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Medicine, Shanghai, China, 2Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao
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Background: Cholesterol crystals (CCs) in lesions are the hallmark of

advanced atherosclerotic plaque. Previous studies have demonstrated that

CCs could activate NLRP3 inflammasome, which played an important role in

atherosclerotic lesion progression. However, the relationship between CCs,

NLRP3 inflammasome pathway, and plaque vulnerability in patients with ACS

is still not elucidated.

Methods: Two hundred sixty-nine consecutive acute coronary syndrome

(ACS) patients with 269 culprit lesions were included in this study. CCs

and other plaque characteristics within the culprit lesion segment were

evaluated by optical coherence tomography (OCT) before percutaneous

coronary intervention (PCI). The NLRP3 mRNA expression in peripheral blood

mononuclear cells (PBMCs) and the serum levels of interleukin (IL)-1β, IL-18,

and other biological indices were measured.

Results: Cholesterol crystals were observed in 105 (39%) patients with

105 culprit lesions. There were no significant di�erences in baseline clinical

characteristics between the patients with CCs (CCs group, n = 105) and

the patients without CCs (non-CCs group, n = 164) within the culprit lesion

segment except for lipoprotein(a) [Lp(a)]. The CCs group had a higher level

of NLRP3 mRNA expression in PBMCs and higher levels of serum cytokine

IL-1β and IL-18. OCT showed that the CCs group had longer lesion length,

more severe diameter stenosis, and less minimum luminal area (MLA) than the

non-CCs group (all p< 0.05). The frequency of thin-cap fibroatheroma (TCFA),

thrombus, accumulation of macrophages, plaque rupture, micro-channel,

calcification, spotty calcification, and layered plaque was higher in the CCs

group than in the non-CCs groups (all p < 0.05). Multivariate logistic analysis
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revealed that the level of NLRP3 expression (OR = 10.204), IL-1β levels

(OR = 3.523), IL-18 levels (OR = 1.006), TCFA (OR = 3.593), layered plaque

(OR = 5.287), MLA (OR = 1.475), macrophage accumulation (OR = 2.881), and

micro-channel (OR = 3.185) were independently associated with CCs.

Conclusion: Acute coronary syndrome patients with CCs in culprit lesions had

a higher expression of NLRP3, IL-1β, and IL-18, and hadmore vulnerable plaque

characteristics than patients without CCs. CCs might have interacted with

NLRP3 inflammasome activation in patients with ACS, which could contribute

to plaque vulnerability in culprit lesions.

KEYWORDS

acute coronary syndrome, cholesterol crystals, NLRP3 inflammasome, interleukin

(IL)-1β, IL-18, optical coherence tomography, vulnerable plaque

Introduction

Despite tremendous achievements in its management, acute

coronary syndrome (ACS) remains the leading cause of death

worldwide (1). The fundamental pathology of ACS is the rupture

or erosion of vulnerable plaque and subsequent thrombus

formation (2, 3). Therefore, the identification of vulnerable

plaque before its rupture is a pivotal measure to prevent ACS.

Optical coherence tomography (OCT) is a novel high-resolution

intracoronary imaging technology that allows the resolution of

tissue microstructural interfaces ranging from 10 to 20µm (4).

It has been reported that OCT enables in vivo visualization

of various lesion features associated with plaque vulnerability

such as thin-cap fibroatheroma (TCFA), plaque rupture, plaque

erosion, macrophage accumulation, intracoronary thrombus,

intimal vasculature, calcification, and cholesterol crystals (CCs)

(5). The presence of high-risk OCT plaque features was found to

be associated with a higher risk ofmajor coronary events (6). The

images of CCs in OCT are thin, linear, sharp-bordered regions

with high intensity (7). Previous studies have demonstrated that

CCs were frequently found in human atherosclerotic plaques

of different stages from fatty streaks to advanced lesions (8).

