophysiological mechanisms
behind many inflammatory conditions.

In addition to interacting with plasma proteins the intact
glycocalyx also acts as a barrier to leukocyte adhesion (Figure 2E)
(21, 74). Rolling and adhesion of leukocytes to vessels is mediated
by selectins and integrins expressed on activated ECs (75).
The thickness of the intact glycocalyx, measuring up to one
micrometer, exceeds the length of receptors involved in leukocyte
adhesion which are only 20–40 nm long (76). Consistent with
this, increased adhesion of leukocytes is observed only upon
degradation of the glycocalyx (20).

On the other hand, HS has been shown to directly bind herpes
simplex virus 1, human immunodeficiency virus 1 (HIV-1) (77,
78) and SARS-CoV-2, and facilitate entry into host epithelial
cells and favor infection (79). Although HS is important for
viral entry in epithelial cells, whether this is also true for ECs is
still unknown.

In summary, an intact glycocalyx is essential to maintain
vascular integrity and avoid coagulation dysregulations and
leukocyte adhesion and subsequent transmigration into the
surrounding tissue.

ENDOTHELIAL GLYCOCALYX DAMAGE
AND ITS LINK TO RISK FACTORS OF
ATHEROSCLEROSIS

Atherosclerosis is a chronic inflammatory process that
induces cholesterol plaque formation within the artery wall.
Accumulation of oxidized lipoproteins in the vessel wall first
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FIGURE 3 | Alterations of the endothelial glycocalyx during thrombo-inflammatory conditions. Different mechanisms lead to shedding of the micro- and macrovascular

glycocalyx in atherosclerosis and during ischemia/reperfusion injury (IRI). (I) Disturbed flow increases hyaluronidase expression leading to shedding of hyaluronan

(shown in gray) and increased plasma syndecan-1 (shown in blue) and hyaluronic acid. (II) Hypertension, vascular stiffness and aging, all risk factors of cardiovascular

disorders, cause thinning of the glycocalyx, evidenced by reduction of both glypican-1 and HS, as well as changes in the sulfation pattern of HS. (III) ROS (shown in

orange), advanced glycation end products and sheddases all directly damage the endothelial glycocalyx and are linked to cardiovascular risk factors such as diabetes

and obesity. (IV) Disruption of the glycocalyx is shown to be linked to reduced NO production and eNOS activity as well as activation of coagulation pathways and

disturbed vasodilation. (V) Both complement deposition on the EC surface and neutrophil activation are associated with glycocalyx damage. Upon activation,

neutrophils release neutrophil extracellular traps (NETs), decondensed chromatin decorated with neutrophil proteins. NETs can directly alter the glycocalyx or, through

the release of MMPs and MPO (shown in purple), shed glycocalyx components and degrade junction proteins such as VE-Cadherin, leading to increased vascular

leakage.

occurs at sites of endothelial dysfunction, characterized by
increased permeability, impaired cellular communication and
vessel tone, complement activation, leukocyte adhesion, platelet
aggregation and alteration of the glycocalyx (80–83). During
atherosclerosis, EC activation induces local inflammation and
promotes monocyte migration to the intima of the vessel and
their subsequent differentiation into macrophages. Oxidized
lipoproteins are then taken up by macrophages giving rise
to foam cells and finally leading to plaque formation (84).
In addition, vessel injury induces a pro-thrombotic and anti-
fibrinolytic EC phenotype predisposing the atherosclerotic lesion
site to thrombosis and reducing NO production and release
(85). This in turn impairs endothelial-dependent vasodilation
further allowing accumulation of lipoproteins (86). Tsiantoulas
et al. demonstrated that the intact HSPGs structures protect
against atherosclerotic plaque development by interacting with
A PRoliferation-Inducing Ligand (APRIL). Binding of APRIL

to HSPGs reduces retention of lipoproteins and migration
of macrophages to the vessel intima thereby limiting plaque
formation (87). In contrast, reduced glycocalyx thickness is
linked to increased lipid retention and plaque formation (88).

Most atherosclerotic lesions develop in vessel areas subjected
to disturbed or reduced flow like bifurcations, curvatures and
branching points (89). Disturbed or reduced flow profiles
are known to damage the endothelial glycocalyx through the
activity of sheddases, proteolytic enzymes that cleave glycocalyx
components releasing soluble PGs or GAGs (Figure 3) (90).
For example, low shear stress activates hyaluronidase, which
induces shedding of hyaluronan from the glycocalyx leading to
a thin and unstable glycocalyx layer (91). In vivo studies have
confirmed the presence of a thin and disrupted glycocalyx layer
in regions of vessels presenting disturbed flow. In the same
areas atherosclerotic plaques were found (88). Interestingly, in
patients with coronary heart disease, a thin endothelial glycocalyx
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layer was associated with a plasmatic increase of hyaluronic
acid and syndecan-1 (Figure 3) (92, 93). This confirms that
shedding of the glycocalyx and vascular dysfunction are key
elements in atherosclerosis. In line with these findings, Nagy et al.
proved that treatment of apolipoprotein E–deficient mice with
4-methylumbelliferone, an inhibitor of hyaluronan synthesis,
damages the endothelial glycocalyx causing atherosclerosis (94).
Loss of glycocalyx compromises the endothelial barrier functions
resulting in an increase of vascular permeability. This is followed
by cholesterol accumulation and macrophage infiltration of the
vessel wall, which eventually leads to atherosclerosis (88, 95,
96). Although it appears to correlate with the formation of
atherosclerotic plaques, glycocalyx integrity alone is still not
considered a risk factor for the development of cardiovascular
diseases in clinical settings (97). Nevertheless, cardiovascular risk
factors for atherosclerosis such as hypertension, aging, diabetes,
and obesity are known to damage the endothelial glycocalyx,
underlining the importance of this endothelial structure in
cardiovascular disorders. For instance, high sodium levels,
typical of a high salt diet, reduce HS content on human ECs
(98) and are associated with syndecan-1 shedding (99). In
hypertensive patients, loss of glycocalyx integrity and reduced
thickness is associated with increased vascular stiffness, which
is an independent predictor of cardiovascular risk caused
by degeneration of the extracellular matrix of elastic arteries
(Figure 3) (100–102). Vascular stiffness is initiated by high blood
pressure as well as vascular aging and it negatively affects the
endothelial glycocalyx (103). In agreement, ECs cultured on
stiff matrices that mimic rigid aged vessels, express low levels
of the endothelial glycocalyx components HS, glypican-1 and
hyaluronan compared to ECs cultured on a soft matrix (104).
Furthermore, low levels of glypican-1 are found in a mouse
model of age-mediated vascular stiffness and are associated
with endothelial dysfunction. Knocking out glypican-1 in young
mice results in a vascular phenotype typical of advanced age,
characterized by arterial stiffness and endothelial dysfunction
(105). Although endothelial glycocalyx damage is linked to
vascular stiffness, the molecular mechanisms behind have not
been elucidated so far.

Vascular aging, an important cardiovascular risk factor
associated with increased vessel stifness, is characterized by
microvascular dysfunction, impaired perfusion and reduced
capillary density (106). In mice, glycocalyx thickness and
integrity are reduced with age (107, 108). A reduction of the
endothelial glycocalyx thickness of ∼30% was observed also in
humans with a mean age of 60 years compared to 30-year-old
individuals (109). In vitro, HS is abundantly expressed on the
surface of low-passage human umbilical vein ECs compared to
cells at higher passages (110). However, this result needs a word
of caution, as the study setup cannot discriminate between cell
aging and phenotypic drift. Interestingly, not only the amount
of HS on the surface of ECs is influenced by aging but also
the HS sulfation pattern can differ in old compared to young
individuals (Figure 3). Human blood outgrowth cells isolated
from old individuals present with a lower amount of tri-sulfated
NS, 2S, 6S N-acetylglucosamine as compared to cells from young
individuals (111). This suggests that aging alters the fine structure

of HS, which could lead to reduced plasma protein interaction
and therefore interfere with hemostasis (112).