Recently, some studies showed that CCs were associated with

vulnerable plaque morphological features (9–11). However, the

mechanisms of CCs-inducing plaque destabilization were not

fully elucidated.

Nucleotide-binding domain leucine-rich repeat-containing

(NLR) family, pyrin domain containing 3 (NLRP3) is among

the family members of NOD-like receptors (NLRs). Upon

activation, the NLRP3 recruits the adapter protein and forms

the NLRP3 inflammasome, a macromolecular protein complex

that leads to the activation of caspase-1 and promotes the

maturation and release of inflammatory cytokines interleukin

(IL)-1β and IL-18 (12). Previous animal and human studies

had demonstrated the important role of NLPR3 in the

severity and progression of coronary atherosclerosis (13–

15). Pathohistological studies demonstrated that the NLRP3

inflammasome could be activated by CCs, contributing

to atherosclerotic lesion progression and its subsequent

complications (16).

In this study, we aimed to explore the correlation between

the CCs, plaque vulnerability, and NLRP3 inflammasome in

culprit lesions in patients with ACS.

Methods

Study design and study population

A total of 332 consecutive patients with ACS at Ninth

People’s Hospital, Shanghai Jiao Tong University School of

Medicine between January 2018 and December 2019 were

enrolled in this study. Culprit lesions of all the patients were

examined by OCT prior to intervention. ACS consisted

of unstable angina pectoris (UA), ST-elevation myocardial

infarction (STEMI), and non–ST-elevation myocardial

infarction (NSTEMI). UA was defined as new-onset angina,

angina at rest within 2 weeks or crescendo angina without

elevated cardiac-specific biomarker troponin I/T (TnI/T).

NSTEMI was defined as ischemic symptoms with TnI/T

elevated but no ST-segment elevation on the electrocardiograph

(ECG). STEMI was defined as continuous ischemic symptoms

with new elevated ST-segment or new left bundle branch block

(LBBB) in ECG and Tn I/T in plasma. We excluded those with

cardiogenic shock (n = 8), prior coronary artery bypass graft

(CABG) (n = 12) or prior PCI (n = 25) in the culprit vessel,

serious liver or renal dysfunction (n = 11), and serious diseases

such as malignant tumors and autoimmune diseases (n = 7).

Finally, a total of 269 patients were included in our study. To

evaluate the expression of NLRP3 mRNA in peripheral blood

monocytes (PBMCs), 105 patients admitted to our hospital for

chest tightness but with no coronary atherosclerotic stenosis

at coronary angiography (CAG) were included as the control

group (non-coronary artery disease group).
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FIGURE 1

A representative case of optical coherence tomography (OCT) images of (A) cholesterol crystals (CCs) (arrows) and thin-cap fibroatheroma

(TCFA) (asterisks), (B) CCs (arrows) and macrophages (arrowheads), (C) layered plaque (triangles), and (D) micro-channel (stars).

TABLE 1 Primer sequences.

NLRP3 (Human)

Forward Primer 5′-GGTGTCTAGCATTGCGGTCA-3′

Reverse Primer 5′-TGCTCCTTGTCAGGGTTGAG-3′

GAPDH (Human)

Forward Primer 5′-TGTGGGCATCAATGGATTTGG-3′

Reverse Primer 5′-ACACCATGTATTCCGGGTCAAT-3′

OCT imaging acquisition and analysis

The culprit lesions were identified by the cardiologists based

on ECG and CAG findings. Intracoronary OCT procedure was

conducted for the culprit lesions after 100–200µg nitroglycerin

was used before PCI. An aspiration catheter would be used for

aspiration thrombectomy when there was insufficient antegrade

coronary flow which made OCT imaging impossible. The

acquisition of OCT images was achieved by using C7-XR

OCT Intravascular Imaging System (St Jude Medical, St Paul,

MN, USA). OCT images were analyzed by two independent

investigators. When there was discordance between the

observers, a consensus was obtained from a third independent

investigator. Lipid length was recorded on a longitudinal view

and max lipid arc was recorded. The presence of CCs, TCFA,

ruptured plaque, erosion plaque, macrophages, micro-channel,

thrombus, and spotty calcification in OCT was identified as

described previously (11). Layered plaques in OCT were plaques

with one or more layers of different optical densities (17). All

typical images are shown in Figure 1.