Other risk factors of atherosclerosis in which alterations in
the endothelial glycocalyx have been observed are diabetes and
obesity. Thinning of the glycocalyx and endothelial stiffness were
detected in the aorta of diabetic mice, whereby the damage to
the glycocalyx was associated with endothelial stiffening and
a reduction in endothelial NO production (113). Consistent
with this, hyperglycemia results in glycocalyx shedding, as
evidenced by the plasma increase of hyaluronan and syndecan-4,
endothelial dysfunction, activation of coagulation pathways and
reduction of eNOS activity (114–116). The three main factors
reported to result in glycocalyx degradation in diabetes are
reactive oxygen species (ROS), advanced glycation end products
and sheddase activation. Both ROS and advanced glycation
end products depolymerize hyaluronan, causing a damage in
the glycocalyx integrity, while sheddases, like hyaluronidase,
heparinase, metalloproteinase and neuraminidase, cleave
glycocalyx components (Figure 3) (117). Notably, all these
factors are increased in plasma of diabetic patients, which
indicates a strong correlation between glycocalyx damage and
insulin resistance (118–120).

Obesity is also known to induce endothelial dysfunction and,
as for diabetes, it can manifest as loss of glycocalyx barrier
properties and reduced NO availability (121, 122). The dilatory
response of arteries to flow is impaired during obesity. This
loss of flow-induced vasodilation is due to a decrease in NO
production (123). Recent studies have shown that the activity of
the flow sensitive K+ channel Kir, responsible for vasodilation,
is highly dependent on HS. Heparinase treatment of freshly
isolated ECs from obese mice reduces Kir activity. Interestingly,
impairment of flow-mediated vasodilation in obesity differs
between vascular beds. Endothelial dysfunction is observed
in visceral adipose arteries but not in subcutaneous adipose
arteries, where Kir activity, glycocalyx integrity and normal
vasodilation are maintained (124). In contrast, in vivo data
revealed that a thicker glycocalyx in the brain vasculature of
obese mice is protective against inflammation during critical
pathological conditions (125). This so called “obesity paradox”
suggest that the glycocalyx might be structurally and functionally
different in distinct organs, thus revealing an unexpected level of
structural complexity.

SHEDDING OF ENDOTHELIAL
GLYCOCALYX DURING
ISCHEMIA/REPERFUSION INJURY

Ischemia/reperfusion injury (IRI) refers to the tissue damage
sustained once blood flow is re-established after an ischemic
period and can occur under different circumstances such as
myocardial infarction with thrombotic vessel occlusion, heart
surgery, transplantation, and ischemic stroke. Common to these
circumstances are (I) tissue damage due to ROS produced upon
reperfusion (81) (II) mitochondrial dysfunction with opening of
the mitochondrial transition pore and loss of ATP production
(126) (III) activation of the complement system (127, 128),
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and (IV) endothelial dysfunction (129). Glycocalyx shedding is
recently emerging as an additional common event during IRI.
Animal models of cardiac IRI have shown that the thickness
of the glycocalyx is reduced as early as 5min after reperfusion
and that its shedding leads to decreased endothelium dependent
vasodilation mediated by NO (130, 131). Early shedding of
syndecan-1 and HS was also observed during reperfusion in
patients undergoing cardiac surgery (132).

ROS are known to be key players in glycocalyx
shedding/damage during IRI. Administration of the anti-
oxidative reagent superoxide dismutase (SOD) maintains
glycocalyx integrity and protects microvessels from IR damage
(133). In agreement with this, patients with acute coronary
syndrome, survivors of cardiac arrest or patients undergoing
coronary bypass all present increased blood levels of circulating
glycocalyx components such as syndecan-1 (92) and HS
(15, 134). This has also been confirmed in ischemic stroke
patients, where multiple soluble glycocalyx components,
including 3 different GAGs (HS, keratan sulfate, chondroitin
sulfate) and 3 different PGs (CD44, syndecan-2 and -3), were
increased in the plasma of patients 1 week after the initial
incident (135). Taken together, these studies indicate that
mainly the core PG syndecan-1 and the GAG side chain HS are
disrupted in IRI. In particular, HS shedding during IRI could
explain some of the observed pathological vessel changes like
increased permeability, complement activation, thrombosis and
leukocyte infiltration toward the damaged tissue. In fact, one
of the earliest inflammatory responses during cardiac IRI, next
to endothelial dysfunction, is the activation of the complement
system and the interaction of innate immune cells, such as
neutrophils, with the vessel wall (136).