Biochemical measurements

Blood samples were collected after diagnosis and before PCI.

Human peripheral blood monocytes (PBMCs) were isolated

from venous blood by density gradient centrifuging and

stratifying using a Ficoll-Paque Plus density gradient. TRIzol

reagent (Invitrogen, Carlsbad, CA, USA) was used to isolate

total RNA from PBMCs. The expression of ratios of NLRP3

mRNA was determined using the relative quantitative method

with GAPDH as an internal control and fold changes were

calculated. NLRP3 and GAPDH mRNA levels were measured

as we described previously (18). The primer sequences used for

qPCR are shown in Table 1. After collection, serum samples were

stored at−80◦C before being used. With specific enzyme-linked

immunosorbent assay kits (R&D Systems, Minneapolis, MN,

USA), serum levels of IL-1β and IL-18 were measured according

to the manufacturer’s guidance.

Statistics

Statistical analysis was performed using SPSS (version 21,

IBM Corp, Armonk, NY, USA). Continuous variables were

expressed as mean ± standard deviation (SD). Independent

samples Student’s t-tests or Mann–Whitney U-tests were used

for the comparison between CCs or non-CCs groups according

to the data distribution. One-way ANOVA was used for

comparison between patients with STEMI, NSTEMI, and UA.

Categorical variables were presented as counts and frequencies

and compared with the Chi-square test or Fisher’s exact

test. Multivariable logistic regression analysis with variables of

clinical characteristics and OCT parameters was used to explore

the independent risk factors of CCs. A p-value of <0.05 was

considered statistically significant.

Results

Baseline characteristics

A total of 269 ACS patients with 269 culprit lesions were

included in this study. Of them, 39% of patients with ACS
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TABLE 2 Baseline characteristics.

Characteristics All subjects CCs group Non-CCs group p-value

(n = 269) (n = 105) (n = 164) CCs vs. non-CCs

Age (years) 67.5± 10.3 66.7± 10.8 68.0± 9.8 0.320

Male (n, %) 201 (74.7) 78 (74.3) 123 (75.0) 0.887

Smoking (n, %) 90 (33.5) 34 (32.4) 56 (34.1) 0.792

Culprit vessel

RCA (n, %) 72 (26.8) 32 (30.5) 40 (24.4) 0.210

LM (n, %) 2 (0.7) 0 (0) 2 (1.2) 0.522

LAD (n, %) 172 (63.9) 66 (62.8) 106 (64.6) 0.698

LCX (n, %) 23 (8.6) 7 (6.7) 16 (9.8) 0.504

Medical history

Hypertension (n, %) 170 (63.2) 68 (64.8) 102 (62.2) 0.699

DM (n, %) 57 (21.2) 26 (24.8) 31 (18.9) 0.285

Dyslipidemia (n, %) 38 (14.1) 15 (14.3) 23 (14.0) 1.000

Prior ACS (n, %) 9 (3.3) 4 (3.8) 5 (3.0) 0.740

Presentation 0.113

UA (n, %) 109 (40.5) 35 (33.3) 74 (45.1)

NSTEMI (n, %) 88 (32.7) 36 (34.3) 52 (31.7)

STEMI (n, %) 72 (26.8) 34 (32.4) 38 (23.2)

Laboratory data

CRP (mg/l) 4.76± 11.64 5.70± 14.21 4.15± 9.65 0.329

BNP (pg/ml) 106.57± 217.48 139.03± 253.65 85.78± 188.70 0.066

FBG (mmol/l) 6.05± 2.11 6.26± 1.94 5.91± 2.21 0.182

HbA1C (%) 6.26± 1.55 6.26± 1.31 6.25± 1.69 0.987

D-Dimer (mg/l) 0.47± 0.54 0.44± 0.47 0.49± 0.58 0.512

TC (mmol/L) 4.09± 1.08 4.21± 0.97 4.00± 1.14 0.122

TG (mmol/L) 1.59± 1.02 1.60± 0.91 1.59± 1.09 0.928

HDL-C (mmol/L) 1.12± 0.62 1.16± 0.86 1.09± 0.40 0.430

LDL-C (mmol/L) 2.75± 1.07 2.90± 1.01 2.66± 1.10 0.066

Lp(a) (g/L) 0.15± 0.17 0.20± 0.21 0.12± 0.13 0.001

ApoB (g/L) 0.21± 0.13 0.23± 0.16 0.20± 0.12 0.139

ApoE (g/L) 3.935± 1.272 3.88± 1.23 3.97± 1.30 0.577

Lp(a) > 0.3g/L (n, %) 38 (14.1) 25 (23.8) 13 (7.9) <0.001

Troponin I (ng/mL) 1.79± 10.04 3.19± 12.62 0.90± 7.89 0.098

Creatinine (umol/L) 88.52± 23.78 88.28± 23.87 88.13± 27.67 0.414

Uric acid (umol/L) 335.70± 95.71 342.37± 106.81 331.43± 87.96 0.361

LVEF (%) 59.03± 5.62 59.05± 5.57 59.02± 5.68 0.974

LAD, left anterior descending artery; RCA, right coronary artery; LCX, left circumflex artery; DM, diabetes mellitus; ACS, acute coronary syndrome; UA, unstable angina pectoris;

NSTEMI, non–ST-elevation myocardial infarction; STEMI, ST-elevation myocardial infarction; CRP, C reactive protein; BNP, brain natriuretic peptide; FBG, fasting blood glucose;

HbA1C, hemoglobin A1c; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a); ApoB,

apolipoprotein B; ApoE, apolipoprotein E; LVEF, left ventricular ejection fraction; CCs, cholesterol crystals.

(n= 105) were found to have CCs in culprit lesions. The baseline

characteristics and angiographic features of the patients between

the CCs group and the non-CCs group are shown in Table 2.

No patient had a history of other vascular diseases including

carotid artery disease, peripheral artery disease, or aortic

aneurysm. There were no significant differences between the

CCs group and the non-CCs group in age, gender, conventional

atherosclerosis risk factors (smoking, hypertension, and diabetes

mellitus), prior ACS, and clinical presentation (UA, NSTEMI,

and STEMI). Both groups had similar culprit vessel distribution

(p = 0.682). In addition, C reactive protein (CRP), brain

natriuretic peptide (BNP), fasting blood glucose (FBG),
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TABLE 3 Levels of NLRP3 expression, serum IL-1β, and IL-18 in the CCs group and the non-CCs group.

Expression All subjects CCs group Non-CCs group p-value

(n = 269) (n = 105) (n = 164) CCs vs. non-CCs

NLRP3 mRNA 1.46± 0.57 1.81± 0.33 1.24± 0.58 <0.001

IL-1β (pg/ml) 14.97± 4.34 17.95± 3.92 13.06± 3.43 <0.001

IL-18 (pg/ml) 205.76± 80.77 235.18± 88.98 186.92± 68.99 <0.001

CCs, Cholesterol crystals.

FIGURE 2

CCs in the plaque aggravate NLRP3 expression and inflammatory cytokine secretion in patients with ACS. Comparison of levels of (A) NLRP3

mRNA expression, (B) serum IL-1β, and (C) serum IL-18 between the CCs group and the non-CCs group in patients with ACS. **P < 0.01 vs. the

non-CCs group.

hemoglobin A1c (HbA1C), total cholesterol (TC), triglycerides

(TGs), low-density lipoprotein cholesterol (LDL-C), high-

density lipoprotein cholesterol (HDL-C), apolipoprotein B (Apo

B), apolipoprotein E (Apo E), TnI, creatine, uric acid, and left

ventricular ejection fraction (LVEF) were similar between two

groups. The level of Lp(a) (0.20 ± 0.21 g/L vs. 0.12 ± 0.13 g/L,

p = 0.001) and proportion of elevated Lp(a) (>0.3g/L) (23.8 vs.