Different animal studies have shown the involvement of the
complement system in IRI (137). Deposition of the complement
components C3d and C5b-9 was seen in reperfused hearts
of myocardial infarction patients (138) and associated with
an increase in shedding of syndecan-1, a core protein of
the endothelial glycocalyx (139, 140). Complement inhibition,
by administration of a membrane-targeted molecule derived
from complement receptor 1 (141) or by administration of
dextran sulfate, was shown to be beneficial in experimental
myocardial infarction as well as in cardiac transplantation (142).
Dextran sulfate binding to the damaged myocardial blood vessels
correlated with reduced vascular staining for HSPGs, suggesting
a replenishment of the shed glycocalyx by dextran sulfate (143).
Although complement deposition is correlated with loss of
glycocalyx integrity, the exact link between the complement
system and degradation of the glycocalyx in IRI is not very well-
understood. On one hand, degradation of the glycocalyx might
cause loss of interaction of complement regulatory proteins
present in plasma such as fH or C1-inhibitor with the endothelial
glycocalyx, resulting in increased complement deposition and
tissue injury (144, 145). On the other hand, IRI might cause the
expression of neoantigens on the EC surface (81). Binding of
naturally occurring IgM antibodies to the neoantigens can then in
turn lead to complement activation and tissue injury (146). The
endothelial glycocalyx not only interacts with regulatory plasma
proteins but also shields off cell surface adhesion molecules

thereby limiting their interaction with immune cells. Shedding of
the glycocalyx during both myocardial infarction and stroke has
been shown to contribute to vascular edema as well as neutrophil
and platelet adhesion to the vessel wall (147). Figure 3 illustrates
how during neutrophil-mediated immune response, shedding
of glycocalyx constituents can occur via enzymatic digestion by
metalloproteases (MPOs) and hyaluronidase, or non-enzymatic
degradation through oxidative stress. Other than degrading the
glycocalyx, neutrophil enzymes such as MPOs, elastases, and
cathepsins, can also cleave endothelial cell-cell junctions, in
particular VE-Cadherin, leading to impaired junction integrity
and vascular leakage (148). During myocardial infarction, stroke,
and peripheral vascular disease, activated neutrophils also release
neutrophil extracellular traps (NETs), web-like structures of
decondensed chromatin covered with histones and cytoplasmic
and granular proteins (149). It is well-accepted that the
extracellular histones released during NET formation are highly
cytotoxic for ECs and interact with the endothelial glycocalyx
causing microvascular leakage and barrier dysfunction (150,
151). In fact, incubation of microvascular ECs in vitro with
calf thymus histones results in EC death. Interestingly, this
cytotoxicity is prevented by addition of negatively charged
heparan sulfate tetra- or decasaccharides (152). Nucleosomes and
histone 4 have been also detected in perfusates of isolated rat
hearts subjected to ischemia reperfusion. Higher histone levels
correlated to bigger infarct size (153).

Both neutrophil activation and complement deposition are
considered key players in loss of endothelial glycocalyx integrity
during IRI (Figure 3). In fact, knock-out of the complement
receptor 5a in a mouse model of myocardial infarction resulted
in reduction of neutrophil transmigration to post ischemic
myocardium and diminished the expression of the matrix
metalloproteinase 9, a sheddase of the endothelial glycocalyx
(154). Both sheddases and sulfatases alter the endothelial
glycocalyx by respectively removing entire GAG side chains and
PGs or by changing the sulfation pattern of the GAG side chains.
Many different sheddases are upregulated during IRI and are
shown to be responsible for endothelial glycocalyx degradation.
For instance, tryptase β (155), heparinase (156, 157) and atrial
natriuretic peptide (ANP) (158) lead to an increase of soluble
syndecan-1 (159). Similarly, the activity and release of matrix
metalloproteinases (MMPs), which cleave entire PGs, is also
upregulated during IRI. Cardiomyocytes and neutrophils have
been identified as possible sources for MMPs during IRI (160,
161). Although ECs also produce MMPs, it is not clear whether
MMPs of endothelial origin contribute to IRI (162). Shedding
of syndecan under ischemic conditions is not only caused by
upregulation of MMPs but is also due to downregulation of their
natural inhibitors, the tissue inhibitors of metalloproteinases
(TIMPs) (163–165). This indicates that IRI modulates not only
the release of sheddases but also regulates their enzymatic
activity. Other than syndecans, also removal of hyaluronan
from the glycocalyx has been observed during ischemic stroke
indicating that the sheddase hyaluronidase is involved in IRI
(166, 167).