7.9%, p < 0.001) were much higher in the CCs group than that

in the non-CCs group.

NLRP3 inflammasome and downstream
cytokine expression

The cholesterol crystals group had higher NLRP3 expression

at the transcriptional level than the non-CCs group (1.81± 0.33

vs. 1.24 ± 0.58, p < 0.001) (Table 3, Figure 2A). Additionally,

levels of serum IL-1β (17.95 ± 3.92 pg/ml vs. 13.06 ± 3.43

pg/ml, p < 0.001) and IL-18 (235.18± 88.98 pg/ml vs. 186.92±

68.99 pg/ml, p < 0.001) in patients with CCs were much higher

than that in patients without CCs (Table 3, Figures 2B,C). There

were no significant differences between patients with STEMI,

NSTEMI, and UA with regard to the NLRP3 expression (1.55 ±

0.46 vs. 1.50± 0.62 vs. 1.37± 0.59, respectively, p= 0.075), level

of serum IL-1β (15.66 ± 3.56 pg/ml vs. 14.95 ± 4.07 pg/ml vs.

14.43± 4.95 pg/ml, respectively, p= 0.176), and IL-18 (218.29±

74.50 pg/ml vs. 201.55 ± 92.34 pg/ml vs. 191.71 ± 73.14 pg/ml,

respectively, p= 0.095).

Plaque characteristics assessed by OCT

The OCT findings of the culprit lesions are shown in Table 4.

The lesion length (20.33 ± 9.36mm vs. 16.48 ± 6.90mm, p <

0.001) was much longer and diameter stenosis (DS) (68.92±

12.50% vs. 57.99 ± 17.0 %, p = 0.002) was more severe in the

CCs group than that in the non-CCs group. The minimum

luminal area (MLA), proximal luminal area (PLA), and distal

luminal area (DLA) were much smaller in the CCs group

than that in the non-CCs group (2.34 ± 1.29 mm2 vs. 3.63

± 2.31 mm2, p < 0.001; 8.47 ± 2.74 mm2 vs. 9.47 ± 3.26

mm2, p = 0.010; 6.69 ± 2.86 mm2 vs. 7.46 ± 3.23 mm2,

p = 0.046, respectively). The frequency of lipid-rich plaque

and large calcification was similar between the two groups.

However, lipid length (15.58 ± 9.98mm vs. 12.38 ± 8.28mm,

p = 0.005) was much longer and maximal lipid arc was much

larger (252.24± 110.16◦ vs. 206.50± 105.65◦, p= 0.001) in the

CCs group than that in the non-CCs group. In addition, TCFA

(51.4 vs. 12.8%, p< 0.001), thrombus (37.1 vs. 16.4%, p= 0.026),

macrophages accumulation (84.8 vs. 47.6%, p < 0.001), plaque

rupture (24.8 vs. 7.3%, p< 0.001), micro channel (56.2 vs. 23.2%,

p < 0.001), calcification (46.7 vs. 31.7%, p = 0.015), spotty
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TABLE 4 Characteristics of OCT findings.

Characteristics All subjects CCs group Non-CCs group p-value

(n = 269) (n = 105) (n = 164) CCs vs. non-CCs

MLA (mm2) 3.13± 2.07 2.34± 1.29 3.63± 2.31 <0.001

PLA (mm2) 9.08± 3.10 8.47± 2.74 9.47± 3.26 0.010

DLA (mm2) 7.17± 3.11 6.69± 2.86 7.46± 3.23 0.046

ALA (mm2) 8.128± 2.89 7.58± 2.53 8.46± 3.06 0.014

Lesion length (mm) 17.98± 8.16 20.33± 9.36 16.48± 6.90 <0.001

DS (%) 62.26± 16.33 68.92± 12.50 57.99± 17.08 0.002

Lipid-rich plaque (n, %) 230 (85.5) 93 (88.6) 137 (83.5) 0.290

Lipid length (mm) 13.63± 9.10 15.58± 9.98 12.38± 8.28 0.005

Maximal lipid arc (◦) 224.35± 109.53 252.24± 110.16 206.50± 105.65 0.001

TCFA (n, %) 75 (27.8) 54 (51.4) 21 (12.8) <0.001

Thrombus (n, %) 66 (24.5) 39 (37.1) 27 (16.4) 0.026

Macrophage (n, %) 167 (62.1) 89 (84.8) 78 (47.6) <0.001

Plaque rupture (n, %) 38 (14.1) 26 (24.8) 12 (7.3) <0.001

Micro channel (n, %) 97(36.0) 59(56.2) 38(23.2) <0.001

Calcification (n, %) 101(37.5) 49(46.7) 52(31.7) 0.015

Spotty calcification (n, %) 96(35.7) 47(44.8) 49(29.9) 0.019

Large calcification (n, %) 56(20.8) 27(25.7) 29(17.7) 0.125

Layered plaque (n %) 117(43.5) 74(70.5) 43(26.2) <0.001

MLA, minimum luminal area; PLA, proximal luminal area; DLA, distal luminal area; ALA, average luminal area; DS, diameter stenosis; TCFA, thin-capped fibroatheroma, CCs,

cholesterol crystals.

calcification (44.8 vs. 29.9%, p= 0.019), and layered plaque (70.5

vs. 26.2%, p < 0.001) were more frequent in the CCs group than

in the non-CCs group.

Predictors for cholesterol crystals

Multivariate logistic analysis revealed that the expression

of NLRP3 (OR = 10.204; 95% CI: 4.546–22.904, p < 0.001),

IL-18 (OR = 1.006; 95% CI: 1.002–1.011, p = 0.007), IL-

1β (OR = 3.523; 95% CI: 1.743–8.875, p = 0.002), TCFA

(OR = 3.593; 95% CI: 1.606–7.729, p = 0.038), layered

plaque (OR = 5.287; 95% CI: 2.402–11.637, p < 0.001), MLA

(OR = 1.475; 95% CI: 1.021–2.131, p = 0.039), macrophage

accumulation (OR = 2.881; 95% CI: 1.179–7.0404, p = 0.020),

andmicro channel (OR= 3.185; 95%CI: 1.455–6.973, p= 0.004)

were independently associated with CCs (Table 5).

Discussion

The present study showed that CCs in culprit lesions were

associated with vulnerable plaque features in patients with ACS.

Furthermore, our study demonstrated for the first time the

correlation between CCs in culprit lesions and NLRP3 pathway

activation in the human body, which was only proved previously

in cell and animal studies.

TABLE 5 Multivariable logistic regression analysis for CCs.

Variables OR 95%CI p-value

NLPR3 mRNA 10.204 4.546–22.904 <0.001

IL-18 1.006 1.002–1.011 0.007

IL-1β 3.523 1.743–8.875 0.002

TCFA 3.593 1.606–7.729 0.038

Layered plaque 5.287 2.402–11.637 <0.001

Macrophage 2.881 1.179–7.040 0.020

MLA 1.475 1.021–2.131 0.039

Micro channel 3.185 1.455–6.973 0.004

TCFA, thin-capped fibroatheroma; MLA, minimum luminal area; OR, odds ratio; CI,

confidence interval.