Finally, sulfatases can be upregulated during IRI. However,
differently to sheddases, sulfatases seem to have a protective

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 May 2022 | Volume 9 | Article 897087

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Milusev et al. Glycocalyx in Cardiovascular Disorders

FIGURE 4 | Soluble glycocalyx components and mechanism of glycocalyx restoration. (A) Effect of soluble glycocalyx components. Released soluble glycocalyx

components such as HS (brown), syndecan-1 and −3 (blue) can propagate inflammatory responses by activating peripheral blood mononuclear cells (PBMCs) and

dendritic cells (DCs) via TLR4 signaling. This leads to release of pro-inflammatory cytokines and DC maturation. However, soluble syndecan-1 (blue) has also been

shown to reduce inflammation by directly inhibiting cytokine and chemokine release and blocking leukocyte adhesion. (B) Protection and restoration of the endothelial

glycocalyx. Maintenance of glycocalyx integrity can be achieved by inhibition of sheddases. Doxycycline (shown in red), berberine (shown in yellow) or S1P (shown in

blue) have been shown to directly inhibit matrix metalloproteinase 9 (MMP9) and therefore impede glycocalyx shedding. Regeneration of the glycocalyx can be

achieved by upregulating the expression and extravasation of glycocalyx components such as syndecans with S1P and angiopoietin-1 or by replacing shed

components such as HS with structurally similar agents such as dextran sulfate (shown in orange), a highly branched polysaccharide.

role. In a mouse model of myocardial infarction, the increase
of sulfatase-1 and−2 was associated with a decrease in HS
6-O sulfation. This led to a reduction in the interaction of
the glycocalyx with VEGF in the infarcted zone enhancing its
bioavailability and increasing ischemic tissue repair (168). It is
currently unknown whether upregulation or downregulation of
sulfatases can have a detrimental effect on IRI.

SOLUBLE ENDOTHELIAL GLYCOCALYX
COMPONENTS AS REGULATORS OF
INFLAMMATION

The endothelial glycocalyx regulates inflammation through
different mechanisms: (I) it shields off integrins and other co-
stimulatory molecules inhibiting binding of leukocytes to the

endothelial surface, impeding antigen presentation and T cell
activation, (II) it creates a local chemokine gradient that favors
leukocyte activation (69, 169) (III) it regulates the activity of
chemokines, cytokines and growth factors by protecting them
from enzymatic degradation (68) and (IV) it binds regulatory
proteins such as factor H or, in a soluble form, mannan-
binding lectin serine protease 2 (MASP-2), thereby mediating
complement inhibition (170).

Recent studies have shown that upon shedding of the
glycocalyx, soluble HS propagates inflammation by directly
interacting with toll-like receptors (TLRs). In vitro experiments
proved that soluble HS fragments can stimulate the release of
pro-inflammatory cytokines such as IL-1β , IL-6, IL-8, IL-10,
and TNFα from human peripheral blood mononuclear cells
(18). Additionally, both HS and hyaluronan induce dendritic cell
maturation by TLR4 signaling (Figure 4A) (171). In agreement,
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TABLE 1 | Protection and regeneration of the endothelial glycocalyx.

Molecule Pathology Mechanism References

Protection of the

endothelial

glycocalyx

Angiopoietin-1 Microvascular inflammation Translocation of intracellular vesicles

containing glycocalyx components to

the cell surface

(184)

Doxycycline MMP inhibition (hypothesis) (185)

Sphingosine-1 phosphate Syndecan-1 shedding inhibition (186)

Berberine Lipopolysaccharide-induced

acute respiratory distress

syndrome (ARDS)

ROS and MMP inhibition (187)

ATIII IRI MMP inhibition (hypothesis) (188)

Hydrocortisone Prevention of mast cell degranulation

and MMP release

(189)

SOD Inhibit ROS mediated glycocalyx

degradation

(133)

Sevoflurane Oxidative stress Increased glycocalyx synthesis (190)

Sulodexide Diabetes Heparanase-1 inhibition (191)

Regeneration of

the endothelial

glycocalyx

Sphingosine-1 phosphate Enzymatic removal of the

glycocalyx

Not known (60)