Studies concerning the formation of CCs have revealed

that CCs were frequently found in atherosclerotic plaques and

were present at all stages of atherogenesis (9, 19). An animal-

based study found that CCs began to appear in the early

stage of atherosclerotic plaque formation (20). An experiment

with human artery samples demonstrated that CCs could be

discovered from fatty streaks to advanced lesions (21). The

incidence of CCs detected by intravascular imaging modalities

or other imaging instruments in patients with coronary artery

disease (CAD) varied in different studies. Nishimura et al. used

OCT to identify the plaque components and found that 38% of
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patients with CAD (including ACS and stable angina pectoris,

SAP) had CCs within the culprit lesion segment (10). Fujiyoshi

et al. found that the incidence of CCs detected by OCT in

culprit lesions requiring PCI was 29% (7). Tian et al. performed

an OCT examination for all three coronary arteries in 255

patients and found that of 643 plaques detected, the frequency

of CCs in severely stenotic TCFA was 40% (22). In a study

evaluating aspirates for CCs by scanning electron microscopy

(SEM) in patients with AMI who had the aspiration of culprit

coronary artery obstruction, CCs were detected in 89% of all

analyzed aspirates (23). Our study found that 39% of patients

with ACS (including UA, NSTEMI, and STEMI) had CCs in

culprit lesions.

The exact mechanism of CCs formation has not been

clarified. The prevailing current view of CCs formation in

atherosclerotic plaque is that macrophages and smooth muscle

cells could convert the esterified cholesterol provided by the

LDL located in sub-intima into free cholesterol. Free cholesterol

was transported to high-density lipoprotein (HDL) through

membrane-bound cholesterol carriers. Impaired HDL transport

function or disequilibrium between esterified cholesterol and

free cholesterol can lead to intracellular and extracellular free

cholesterol accumulation, thus can lead to CCs formation

(24). A rodent model study showed that after only 1 week

of hyperlipidemia, CCs were formed and deposited in the

plaque and increased with prolonged length of a high-fat diet

treatment (20). We postulate that blood lipid in patients with

CCs is higher than in patients without CCs. However, in

our study, no significant differences were observed between

patients with CCs and patients with non-CCs in blood lipid

profiles except Lp(a). Anmultivariate analysis showed that blood

lipid profiles were not independent predictors of CCs. Our

results were consistent with previous studies, which showed

that LDL-C and HDL-C levels were comparable between the

CCs group and the non-CCs group (7, 10). The reason for

this may be that except for overloaded low-density lipoprotein

or impaired HDL function, many local physical changes such

as saturation, temperature, hydration, and PH can enhance

cholesterol crystallization (25).

Cholesterol crystals have been identified as a major catalyst

for plaque vulnerability and as a potential biomarker for

atherosclerosis. Abela et al. examined plaque samples by using

light microscopy and SEM and found that the presence

of CCs was strongly associated with plaque rupture and/or

erosion (26). Nishimura et al. investigated CCs in patients

with SAP and ACS and found that CCs within the culprit

lesions became more frequent with the increase of the features

of plaque vulnerability (10). Fujiyoshi et al. demonstrated

that the presence of CCs was associated with a higher

prevalence of vulnerable characteristics and was significant with

a higher rate of 1-year major adverse cardiovascular events

(MACEs) (7). Katayama et al. revealed that CCs were more

frequently found in AMI patients with plaque rupture than

in AMI patients without plaque rupture (27). The presence

of CCs invading fibrous caps were an independent risk factor

for plaque rupture except for rich lipid and thin fibrous

caps (27). Our results showed that the culprit lesions with

CCs in patients with ACS had more characteristics (TCFA,

layered plaque, thrombus, accumulation of macrophages, plaque

rupture, micro-channel, calcification, less MLA, and longer

lesion length) of vulnerable plaque. In turn, TCFA, layered

plaque, MLA, macrophage accumulation, and micro-channel

were independently associated with CCs.

Mechanisms of CCs-inducing plaque vulnerability had

been explored. Studies by Abela et al. showed that during

the crystallization, CCs could perforate the plaque cap, thus

leading to plaque rupture and/or erosion and subsequent

thrombus formation (26, 28, 29). In addition, CCs could initiate

inflammation via activating NLRP3-dependent inflammasome,

driving plaque progression, and plaque instability. Studies using

cell and animal models had showed that CCs prepared in

vitro could activate NLRP3 inflammasome with the release

of pro-inflammatory cytokines (30, 31). The expression of

NLRP3 signaling pathway components including NLRP3, IL-

1β, and IL-18 was documented to be associated with plaque

vulnerability in vivo and in vitro studies (16, 32). Our study,

for the first time, demonstrated the relationship between CCs

in culprit lesions and NLRP3 expression in the human body.

ACS patients with CCs in culprit lesions had higher expression

of NLRP3 in macrophages and higher levels of IL-1β and IL-

18 in serum than patients with non-CCs. Multivariate analysis

showed that the levels of NLRP3 expression, IL-1β, and IL-18

were independently associated with CCs. Our results indicated

that the NLRP3 pathway might be involved in CCs-inducing

plaque vulnerability. In addition, no significant differences were

observed between patients with STEMI, NSTEMI, and UA with

regard to the NLRP3 expression and levels of serum IL-1β and

IL-18. Our findings were in accordance with the results of the

study by Altaf et al. (33), indicating that NLRP3 inflammasome

and downstream cytokines might not be efficient enough to

sense cell injury.

Recognizing the relationship between increased

inflammatory status, CCs in coronary arteries, and plaque

vulnerability could help to identify the high-risk plaques

occurring in “vulnerable” patients and provide a new potential

therapeutic target for these patients. Recent clinical studies

demonstrated the efficacy of anti-inflammatory drugs in patients

with CAD. CANTOS study showed that anti-inflammatory

therapy targeting the IL-1β with canakinumab in patients with

a stable coronary disease could lead to a 15% lower risk of

cardiovascular events than was observed with placebo, but also

led to a slightly higher incidence of fatal infections (34). The

COLCOT Trial evaluated the effects of colchicine, a potent

anti-inflammatory medication that possibly had effects on

cellular adhesion molecules, inflammatory chemokines, and

the inflammasome, on cardiovascular outcomes as well as its
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long-term safety profile in patients with recent (within 30 days)

myocardial infarction, and demonstrated that colchicine at a

dose of 0.5mg daily led to a significantly lower risk of ischemic

cardiovascular events than placebo. There were no significant

differences in serious adverse events among the two groups,

except for a higher rate of pneumonia in the colchicine group

(0.9%) than that in the placebo group (0.4%) (35). Further

studies are needed to investigate the effects of anti-inflammatory

drugs in patients with CAD who exhibits CCs and increased

inflammatory status.

Limitations

There were some limitations in this study. First, data were

acquired from a single center involving only patients with ACS.

There was no control group consisting of stable patients with

similar intracoronary imaging data available. Second, blood

sampling in our study was collected from peripheral blood.

Sampling from coronary veins and coronary culprit lesions

has been shown to be more direct in comparison between

biomarkers and coronary plaque characteristics/clinical

presentation (36, 37). Markers of inflammation from

venous blood might originate from different locations

where inflammation could take place and inflammation of

various origins might overstate the values of these indicators.

Third, we only examined the plaque characteristics in culprit

lesions using OCT; we did not examine the CCs distribution in

non-culprit lesions. Fourth, the factors associated with NLRP3,

IL-1β, and IL-18 were not explored in our study. Fifth, whether

inflammatory markers would increase constantly and plaque

remained unstable over time are still not known. Sixth, whether

the CCs in culprit lesions could influence the clinical outcome

in patients with ACS is still unclear.

Conclusion

Patients with ACS with CCs in culprit lesions had higher

expression of NLRP3, IL-1β, and IL-18, and hadmore vulnerable

plaque characteristics than patients without CCs. In patients

with ACS, CCs may interact with NLRP3 inflammasome

activation, contributing to plaque vulnerability in culprit lesions.
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