Empaglifozin Not known (192)

Adjunct drugs:

adenosine-lidocaine-magnesium

(ALM), beta-hydroxybutyrate plus

melatonin (BHB/M), and poloxamer

188 (P-188)

Hemorrhagic shock Counteraction of ROS toxicity (193)

Restoration with plasma Release of pre-formed intracellular

syndecan-1

(194)

Hydroxyethyl starch resuscitation Downregulation of heparinase,

hyaluronidase and neuraminidase

(195)

Secreted protein acidic and rich in

cysteine (SPARC)

Myocarditis Not known (196)

Dextran sulfate Cardiac xenotransplantation “Repair coat,” local replacement of

shed HS

(143, 197,

198)

Sulfated tyrosine Xenotransplantation model (199)

MMP inhibitor Diabetes MMP inhibition (200)

Overview of the different approaches to protect (upper part) or restore (lower part) the endothelial glycocalyx including proposed mechanism of action.

mutation of TLR4 or incubation of dendritic cells with the
TLR4 antagonist s-DPLA inhibited the upregulation of the co-
stimulatory molecules CD86 and CD40 on the cell surface
(172). The overall impact of soluble HS on vascular physiology
remains largely debated. On one hand, stimulation of freshly
isolated cardiac fibroblasts with soluble HS increases, through
TLR4 signaling, the expression of ICAM-1 and VCAM-1 on
the cell surface, favoring the adhesion of spleen mononuclear
cells and bone marrow granulocytes. This promotes cardiac
fibroblast differentiation into myofibroblasts. On the other
hand, treatment of cardiac fibroblasts with HS was able to
reduce alpha smooth muscle actin expression, impeding the
differentiation into myofibroblast and protecting against a pro-
fibrotic phenotype. This suggests that soluble HS can be both
protective and deleterious (173).

Although it is well-accepted that HS binds TLR4, the
molecular mechanism of action of soluble HS is still not fully

understood. Studies suggest that HS signaling through TLR4
activates a different NFκB pathway with respect to the response
induced by the TLR4 ligand lipopolysaccharide (LPS). Indeed,
TLR4 activation by soluble HS triggers a slower translocation of
NFκB to the nucleus when compared to activation by LPS, and
a more sustained increase of intracellular levels of calcium in
macrophages (174). Whether this gives rise to different immune
responses has not been yet investigated. Also, it is still unclear
whether the main source of soluble HS derives from shedding
of endothelial glycocalyx or from heparinase degradation of
the extracellular matrix (172). Similarly, soluble syndecan-4
propagates the inflammatory response by upregulating ICAM1,
VCAM1, IL-1β , and TNFα expression on cardiomyocytes
increasing inflammatory cell recruitment (175).

Interestingly, soluble glycocalyx components not only
propagate inflammation, but can also downregulate
inflammatory signaling. For example, soluble HS fragments
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can directly inhibit cytokines such as IL-10 and interact
with leukocytes, blocking their adhesion to the EC surface
(Figure 4A) (176, 177). Addition of syndecan-1, which is
rich in HS, was shown to directly inhibit the accumulation of
CXC chemokines, thereby reducing neutrophil accumulation
in various organs in a murine endotoxemia model (178).
Along the same line of research, syndecan-1 was shown
to block the expression of IL-1β , IL-6, and TNFα and the
activity of pro-inflammatory chemokines CCL7, CCL11, and
CCL17 (179, 180). Shed syndecan-3 also binds inflammatory
chemokines like CCL2, CCL7, and CXCL8 and inhibits
leukocyte migration in a mouse model of rheumatoid arthritis
(181). Although syndecan-3 expression increases during
myocardial infarction, its role in cardiovascular disorders is
unknown (182).

Soluble components of the EG have the potential to both
propagate and inhibit inflammation. The mechanism leading
toward one direction rather than the other is still unknown and
should be investigated.

PROTECTION AND REGENERATION OF
THE ENDOTHELIAL GLYCOCALYX

A damaged glycocalyx can regenerate over time. Although in vivo
experiments have shown that 7 days are sufficient to reinstate the
endothelial glycocalyx layer following enzymatic digestion, the
mechanism behind and whether the restored glycocalyx is similar
in its composition to the original has not been investigated
so far (183). Nevertheless, various preventive and restorative
approaches, aimed to re-establish the physiological glycocalyx
function, have been suggested as potential therapies for several
inflammatory disorders.

Different molecules can prevent endothelial glycocalyx
degradation (Table 1). For example, angiopoietin-1 (184),
hydrocortisone (189) ATIII (188), and SOD (133) maintain
vascular integrity and prevent endothelial dysfunction during
IRI by impeding the degradation of the glycocalyx components
syndecan-1, HS and hyaluronic acid and have therefore
been proposed as potential therapeutic candidates. However,
how these molecules support endothelial glycocalyx integrity
is still unclear. In Figure 4B, the two different proposed
mechanisms of action are shown: angiopoietin-1 has a fast-
acting effect in preventing glycocalyx shedding, suggesting that
it protects the glycocalyx not by de novo synthesis of its
components but rather by translocation of pre-formed GAG
components from the Golgi apparatus to the cell surface.
In fact, inhibiting the translocation of vesicles abolished the
protective effect of angiopoietin-1. The second mechanism,
proposed for hydrocortisone and ATIII, is a direct inhibition
of sheddases which prevents glycocalyx degradation. One of
the most abundant sheddases responsible for glycocalyx damage
is the matrix-metalloproteinase-9 (MMP9). MMP9 belongs to
a family of zinc-dependent endopeptidases implicated in both
physiological and pathophysiological tissue remodeling. MMP9
is regulated transcriptionally by NFκB and once synthesized, its

enzymatic activity is modulated by endogenous TIMPs (201).
Berberine (187), doxycycline (185), and sphingosine-1 phosphate
(S1P) (186) alleviate endothelial glycocalyx degradation by
inhibiting MMP9 (Table 1, Figure 4B). Interestingly, S1P not
only avoids glycocalyx shedding by directly interfering with
MMP activity, but it also restores the glycocalyx once damaged.
In fact, as depicted in Figure 4B, S1P interacts with its receptor
S1P1R expressed on ECs and increases the synthesis of syndecan-
1 and HS via intracellular phosphatidyl inositol-3 kinase (PI3K)
signaling (60, 202).

Different studies have shown that also adjunct drugs (193),
restoration with plasma (194), heparin (203, 204), sulodexide
(191), and hydroxyethyl starch downregulate heparinase,
hyaluronidase and neuraminidase (195) during inflammation
or sepsis and therefore prevent endothelial dysfunction by
preserving glycocalyx integrity (Table 1). Whether these
approaches are beneficial also for cardiovascular disorders is not
known. Also, the respective mechanism of action is still unclear.
Dextran sulfate, a highly branched polysaccharide resembling
HS, has also been recommended as a potential EC protectant.
It was suggested that dextran sulfate creates a “repair coat” that
mimics the missing endothelial glycocalyx layer and thereby
inhibits complement deposition during acute vascular rejection
(Table 1, Figure 4B) (197, 198, 205). Further studies are needed
to confirm such a hypothesis.

Upregulation of glycocalyx synthesis genes could be a
secondary approach for restoration of the endothelial glycocalyx
during disease. However, little is known on the beneficial
effects of induction of glycocalyx gene expression in damaged
cells. It was shown that the anesthetic sevoflurane increases
sialyltransferase expression during oxidative stress thereby
promoting endothelial glycocalyx restoration and vasodilation
(Table 1) (190). This suggests that other interventions leading
to an increase of expression of glycocalyx synthesis genes could
be helpful and open new avenues of research in the field of
glycocalyx restoration.

Although shedding of the endothelial glycocalyx has been
related to various cardiovascular and inflammatory conditions,
a clear understanding of the mechanisms involved in glycocalyx
shedding is still missing. Nonetheless, glycocalyx disruption
occurs already early during disease development, suggesting
that glycocalyx components could be potentially important,
early biomarkers of disease. Given that prevention of glycocalyx
shedding can be achieved, recognizing glycocalyx damage and
inhibiting shedding might be beneficial in slowing down or even
preventing certain cardiovascular conditions. Further research
should focus on understanding the molecular mechanisms
behind glycocalyx injury and uncover new therapeutic options
for the protection or restoration of the endothelial glycocalyx in
cardiovascular disorders.
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